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To enhance the impact resistance of penetration fuze, this paper investigates the
response of fuze buffer materials to stress waves and develops a model for stress
wave transmission inside the fuze. The stress concentration impacts of different
cell structures of Imitation Bamboo Type Penetration Fuze Buffer Protection
Structure (IBS) under stress wave action are compared and analyzed. The paper
elucidates the impact of different cell parameters on stress concentration
impacts, establishes nonlinear fitting functions of Stress Concentration Factor
(SCF) and cell parameters, and solves the prediction error. Based on the wave
function expansion method, an expression for Dynamic Stress Concentration
Factor (DSCF) when stress waves interact with the potting material is derived, and
numerical results of DSCF around bubbles under different physical parameters
are provided. Finally, dynamic impact tests are conducted on the combined
buffer scheme of penetration fuze. Impact test results show that, under an initial
velocity impact of 50 m/s, the overload peak attenuation rate is 39.42%, and
under an initial velocity impact of 70 m/s, the overload peak attenuation rate is
32.87%. IBS can effectively protect the electronic components inside the fuze.
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1 Introduction

During the high-speed penetration process, both the projectile and the fuze are
subjected to strong dynamic loads, and the stresses generated are transmitted in various
forms of waves to different parts [1–3]. The phenomenon of stress waves is widely present in
the lives and has been extensively studied by experts and scholars in various fields, mainly in
engineering, military technology, and scientific theoretical research [4]. The most typical
examples of stress wave phenomena are various explosive and impact load problems in the
military field [5]. Under the dynamic response of impact loads, the response of objects often
differs significantly from that under static loads [6]. For example, when glass is subjected to
the impact of a stone, the back of the glass often fractures and collapses first. When a static
load is applied to one end of a metal rod, an experimental phenomenon opposite to that of
applying a dynamic load occurs: the deformation of the metal rod under static load is
basically uniformly distributed along the metal rod, while under impact load, the
deformation is concentrated more at the two ends of the metal rod [7, 8].

This article focuses on the study of buffer materials for penetration fuze and proposes an
IBS. Establish a theoretical model for stress wave propagation inside the fuze and derive the
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energy absorption mechanism of IBS under axial impact load. By
using finite element method to analyze the SCF of different cell
structures under penetration overload, and exploring the influence
of cell geometric parameters on SCF, a semi analytical solution of the
nonlinear fitting function for predicting SCF is obtained. In
addition, theoretical analysis and numerical calculation were
conducted on the DSCF around the bubbles in the sealing
material, and the distribution curve of the DSCF in the fuze
sealing material was solved. Finally, the optimal structure of IBS
is prepared through additive manufacturing technology, select the
sealing material with the best buffering performance. Conduct
dynamic impact tests on the optimized buffer scheme to verify
that IBS can effectively reduce overload peaks and minimize damage
to the electronic device structure of the fuze caused by stress waves.

2 Design of penetration fuze buffer
structure model

2.1 Design of biomimetic cell geometry

Biomimetics is the study of the principles of structure and
function of biological organisms, and based on these principles,
new equipment, tools, and technologies are invented to create
advanced techniques applicable to production, learning, and life.
For example, in architecture, large-span thin-shell buildings are
constructed by mimicking the structure of shells, and pillars are
built by mimicking the structure of bones, which not only
eliminates regions of stress concentration but also allows for the
use of minimal building materials to withstand maximum loads.
Zhang et al. [9] referred to the hierarchical structure of loofah
sponge and the stiffening behavior of sea cucumber and proposed
a new strategy for achieving multi-physical field protection through
biomimetic structure design. This biomimetic structure effectively
enhances the stiffness of polyurethane foam.Additionally, the stiffness
of this biomimetic structure increases with increasing compressive
strain rate, exhibiting excellent impact resistance under dynamic
loads. Compared to polyurethane foam, the impact force of this
biomimetic structure is reduced by 57.6%, and energy absorption

is increased by 25.7%. This study provides an innovativemeans for the
development of intelligent multi-physical field protection. Li [10]
found that the arc-shaped structure of natural organisms can provide
a reference for the design of impact-resistant structures. Most existing
biomimetic arc-shaped impact-resistant structures are directly formed
using 3D printing technology, and samples cannot dynamically adjust
their impact resistance performance in various applications. This
method uses 4D printing technology based on fuzed filament
fabrication, dynamically adjusts process parameters, and
incorporates them into the printing program to create flat
structures with different design shapes. Through dynamic thermal
stimulus processing, these structures can undergo deformation and
transform into biomimetic arc-shaped structures. Thermal stimulus
processing can drive the dynamic transformation of 2D planar
structures into 3D structures. Under the same experimental
conditions, the higher the thermal stimulus temperature, the more
pronounced the deformation impact, and the higher the structural
density. There is a certain positive correlation between the thermal
stimulus temperature and the mechanical properties of biomimetic
structure specimens. Additionally, designing different cyclic unit
patterns has different compressive mechanical properties, with a
greater number of cyclic units resulting in more prominent energy
absorption characteristics. 3D models of Imitation Bamboo Type
Penetration Fuze Buffer Protection Structure (IBS) and traditional
concave hexagonal honeycomb structure are shown in Figure 1.

2.2 Stress wave transmission law of fuze
rigid-flexible coupled system

During the penetration process of hard targets, when the projectile
impacts the target plate at high speed due to strong dynamic loads, the
stresses and deformations generated are propagated in the form of
stress waves in the projectile-fuze structure.When the stress generated
by the load reaches or far exceeds the yield strength of the projectile
material, irreversible plastic deformation occurs in the material,
resulting in the generation of plastic waves between the projectile
and the fuze. Since the velocity of elastic waves is much faster than that
of plastic waves, elastic waves precede plastic waves. Under uniaxial

FIGURE 1
Honeycomb structure models of Penetration Fuze buffer. (A) IBS. (B) Traditional straight-edge structure.
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strain conditions, the velocity of elastic waves in the material is given
by Eq. 2.1:

C �
��
E

ρ

√
(2.1)

where C is the velocity of longitudinal elastic waves in the medium,
determined by the material’s elastic modulus E and density ρ; and ρC
is the impedance of longitudinal elastic waves. According to the
theory of stress wave propagation, during the penetration of the
projectile into the target plate, the impact is transmitted from
the projectile to the buffer pad. When the elastic wave reaches
the interface between two different media in the projectile-fuze
structure, reflection and transmission of elastic waves occur. The
reflected tensile elastic wave propagates to the left, unloading the
elastic compression wave and the plastic loading wave successively.
The transmitted elastic wave continues to propagate to the right,
entering the cushioning and isolating material. Subsequently, the
impact-resistant cushion is transmitted to the fuze casing, and the
impact on the fuze casing passes through the potting layer before
reaching the electronic device. Due to the different materials of the
fuze casing, potting material, and circuit board, reflection and
transmission of stress waves occur again during the internal
propagation of stress waves in the fuze. In this paper, a 1D
analysis of stress wave transmission is performed on the fuze
casing, potting material, and circuit board, as shown in Figure 2.

At the interface between the fuze casing and the potting material,
and between the potting material and the circuit board, the equation
can be expressed as Eq. 2.2:

σ2 � T1σ1

σ3 � T2σ2

T1 � 2 ρC( )2
ρC( )2 + ρC( )1

T2 � 2 ρC( )3
ρC( )3 + ρC( )2

(2.2)

where σ₁ is the stress of the fuze casing; σ₂ is the stress inside the
potting material; σ3 is the stress on the circuit board; and ρC is the
wave impedance of the material. Substituting the above values into

the equation, the stress relationship between the potting material
and the fuze body and PCB board is obtained as follows:

Polyurethane: σ1 � 0.12σ2, σ2 � 1.72σ3

Epoxy resin: σ1 � 0.20σ2, σ2 � 1.55σ3

Through the above analysis of the potting material, in
engineering applications, potting materials with low transmission
coefficients should be selected to reinforce the circuit components
and reduce the transmission of stress in the projectile.

2.3 Energy absorption characteristics of
buffer honeycomb structure under
penetration overload

The energy absorption behavior of honeycomb structures is
described by the principle of energy conservation, which delineates
the energy conversion process from intact to failure under in-plane
loading conditions. It develops a nonlinear relationship between
stress-strain and external work done by the load, which provides a
solution closer to reality than directly solving boundary value
problems of partial differential equations. Taking the elastoplastic
energy absorption of honeycomb structures as an example, the strain
energy density per unit volume is expressed as Eq. 2.3:

Wy � ∫ σ ijdεij i, j � x, y, z( ) (2.3)

whereWY is the strain energy density and εij is the strain component.
Therefore, the total strain energy of elastoplastic deformation in
honeycomb structures is given as Eq. 2.4:

Qy � ∫WydV � 1
2
∫ σ ijεijdV i, j � x, y, z( ) (2.4)

If there is no energy loss during the crushing process of the
honeycomb structure, then the strain energy inside the honeycomb
structure numerically equals the work done by the surface load
during the crushing displacement. According to the principle of
virtual displacement, if the honeycomb structure is in a stable state
under external loads, virtual displacements occur at various
reference points inside the honeycomb structure. Likewise, the
work done by external loads on virtual displacement numerically
equals the virtual strain energy of the honeycomb structure under
virtual displacement expressed as Eq. 2.5:

δQe � ∫fiδuidV + ∫Piδuids (2.5)

where δQe is the virtual work; fi is the volume force; Pi is the surface
force; and δUi is the virtual displacement. Thus, the virtual strain
energy caused by virtual displacement is Eq. 2.6:

δUy � ∫ σ ijδεijdV i, j � x, y, z( ) (2.6)

If the external force is a time-varying load, it can be dominated
by the potential function, then the variational equation can be
expressed as Eq. 2.7:

δH � δu + δV � 0

H � Uy + Vy − Qe � ∫WydV − ∫fiuidV + ∫Piuids( ) (2.7)

FIGURE 2
1D analysis model of fuze.
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whereH is the total potential energy of the elastoplastic body. For
the buffering honeycomb structure subjected to axial impact,
initial deformation only results in local deformation bands.
However, when the penetration overload exceeds tens of
thousands of g-forces, the buffering honeycomb structure
undergoes fracture and significant deformation, and energy is
dissipated in other forms. Therefore, the honeycomb structure
follows the principle of energy conservation under penetration
conditions expressed as Eq. 2.8:

ETEA � Eb + Em + Efri + Efra + ... (2.8)

where the terms on the right-hand side represent energy
dissipation due to bending, torsion, friction, and fracture,
respectively. Generally, porous honeycomb structures exhibit
strong energy absorption characteristics and can serve as ideal
energy absorption structures. Under low-speed impacts (around
2000g), the energy absorption structure only undergoes elastic
deformation. However, in the load conditions experienced by
penetration fuze, as the projectile penetrates defensive
structures and the overload exceeds 50000g, the energy
absorption structure is crushed and compacted, exhibiting
structural fracture and failure under such instantaneous high
dynamic loading conditions.

2.4 Uniaxial loading behavior of penetration
fuze buffer honeycomb structure

The IBS designed in this article can effectively attenuate the
impact amplitude when penetrating a reinforced concrete target,
and improve the impact resistance of the internal circuit board of
the fuze. In the project, the diameter of the projectile is
105–155mm, the strength of the target plate is C35-C60, and
the buffer material is installed between the fuze and the
projectile. The reserved thickness of the projectile in the buffer
area is not more than 4 mm. Under ultra-high-speed penetration
overload, the buffer protective structure for penetration fuze
mainly undergoes linear elastic deformation, elastic buckling,
plastic collapse, and fracture failure.

2.4.1 Linear elastic deformation
Under quasi-static compressive loads, honeycomb structures

undergo linear elastic deformation and plastic collapse deformation.
This section mainly studies the deformation under uniaxial loading
in the plane, as shown in Figure 3.

Where (a) represents the deformation impact of a representative
cell under axial stress σ1; (b) represents the force diagram on the
upper beam; and (c) represents the force diagram on the concave
curved edge. The honeycomb structure initially enters the linear
elastic region under initial compression displacement, where elastic
deformation predominates. The equilibrium equation is given as
Eq. 2.9:

X � σ1 h + l sin θ( )ts
R � Xl sin θ

2

(2.9)

where ts is the thickness of the thin wall in the axial direction; R is the
bending moment; and X is the horizontal load. The deflection of the
line is expressed as Eq. 2.10:

δ � Xl3 sin θ
12EsI

I � tse
3

12

(2.10)

where Es is Young’s modulus; I is the second moment of inertia of
the line; and the deflection component is parallel to the load
direction. The expression for cell strain can be derived as Eq. 2.11:

ε1 � δ sin θ
l cos θ

� σ1 h + l sin θ( )tsl2 sin 2 θ

12EsI cos θ
(2.11)

Therefore, the elastic modulus of the cell in the axial direction is
shown as Eq. 2.12:

E1
* � e

l
( )3 Es cos θ

h
l + sin θ( )sin 2 θ

(2.12)

Similarly, analyzing the stress deformation on the curved edge,
the honeycomb structure’s curved edge undergoes shear
deformation under penetration overload. Due to the symmetry of

FIGURE 3
Schematic of uniaxial loading on cell face. (A) Representative cell deformation effect. (B) Upper crossbeam force diagram. (C) Internal concave
curved edge force diagram.
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the cell, the analysis shows that points A, B, and C of the 1/4 cell unit
do not experience relative displacement under shear load, and the
shear deflection is caused by compression of the upper beam and
rotation around point B. The rotation angle is φ, as shown in
Figure 3C, which represents the schematic diagram of force
deformation of a representative honeycomb cell upper beam,
curved edge, and support under penetration load. The resultant
moment at point B can be expressed as Eq. 2.13:

M � Fh

4
(2.13)

Similarly, based on the previous analysis of deflection and
moment of inertia, the expression for the rotation angle can be
obtained as Eq. 2.14:

φ � Fhl

24EsI
(2.14)

Therefore, the expression for the shear deflection at the right
vertex D of the upper beam is determined as Eq. 2.15:

rs � h

2
φ + F

8EsI

h

2
( )3

(2.15)

The shear strain on the curved edge can be expressed as Eq. 2.16:

τ � 2rs
h + l sin θ

(2.16)

Using the same derivation method as the analysis of beam
deformation under load, the shear modulus of the biomimetic
honeycomb structure is obtained as Eq. 2.17:

G1
* � Es

h
l + sin θ( ) t

l( )3
h
l( )2 1 + 16h

l( ) cos θ (2.17)

2.4.2 Elastic buckling
When the honeycomb structure is in the initial stage of

penetration load, linear elastic deformation predominates. The
honeycomb structure can be analyzed as an elastic body. When
the compressive load in the axial direction exceeds the Euler
buckling load, elastic buckling occurs. The expression is given as
Eq. 2.18:

Qcri � ϖπ
h

( )2

EsI (2.18)

whereϖ is the endpoint constraint factor, representing the rotational
stiffness at the connection between the curved edge of the
representative honeycomb cell and the support rod; I is the
second moment of inertia of the straight line. Similarly, the
relationship between the curved edge bearing the penetration
load and the impact stress can be expressed as Eq. 2.19:

Q � 2σ2lrs cos θ (2.19)
When P=Pcri, the honeycomb buffer honeycomb absorbs

penetration overload energy through elastic collapse, and its
collapse stress is determined as Eq. 2.20:

σ2
* � ϖπ( )2t3Es

36 cos θlh2
(2.20)

where ϖ is impacted by the cell line diameter on the rotation
stiffness at the connection between the curved edge and the
support rod. The larger the value, the greater the suppression
of the rotational impact of the cell, with a maximum value of 1.7.
The smaller the value, the less inhibition of the rotational impact
of the cell, with a minimum value of 0.3, at which point the cell
rotates freely.

2.4.3 Plastic collapse
As the penetration overload increases gradually, when the axial

load stress borne by the buffer honeycomb exceeds the critical load,
plastic collapse of the honeycomb structure begins, and the pores are
gradually filled. At this point, due to 3D structure of the buffer
honeycomb and the negative Poisson’s ratio impact, the honeycomb
structure as a whole is in a state of being squeezed towards the
geometric center from all sides. Therefore, this section analyzes from
both the axial and radial directions. The plastic collapse of the
honeycomb structure in the axial direction is shown in Figure 3.
Under this condition, the equilibrium equation is shown as Eq. 2.21:

X � σ1 h + l sin θ( )rs (2.21)

During the process of the projectile penetrating the target, the
kinetic energy of the internal components of the fuze is mainly
absorbed by the plastic deformation of the honeycomb structure. Let
the cellular structure compress the energy absorption per unit
volume as η, according to the law of conservation of energy, the
plastic deformation energy of honeycomb materials ΔE is Eq. 2.22:

ΔE � η · ΔL · S (2.22)

In the formula: ΔL is the compression stroke; S is the number of
cells. Only when ΔE>Ef + Ei can the system kinetic energy be fully
absorbed. Therefore, there are Eq. 2.23:

η · ΔL · S>Ef + Ei (2.23)

By combining (2.21), (2.22) and (2.23), it can be concluded that
when plastic shear torsion occurs at each connection point of the
honeycomb structure, the plastic work done at the connection point
is Eq. 2.24:

4Mpφ≥ 2σ1rs h + l sin θ( )φl sin θ (2.24)

Where MP represents the plastic moment during plastic shear
twisting. Based on the empirical equation of moment, the critical
value of plastic collapse stress for the buffer honeycomb can be
derived as Eq. 2.25:

σp1
* � σ0t2

2l2 h
l + sin θ( ) sin θ (2.25)

Similarly, based on the expression of plastic moment and the
critical value of plastic collapse stress, the maximum moment of the
buffer honeycomb can be obtained as Eq. 2.26:

M max( )1 � 1
2
σ1 h + l sin θ( )rsl sin θ (2.26)

In the radial direction, the buffer honeycomb cell is mainly
subjected to compression from adjacent cells. By equating the plastic
work required for compression deformation to the work done by the
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penetration overload stress, the relationship between the maximum
moment of the buffer honeycomb and the plastic moment is
expressed as Eq. 2.27:

M max( )2 � 1
2
σ2l

2rs cos
2 θ (2.27)

By analyzing the radial plastic shear situation using a method
similar to that of axial loading, in the early stages of collapse, the cells
surrounding the representative cell undergo shear loading in the
radial direction, causing plastic shear of the buffer honeycomb. The
critical shear strength is calculated as Eq. 2.28:

τp1
*( )

12
� σ0t2

6 h/l( ) cos θ (2.28)

In the early to mid-stages of collapse, elastic buckling is
insufficient to support the strength of the buffer honeycomb,
leading to plastic collapse. At this point, the equilibrium equation
is given as Eq. 2.29:

σe1
*( )2 � σp1

*( )
2

(2.29)

Existing research results show that for 3D printed metal
structures, the magnitude of the elastic modulus is relatively low.
When the relative density is small, the buffer honeycomb undergoes
plastic collapse under penetration load.

2.4.4 Fracture failure
As the penetration overload further increases, the buffer

honeycomb enters the final stage of protective work: fracture
failure. At this point, the cells begin to collapse on a large scale,
and the pores are gradually filled. The compressive stress borne by
the buffer honeycomb under the action of the moment Mmax is
determined as Eq. 2.30:

σmax � 8Mmax

rst2
(2.30)

When the compressive stress equals the fracture strength of the
buffer honeycomb, the structure undergoes fracture failure, and the
fracture moment is expressed as Eq. 2.31:

Mf � σfsrst2

8
(2.31)

By substituting the fracture moment into the equation for the
maximum moment of the buffer honeycomb, the fracture strength
of the biomimetic structure is obtained as Eq. 2.32:

σ*r �
σfst2

4l2 sin θ h
l + sin θ( ) (2.32)

2.5 Finite element analysis of stress
concentration

The maximum local stress at the irregularities of the outer shape of
the buffering structure is denoted as σmax, and it can be obtained
through solid elastoplastic deformation theory and structuralmechanics
calculations. During the process of projectile penetration through the
target, the theoretical Stress Concentration Factor (SCF) is represented

by the ratio of themaximum local stress σmax to the nominal stress σnom
approximately uniformly distributed on the cross-section of the
buffering structure can be represented as Eq. 2.33:

SCF � σmax

σnom
(2.33)

From the equation above, the more abrupt the external shape
mutations of the buffering structure, the more severe the stress
concentration. In the case of penetration fuze with buffering
structures made of metal, under the action of penetration
overload, as the maximum local stress reaches the yield limit of
the buffering structure, and with the continued increase in
penetration overload, the nominal strain continues to increase
while the nominal stress no longer increases. The additional
overload will be borne by the remaining parts until the nominal
stress at all section nodal points of the entire honeycomb structure
approaches the yield strength. At this point, the energy absorption
process of the buffering structure concludes.

IBS finite element model is imported into SolidWorks
Simulation, with the biomimetic cell model being 6 mm in length
and 4 mm in height. The structure is made of 7,075 aluminum alloy
with elastic modulus of 7.2 × 1010N/m2, shear modulus of 2.69 ×
1010N/m2, yield strength of 4.35 × 108N/m2, density of 2830 kg/m3,
and Poisson’s ratio of 0.33. The bottom of the cell is fixed, and a
uniaxial compression load is applied to the top surface. To ensure
the intuitiveness and efficiency of the finite element simulation,
based on Saint-Venant principle, a 1:100 equivalent reduction model
is selected for static analysis. Under actual penetration conditions,
the penetration overload experienced by the projectile ranges from
0 to 50000 g. Compression loads of 20000g, 35000g, and 50000 g are
respectively applied for in-plane axial loading to simulate the
mechanical response behavior of IBS during penetration, and to
compare it with traditional concave hexagonal structures to analyze
the stress concentration impacts of different structures.

Considering the central symmetry characteristics of IBS, as well
as the load and constraint conditions, and ensuring the accuracy of
the calculation results, the number of meshes is minimized to ensure
calculation accuracy and efficiency. One edge of the buffering
structure model is selected for analysis. Using the partition
meshing method, the cell model is divided into different regions
according to the accuracy requirements of the calculation results.
Finer meshes are applied to critical areas prone to stress
concentration, while relatively sparse meshes are used in areas
away from critical areas to improve computational efficiency.

In summary, themesh size in non-critical areas is set to 0.2mm, and
themesh in critical areas is appropriately refined to four times the size of
non-critical areas (0.05 mm). The transition ratio of themesh is set to 1:
1.2. The final mesh division of the model is shown in Figure 4.

3 Analysis of stress concentration in
different cell structures

3.1 Stress concentration analysis under
20000g overload

The penetration process of the projectile can be divided into the
pit opening stage, the tunneling stage, and the target back collapse
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stage (exit stage). To explore the stress concentration impacts of
different buffering structures at various stages of the penetration
process, different overload values are applied. First, the stress
situation of the buffering structure under the condition of
20000 g projectile penetration overload is analyzed, at which
point the fuze is in the pit opening stage. Using the pre-
compression node height h as a reference baseline, the stress-
node curve is obtained as shown in Figure 5.

Figure 5 shows the stress-node curves of different cell structures
under 20000 g overload. The red solid line represents the traditional
concave hexagonal structure, while the black solid line represents IBS.
On the inner wall of the cell, the protective performance of IBS is
significantly better, with stress values at each node lower than those of
the traditional structure. The peak stress is 13.09MPa, occurring in the
middle section, with slight oscillations in stress values stabilizing at
around 10MPa. For the traditional structure, the peak stress is
64.17MPa, occurring at the contact position between the inclined
surface and the upper beam. Stress values are smaller in the middle
section but exhibit greater oscillations. On the outer wall of the cell,
the stress values at each node of IBS are generally lower than those of
the traditional structure, except at 1.2mm and 3.2 mm where they
exceed. The peak stress is 29.79MPa, occurring in the middle section,
with larger oscillations compared to the inner wall. For the traditional

structure, the peak stress is 69.83MPa, occurring in themiddle section.
The stress concentration impact is significant at the contact position
between the support frame and the inclined surface, leading to
considerable stress oscillations, which could have adverse impacts
on the energy absorption of the penetration fuze buffering structure.

3.2 Stress concentration analysis under
35000g overload

The stress situation of the buffering structure under the
condition of 35000 g projectile penetration overload is analyzed,
at which point the fuze enters the tunneling stage, generating the
stress-node curve as shown in Figure 6.

From the graph, it can be seen that under an overload of 35000g,
On the inner wall of the cell, the degree of stress concentration in IBS
is significantly lower than that in the traditional structure, with a
peak stress of 26.14 MPa occurring below the support frame
position, and stress values oscillating around 20 MPa. For the
traditional structure, the peak stress is 101.73MPa, occurring
above the support frame position, with smaller stress at non-
contact areas but larger stress oscillations. On the outer wall of
the cell, the degree of stress concentration in IBS is still lower than
that in the traditional structure, with a peak stress of 59.49 MPa
occurring in the middle section, and stress values oscillating more
than on the inner wall of the cell. For the traditional structure, the
peak stress is 139.66MPa, occurring in the middle section, with
significant stress concentration at the corner of the straight edge,
leading to larger stress oscillations.

3.3 Stress concentration analysis under
50000g overload

The stress situation of the buffering structure under the
condition of 50000 g projectile penetration overload is analyzed,
at which point the fuze reaches its overload peak, generating the
stress-node curve as shown in Figure 7.

FIGURE 4
Finite element mesh model of buffer structure.

FIGURE 5
Stress distribution on inclined surface under 20000 g overload. (A) Inner wall of cell. (B) Outer wall of cell.
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From the graph, it can be seen that under an overload of 50000g,
On the inner wall of the cell, the stress distribution in IBS is uniform,
and the degree of stress concentration is lower than that in the
traditional structure, with a peak stress of 55.63 MPa occurring at
the contact position between the curved edge and the upper beam,
and stress values oscillating around 40 MPa. For the traditional
structure, the peak stress is 194.63MPa, occurring at the contact
position between the curved edge and the upper beam, with smaller
stress at non-contact areas but larger stress oscillations. On the outer
wall of the cell, the degree of stress concentration in IBS is still lower
than that in the traditional structure, with a peak stress of 89.37 MPa
occurring in the middle section, and stress values oscillating more
significantly. For the traditional structure, the peak stress is
209.49MPa, occurring in the middle section, with significant
stress concentration at the corner of the straight edge.

Overall, during various stages of the penetration process, the
degree of stress concentration in the traditional structure is greater
than that in IBS, indicating that IBS provides better buffering
protection for the fuze. This is because of the presence of initial
curvature, which makes bending the predominant mode of
deformation in IBS, resulting in an increase in the equivalent

modulus of the honeycomb structure. In general, the energy
absorption of specialized energy absorption structures refers to the
plastic energy dissipated under compression loads. Both structures
undergo consistent impact loads and plastic deformation. IBS has a
higher elastic modulus; therefore, it can absorb more kinetic energy
during the penetration process.

4 Impact of cell geometry parameters
on SCF

4.1 Impact of wall thickness on SCF

From the finite element simulation results, under the same
penetration conditions, IBS can better eliminate stress concentration
compared to the traditional concave hexagonal structure. Additionally,
during the penetration process, the microstructural geometric
parameters of the cell will also affect the stress concentration
impact. Based on the calculated results of the developed IBS finite
element model, stress concentration in IBS mainly occurs at the center
of the curved edge. Therefore, the impact of cell geometric parameters

FIGURE 6
Stress distribution on inclined surface under 35000 g overload. (A) Inner wall of cell. (B) Outer wall of cell.

FIGURE 7
Stress distribution on inclined surface under 50000 g overload. (A) Inner wall of cell. (B) Outer wall of cell.
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on the distribution of SCF at themidpoint of the curved edge is studied.
Figure 8 illustrates the peak stress of IBS with different wall thicknesses
under various penetration overloads.

The impact of wall thickness on peak stress is significant, as
depicted in Figure 8. For the same penetration overload, the peak
stress decreases with the increase of wall thickness. For cells with the
same wall thickness, the peak stress increases with the increase in
penetration overload, and cells with smaller wall thickness exhibit a
more pronounced response to overload. According to the material
properties of metal and the national standard GB/T 3190-2018,
combined with the evaluation equation for stress concentration
degree, SCF at the center of the curved edge for different wall
thicknesses under each condition is calculated, as shown in Table 1.
SCF at the center of the curved edge decreases with increasing wall
thickness. When the wall thickness reaches 1mm, the minimum SCF
at an overload of 50000 g is 1.004.

4.2 Impact of side length on SCF

Figure 9 presents the peak stress of IBS with different side
lengths under various penetration overloads. The impact of side
length on peak stress is minimal, almost negligible, for the same
penetration overload. For cells with the same side length, the peak
stress increases with the increase in penetration overload. SCF at the
center of the curved edge for different side lengths under each
condition is calculated, as shown in Table 2. As the side length
increases, SCF at the center of the curved edge slightly increases.
However, this change has almost no impact on the stress
concentration impact. When the side length reaches 7.8mm, the
maximum SCF under an overload of 50000 g is 2.854.

4.3 Impact of curvature on SCF

In addition to wall thickness and side length, curvature also has a
significant impact on stress concentration impacts. Figure 10

illustrates the peak stress of IBS with different curvatures under
various penetration overloads. The impact of curvature on peak
stress is significant. For the same penetration overload, the peak
stress increases with the increase of curvature. For cells with the same
curvature, the peak stress increases with the increase in penetration
overload. Furthermore, cells with larger curvature exhibit a more
pronounced response to overload. SCF at the center of the curved edge
for different curvatures under each condition is calculated, as shown
in Table 3. SCF at the center of the curved edge increases with the
increase in curvature. When the curvature reaches 2.4, the maximum
SCF under an overload of 50000 g is 3.907.

5 SCF nonlinear fitting functions

5.1 Fitting model of SCF with wall thickness

In the reliability assessment of penetration fuze buffer structures,
to address the inefficiency of calculating SCF for each node
individually, this study develops a fitting equation for SCF with
cell geometric parameters to predict SCF under different cell
structures. Under the premise of meeting the engineering design
error requirements, only an approximate value of SCF is needed.
Therefore, based on the aforementioned SCF calculation results, a
nonlinear fitting method is used to establish a fitting function for
SCF at the center of the curved edge of IBS during the penetration
process. The sinusoidal fitting function model of SCF at the center of
the curved edge of IBS under an overload of 20000 g with respect to
wall thickness is as Eq. 5.1:

SCF t( ) � y1 + A1 sin π t−tc1
w1

( )
σnom

(5.1)

where SCF(t) represents the data to be fitted; y1 is the initial phase;
tc1 is the fitting interval length; A1 is the amplitude; and w1 is the
sampling frequency. According to the principle of least squares, the
above equation can be transformed into Eq. 5.2:

f tc1, A1, w1( ) � ∑ y1 + A1 sin π
t − tc1
w1

[ ] (5.2)

Taking the first partial derivatives with respect to tc1, A1, and w1,
the expression can be given as Eq. 5.3:

tc1
A1

w1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � ∑ cos 2 ti ∑ sin ti cos ti ∑ cos ti∑ sinAi cosAi ∑ sin 2 Ai ∑ sinAi∑ coswi ∑ sinwi ∑ sinwi coswi

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦−1 ∑ ti cos ti∑ ti sinAi∑ tiwi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.3)

According to the trigonometric function equation derivation, it
can be expressed as Eq. 5.4:

SCF t( ) �
cos ti sin ti cos ti
sin ti cos ti sin ti
cos ti sin ti sincosti

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦yi +
cos tci sin tci cos tci
sinAi cosAi sinAi

coswi sinwi sincoswi

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
(5.4)

By solving Eq. 5.1, the range of values for y1, tc1, A1, and w1 can
be determined, with y1 ranging from −7,219.95 ± 48.88, tc1 ranging
from −10.63 ± 37.9, A1 ranging from 7,249 ± 488.34, and w1 ranging
from 22.17 ± 75.62. After adjustment, the fitting goodness is 0.97778.

FIGURE 8
Relationship between peak stress and wall thickness.
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Gaussian fitting function model for SCF at the center of the curved
edge of IBS under an overload of 35000 g with respect to wall
thickness is as Eq. 5.5:

SCF t( ) � y2 + A2e
− t−tc2( )2

2w2
2

σnom
(5.5)

where SCF(t) represents the distribution function of stress
concentration coefficient with respect to wall thickness; y2 is the
initial deviation; tc2 is the fitting interval length; A2 is the loss factor;
and w2 is the normalized frequency. The purpose of this step is to

predict the trend of the curve. Taking the logarithmic transformation
of both sides of Gaussian curve, it can be expressed as Eq. 5.6:

σnom ln SCF t( ) � lny2 − t − tc2( )2
2w2

2

(5.6)

Themodel in the above equation resembles a parabolic equation y =
at 2 + bt + c with respect to t. Therefore, by solving for the fitting
parabolic coefficients, the expression for the Gaussian curve function can
be determined. Using the principle of least squares, the parameters ai, bi,
and ci are obtained to minimize the sum of squared errors (S) is Eq. 5.7:

S � ∑n
i�1

yi − ait
2
i − bit − ci( )2 (5.7)

Taking the first partial derivatives of the above equation and
setting them equal to 0, the equation can be given as Eq. 5.8:

ai � A2 t − tc2( )
w

bi � y2 − tc2
w

ci �
∑n
i�1
yi − ai∑n

i�1
t2i − bi∑n

i�1
ti( )

n

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(5.8)

where the coefficient is expressed as Eq. 5.9:

y2 � n∑n
i�1
t2i − n∑n

i�1
ti∑n
i�1
ti

tc2 � n∑n
i�1
t2i yi −∑n

i�1
t2i∑n

i�1
yi

A2 � n∑n
i�1
tiyi −∑n

i�1
ti∑n
i�1
yi

w2 � n∑n
i�1
t3i − n∑n

i�1
t2i∑n

i�1
t2i

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(5.9)

TABLE 1 Curved center SCFs for different wall thicknesses.

t/mm (g) 0.45 0.51 0.57 0.63 0.69 0.76 0.82 0.88 0.94 1

20,000 1.992 1.968 1.842 1.796 1.783 1.714 1.435 1.305 1.121 1.08

35,000 2.316 2.151 2.132 1.864 1.811 1.661 1.647 1.429 1.034 1.006

50,000 2.755 2.752 2.253 2.113 2.093 1.986 1.887 1.456 1.389 1.004

FIGURE 9
Relationship between peak stress and side length.

TABLE 3 Curved center SCFs for different curvatures.

k (g) 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4

20,000 1.992 2.01 2.14 2.183 2.224 2.232 2.274 2.32 2.457 2.47

35,000 2.316 2.441 2.635 3.711 2.75 2.812 3.129 3.167 3.23 3.498

50,000 2.755 2.767 3.066 3.093 3.096 3.306 3.567 3.628 3.646 3.907

TABLE 2 Curved center SCFs for different side lengths.

L/mm (g) 6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8

20,000 1.992 1.993 1.995 1.996 1.997 1.997 1.997 1.999 2 2

35,000 2.316 2.317 2.318 2.319 2.322 2.324 2.341 2.344 2.35 2.387

50,000 2.755 2.773 2.781 2.801 2.821 2.83 2.845 2.847 2.853 2.854
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It should be noted that the solution to this equation is obtained by
taking the logarithm of the original Gaussian curve function, meaning
that the predicted values of SCF are logarithmically transformed to
satisfy the parabolic equation, and thus, y2 ranges from 268.54 ± 4.16,
tc2 ranges from 1.59 ± 3.15, A2 ranges from −268.51 ± 4.16, and w2

ranges from 17.9 ± 139.98. After adjustment, the fitting goodness is
0.96397. The Lorentz fitting function model for SCF at the center of
the curved edge of IBS under an overload of 50000 g with respect to
wall thickness is determined as Eq. 5.10:

SCF t( ) � y3 + 2A3

πσnom
•

w3

4 t − tc3( )2 + w3
2

(5.10)

where SCF(t) represents the quadratic polynomial Lorentz fitting
function; y3 is the equivalent error; tc3 is the fitting interval
length; A3 is Gini coefficient; and w3 is the composite weight. By
dividing the wall thickness into n groups from small to large and
setting the wall thickness of each group as ti and the
corresponding SCF as yi, SCF value of the i th group can be
represented as Eq. 5.11:

SCFi t( ) �
∑n
i�1
ti

ti
i � 1, 2, ..., n( ) (5.11)

The fitting error of the ith group SCF can be expressed as
Eq. 5.12:

Ri � yi∑n
i�1
yi

i � 1, 2, ..., n( ) (5.12)

By solving the above equation and plotting the cumulative
percentage of wall thickness and the cumulative percentage of
error on XOY plane, the follows expression can be given as Eq. 5.13:

0 0, 0( ), p1 SCF1, R1( ), p2 SCF1 + SCF2, R1 + R2( ), ...,
pk ∑k

i�1
SCFi,∑k

i�1
Ri

⎛⎝ ⎞⎠, ..., pn ∑k
i�1
SCFi,∑k

i�1
Ri

⎛⎝ ⎞⎠ � ti, yi( ) (5.13)

The sequences of the abscissa and ordinate of the above points
are both monotonically increasing sequences. By fitting the above
n+1 points with a smooth curve, Lorentz curve of SCF with respect
to wall thickness at the center of the curved edge can be obtained,
and thus, y3 ranges from −18.04 ± 19.31, tc3 ranges from 0.49 ± 0.03,
A3 ranges from 131.44 ± 57.29, and w3 ranges from 0.79 ± 0.2. After
adjustment, the fitting goodness is 0.98085.

5.2 Fitting model of SCF with edge length

According to the analysis of the impact of edge length on SCF,
the relationship between SCF at the center of the curved edge and the
edge length tends to be linear overall. Therefore, this study adopts a
linear function for fitting. The linear function fitting model of SCF at
the center of the curved edge of IBS under an overload of 20000 g
with respect to edge length is as Eq. 5.14:

SCF l( ) � a1l + b1
σnom

(5.14)

where SCF(l) represents the stress concentration coefficient to be
fitted; a1 is the slope, with a range of 0.97 ± 0.1; and b1
is the intercept, with a range of 23.9 ± 0.6. After adjustment,
the fitting goodness is 0.93139. The linear function fitting model
of SCF at the center of the curved edge of IBS under an overload of
35000g with respect to edge length is as Eq. 5.15:

SCF l( ) � a2l + b2
σnom

(5.15)

where SCF(l) represents the stress concentration coefficient to be
fitted; a2 is the slope, with a range of 1.63 ± 0.19; and b2 is the
intercept, with a range of 50 ± 1.29. After adjustment, the fitting
goodness is 0.91594. The linear function fitting model of SCF at the
center of the curved edge of IBS under an overload of 50000g with
respect to edge length is as follows:

Where SCF(l) represents the stress concentration coefficient to be
fitted; a3 is the slope, with a range of 0.69 ± 0.04; and b3 is the intercept,
with a range of 85.26 ± 0.26. After adjustment, the fitting goodness is
0.97465. The relationship between SCF and edge length is Eq. 5.16:

SCF l( ) � a3l + b3
σnom

(5.16)

5.3 Fitting model of SCF with curvature

In Figure 1, under an overload of 20000g, the relationship
between SCF at the center of the curved edge of IBS and the
curvature tends to rise in an approximately upward-opening
parabolic trend. The quadratic function fitting model of the
relationship between SCF at the center of the curved edge of IBS
and the curvature is as Eq. 5.17:

SCF k( ) � a4k2 + b4k + c4
σnom

(5.17)

Selecting n unit nodes (ki, yi), afterm iterations, the equation can
be expressed as Eq. 5.18:

FIGURE 10
Relationship between peak stress and curvature.
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SCF k( ) � a0 + a1 + a2k
2 + ... + amk

m � ∑m
j�0
ajk

j (5.18)

To determine the coefficients in the above equation, substitute
the nodes into the polynomial to obtain the error equation as
Eq. 5.19:

a0 + a1k1 + a2k21 + ... + amkm1 − y1 � R1

a0 + a1k2 + a2k22 + ... + amkm2 − y2 � R2

...
a0 + a1kn + a2k2n + ... + amkmn − yn � Rn

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (5.19)

Minimizing the sum of squared errors provides as Eq. 5.20:

∑n
i�1
R2
i � ∑n

i�1
∑m
j�0
aik

2 + bik + ci⎡⎢⎢⎣ ⎤⎥⎥⎦2 � δ (5.20)

Taking the first partial derivative of both sides of the equation to
determine as Eq. 5.21:

∂δ
∂aki

� 2∑n
i�1

∑m
j�0
aik

2 + bik + ci⎡⎢⎢⎣ ⎤⎥⎥⎦kki � 0 (5.21)

Thus, the solution coefficients can be obtained as Eq. 5.22:

ai � ∑m
j�0
ajSn+j

bi � ∑m
j�0
kni

ci � ∑m
j�0
yikni

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(5.22)

Simultaneous equation (5.17)–(5.21), the quadratic term
coefficient a4 for the parabolic fitting equation is in the range
of 1.56 ± 2.31, the linear term coefficient b4 is in the range
of −2.89 ± 31.95, and the constant term c4 is in the range
of −8.66 ± 1.1. After adjustment, the fitting goodness is
0.96529. Under an overload of 35000g, the relationship
between SCF and curvature approximately follows a
logarithmic growth trend. Therefore, a quadratic logarithmic
polynomial is used to approximate the curve, and the
coefficients of this polynomial equation are determined by
logarithmic functions. The logarithmic fitting function model
of the relationship between SCF at the center of the curved edge
of IBS and the curvature is given as Eq. 5.23:

SCF k( ) � B2���
2π

√
v2kσnom

e

− ln k
kc2

[ ]2
2v2
2 (5.23)

where kc2, v2, and B2 are constants. Taking the logarithm of both
sides of the equation provides as Eq. 5.24:

N � −2V
2
2

���
2π

√
v2kσnom lny

B2 ln k
kc2

[ ]2 (5.24)

After straightening n unit nodes, the equation can be expressed
as Eq. 5.25:

2V2
2

���
2π

√
v2kσnom lny � − kn+1 − kn( ) lnyn+1

ln xn+1 − lnyn
ln xn

( )
kn − kn−1( ) lnyn

ln xn
− lnyn−1

ln xn−1( ) (5.25)

Therefore, the straightening coefficient N can be calculated as
Eq. 5.26:

N � N1 − k1 tan β + k tan β (5.26)
Substituting the value of N into the original equation, u2 can be

solved, which ranges from 96.7 ± 11.72, kc2 ranges from 5.87 ± 0.48,
v2 ranges from 0.31 ± 0.6, and B2 ranges from −315.58 ± 55.46. After
adjustment, the fitting goodness is 0.97812. In general, increasing
the order of the fitting polynomial can effectively improve the fitting
accuracy. To accurately predict the relationship between SCF at the
center of the curved edge of IBS and the curvature under an overload
of 50000g, a cubic polynomial is used to fit the data. The fitting
function model is expressed as Eq. 5.27:

SCF k( ) � a5k3 + b5k2 + c5k + d5

σnom
(5.27)

where a3, b3, c3, and d3 are parameter values. To ensure that the
predicted values are closer to the true calculated data, the sum of
squared errors for all reference points needs to be minimized as
Eq. 5.28: ∑n

i
SCF ki( ) − yi[ ]3 → 0 (5.28)

Expressed in the form of a cubic polynomial function as Eq. 5.29:

d3N + c3∑N

i�1ki + b3∑N

i�1k
2
i + a3∑N

i�1k
3
i � ∑N

i�1SCFi (5.29)

After matrix transformation, it can be expressed as Eq. 5.30:

N ∑N
i�1
ki ∑N

i�1
k2i ∑N

i�1
k3i

∑N
i�1
ki ∑N

i�1
k2i ∑N

i�1
k3i ∑N

i�1
k4i

∑N
i�1
k2i ∑N

i�1
k3i ∑N

i�1
k4i ∑N

i�1
k5i

∑N
i�1
k3i ∑N

i�1
k4i ∑N

i�1
k5i ∑N

i�1
k6i

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

d3

c3
b3
a3

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭ �

∑N
i�1
SCFi

∑N
i�1
kiSCFi

∑N
i�1
k2i SCFi

∑N
i�1
k3i SCFi

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5.30)

where a3 ranges from 17.6 ± 10.5; b3 ranges from −378.71 ± 21.73; c3
ranges from 2,750.46 ± 1.5; and d3 ranges from −6,584 ± 36.13. After
adjustment, the fitting goodness is 0.98668.

5.4 SCFAnalysis of SCF prediction errors

To meet engineering design requirements, it is necessary to
verify the accuracy of SCF fitting function predictions. In practical
applications of penetrating projectile engineering, project technical
specifications require that the error in SCF predictions be within
15%. Therefore, Matlab’s numerical computation and functions can
be utilized to solve the error level of SCF fitting in complex
engineering problems involving penetrating projectiles, and to
visualize the results of the calculations. The ‘assume’ function in
Matlab’s Symbolic Math Toolbox is used to specify the properties of
the coefficients, and the ‘constraint’ function is used to define the
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range of coefficient values obtained from the previous solution.
Taking the wall thickness t = 0.69, the output SCF prediction error
analysis results are shown in Figure 11.

In Figure 11, N represents the number of iterations, i.e., the
number of samples. The black dots represent the predicted values of
SCF at the center of the curved edge under 20000 g overload, the red
dots represent the predicted values under 35000 g overload, and the
blue dots represent the predicted values under 50000 g overload. As
calculated earlier, when the wall thickness t = 0.69, the corresponding
SCF values are 1.783, 1.811, and 2.093 respectively. The maximum
deviation under 20000 g overload is 1.96, with an error of 9.97%;
under 35000 g overload, the maximum deviation is 1.695, with an
error of 6.4%; under 50000 g overload, the maximum deviation is
2.493, with an error of 11.94%. By organizing the data, it was found
that the prediction error under overload of 35000 g was the smallest,
and the SCF prediction values under overload of 20000g and 36000 g
were relatively close. This is because there is a non-linear relationship
between the maximum deviation and overload during high-speed
penetration. As the overload increases, the buffer material approaches
the yield limit faster, and plastic collapse energy absorption is more
efficient. Taking the edge length l = 6.4, the output SCF prediction
error analysis results are shown in Figure 12.

As calculated earlier, when the edge length l = 6.4, the
corresponding SCF values are 1.995, 2.318, and 2.781 respectively.
The maximum deviation under 20000 g overload is 1.975, with an
error of 0.98%; under 35000 g overload, the maximum deviation is
2.341, with an error of 0.99%; under 50000 g overload, the maximum
deviation is 2.753, with an error of 1.02%. The calculation found that
the SCF prediction value about the edge length is the most accurate,
because SCF is least affected by the edge length, and stress
concentration mainly occurs in the vertical direction of the cell,
that is, parallel to the loading direction. Taking the curvature k =
2.2, the output SCF prediction error analysis results are shown
in Figure 13.

As calculated earlier, when the curvature k = 2.2, the
corresponding SCF values are 2.32, 3.167, and 3.628 respectively.
The maximum deviation under 20000 g overload is 2.098, with an

error of 9.57%; under 35000 g overload, the maximum deviation is
2.885, with an error of 8.89%; under 50000 g overload, the maximum
deviation is 3.978, with an error of 9.64%. The prediction errors of
SCF for curvature are all less than 10%, with SCF prediction values
closer under overload of 35000g and 50000 g. Unlike traditional
concave hexagonal honeycomb structures, the deformation of IBS is
dominated by bending due to the presence of initial curvature, which
can increase the equivalent modulus of honeycomb structures. The
predicted results all meet engineering technical specifications.
Therefore, the nonlinear fitting curves of SCF proposed in this
paper canmeet the practical application requirements of penetrating
projectile engineering.

6 Dynamic stress concentration
in potting material under
stress wave incidence

6.1 Wave function model

To ensure the reliable operation of explosive devices in ultra-
high-speed penetration environments, they are typically sealed with
materials such as epoxy resin and polyurethane to enhance their
impact resistance. However, during the sealing process, defects such
as bubbles and cracks may occur due to poor colloidal flow or
insufficient mixing. These defects can lead to dynamic stress
concentration under stress wave action, causing uneven stress
distribution in the sealed body’s circuit board. Consequently, the
electronic components of the explosive device may become
detached, and in more severe cases, the circuit board may
fracture, resulting in device failure. Therefore, investigating the
problem of dynamic stress concentration in sealed materials
containing defects is of significant theoretical and engineering
importance. The model of stress wave incidence during
penetration is illustrated in Figure 14.

Assuming the radius of bubbles in the potting material is r, the
primary stress wave during penetration is predominantly

FIGURE 11
Predicted values of SCF for wall thickness.

FIGURE 12
Predicted values of SCF for side length.
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longitudinal, with the incident direction along the positiveX-axis. Its
wave velocity is given as Eq. 6.1:

c �
�����
λ + 2μ

ρ

√
(6.1)

where λ and μ are Lamé constants; ρ is the density of the potting
material; and a and b are the distances from the bubble center to the
upper and lower boundaries, respectively. In the theory of elastic
wavemotion, the expression for the spatial displacement component
u of a particle’s motion equation is presented as Eq. 6.2:

μ∇2u + λ + μ( )δu � ρ€u (6.2)

The wave propagation equation inside the elastic body can be
expressed as Eq. 6.3:

μm∇
2u + λm + μm( )∇0 ∇0u( ) � ρ

∂2u
∂t2

λm � Ev

1 + v( ) 1 − 2v( )

μm � Ea2

18 2 − v2( )
∇0 � ∂2u

∂x2 +
∂2u
∂y2 +

∂2u
∂t2

(6.3)

where λm and μm are Lamé constants of the potting material; ∇ is
Laplace operator; E is the elastic modulus of the potting material;
and v is Poisson’s ratio of the potting material. The stress on the
sealed material’s plane transmitted is given as Eq. 6.4:

σxt � λ
∂ux

∂t
+ ∂uy

∂ �t
( ) � λ

∂ux

∂t
eiα + ∂ux

∂ �t
eα( )

σyt � λ
∂ux

∂t
− ∂uy

∂ �t
( ) � λ

∂ux

∂t
eiα + ∂ux

∂ �t
e−α( ) (6.4)

This study does not consider the displacement situation of the
explosive device boundary, which belongs to a stress boundary value

problem. It requires solving the unknown coefficients in the
displacement expression. The stress boundary conditions can be
solved by utilizing the continuity conditions at the interface between
the potting material and the explosive device. The boundary
condition expression is obtained as Eq. 6.5:

ux′ + iuy′ � ux″ + iuy″
ux′ − iuy′ � ux″ − iuy″
σx′ + iσxy′ � σx″ + iσxy″
σx′ − iσxy′ � σx″ − iσxy″

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (6.5)

where σx and σy are the radial and tangential stresses of the potting
material, respectively. At the internal interface of the potting
material, considering the contact surface model between the
potting material and the explosive device as ideal contact, the
unknown coefficients can be solved by using the interface
continuity condition and the stress-free condition on the inner
surface of the potting material.

6.2 Dynamic stress concentration
factor (DSCF)

When a stress wave enters a potting material containing bubbles,
it encounters scattering due to bubbles, cracks, and indentations,
generating new wave sources that spread outwards. Due to the
combined action of the explosive device interface and bubbles, there
is a significant increase in stress in the local area around the bubbles,
leading to the rupture of the explosive device interface and the inner
surface of the bubbles. Therefore, DSCF is used to characterize the
scattering of stress waves. The form of stress wave scattering is given
as Eq. 6.6:

P s( )
xy � ∑k

n�0
Cn Wn

τx
τx| |( )n

+ τy
τy
∣∣∣∣ ∣∣∣∣( )−n{ } (6.6)

where Cn is an undetermined coefficient, which can be obtained by
solving the boundary conditions of the bubble. At this time, the
boundary condition is that the stress in the positive X-axis direction
is 0. To obtain a steady-state solution, a variable is introduced,
defined as Eq. 6.7:

W � kne
tx 1−iω( )+ty 1+iω( )[ ]

F � kne
tx 1−i �ω( )+ty 1+i �ω( )[ ]

f � kne
−iωt

⎧⎪⎨⎪⎩ (6.7)

FIGURE 13
Predicted values of SCF for curvature.

FIGURE 14
Bubble model of potting material under stress wave action.
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where ω is the oscillation frequency of the stress wave. It can be
derived that the wave number of the scattered wave satisfies the
equation as Eq. 6.8:

αnxy � 1
2

2 − v( )k2n +
���������������������������������������
4 − v( )2k2n + 12 1 − v( )k3n

2
k2na

2
− 1 − 6v

1 + v( ) 1 − v( )( )√⎡⎢⎣ ⎤⎥⎦
(6.8)

By combining the particle displacement function and the
displacement potential function, the general solution of 2D wave
equation in the potting material can be obtained as Eq. 6.9:

W � ∑k
m�1

∑2
n�1

GmnHi
n αmr( )eiω

F � ∑k
m�1

∑2
n�1

GmnHi
n αmr( )eiω

f � ∑k
m�1

GnKi
n βmr( )eiω

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(6.9)

where G represents the scattering coefficient of the n th bubble.
Based on the obtained incident wave field and scattered wave field of
the stress wave in the bubble, the total displacement field and total
stress field in the potting material can be obtained as Eq. 6.10:

ut � ∫ rn

r1
τ iαi

∣∣∣∣r�r0p r, α( )d �r0

σ � ∫ rn

r1
τiαi

∣∣∣∣r�r0μ ∂p r, α( )
∂r

d �r0

(6.10)

DSCF under stress wave scattering is defined as Eq. 6.11:

DSCF � ∫ r2
r1
rtiα

∣∣∣∣r�r0μ ∂P∂α∣∣∣∣r�r0dr0 (6.11)

The formula for calculating the dynamic stress concentration
coefficient in the presence of bubbles is as Eq. 6.12:

DSCF � σ iα
σ i0

∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣ (6.12)

In the formula, the numerator represents the stress around the
bubble, and the denominator represents the maximum amplitude of
stress caused by the incident stress wave.

6.3 DSCF case analysis

Based on the theoretical wave function model derived in this
paper, taking circular bubbles in the potting material as an
example, programming calculations were performed using
Matlab. The bubble radius ranges from r = 0.5–0.9mm, the
incident angle is α, the density of the potting material for the
penetrating detonator ρ is 1119 kg/m3, the elastic modulus E is
3.02 × 103MPa, the Poisson’s ratio v is 0.37, and the dimensionless
wave number Ka = 0.5-3.5. The bubble depth ratio a/h is
dimensionless, with parameters k1/k2 = 0.2 and μ1/μ2 = 1.5. The
distribution curve of the dimensionless DSCF on the surface of
circular bubble cavities under the action of penetrating stress
waves is shown in Figure 15.

Figure 15A illustrates the variation of DSCF around the bubble
with the dimensionless wave number Ka. DSCF is significantly
impacted by the wave number. DSCF is symmetrically distributed
along the X-axis and increases with the increase of wave number.
When Ka = 2, the maximum value of DSCF is 2.91, occurring at
positions 118° and 242°.

Figure 15B shows the variation of DSCF around the bubble with
the bubble radius r. DSCF does not change significantly with the
bubble radius, and stress concentration phenomena mainly occur at
the 90° and 270° directions. When the bubble radius is 0.7, the
maximum value of DSCF is 3.48.

Figure 15C depicts the variation of DSCF around the bubble
with the bubble depth ratio a/h. When the bubble depth ratio is
0.2 and 0.4, the maximum value of DSCF occurs at positions 220°

and 230°, respectively, while for a/h = 0.6, the maximum value of
DSCF occurs at position 210°. This is due to the increased
oscillations near the tail of the projectile when it contacts the top
end and the target plate.

Figure 15D presents the variation of DSCF around the bubble
with the incident frequency f. The highest DSCF values appear on
the side opposite to the projectile impact. As the incident frequency
of stress waves increases, the noise in the curve increases, and DSCF
gradually decreases. When f = 50Hz, the maximum value of DSCF is
2.22, occurring at 135°.

Based on the above analysis, in the process of structural
optimization, attention should be paid to the strength and
stability of the projectile tail, and solid materials should be filled
around the contact between the projectile tail and the fuze. In
addition, exhaust holes should be designed during the sealing
process to allow gas to be fully discharged and reduce the
presence of bubbles in the sealing material.

7 Dynamic impact testing
of optimal buffering scheme

This article uses a single impact table (device impact
overload>50,000 g, impact pulse width ≥231) μ s) Conduct
experimental research on the protective characteristics of
penetration fuze buffer materials. When the test projectile
launched by the air gun comes into contact with the cutting
board, it will generate an instantaneous peak value shock
overload, which is transmitted in the form of stress waves from
the contact point between the projectile and the cutting board to the
interior of the projectile. This is used as the system input shock to
excite the test device installed inside the test projectile. The shock
table device is shown in Figure 16.

Combined with the calculated results from earlier sections, the
optimal cell geometry parameters are shown in Table 4. IBS solid
materials were manufactured using 3D printing technology, as
depicted in Figure 17.

The impact wave-related parameters of the detonator casing,
potting material reinforcement layer, and circuit board are shown
in Table 5.

The pressure inside the chamber is controlled by the intake
volume, thereby controlling the launch speed. The sensitivity of the
pressure resistance sensor used in the overload signal recovery

Frontiers in Physics frontiersin.org15

Zhang et al. 10.3389/fphy.2024.1401538

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1401538


device is 0.8 μV/g, with a magnification of 30 times. Conduct impact
tests at different initial velocities, and the measured acceleration
overload signal is shown in Figure 18.

In Figure 18, at an initial velocity of 50 m/s, the peak acceleration
overload of the detonator without IBS buffering protection is 38,560g,
while with IBS protection, the overload peak is 23,360g, resulting in a
reduction rate of 39.42%. At an initial velocity of 70 m/s, the overload
peak without IBS is 51,668g, while with IBS protection, the overload
peak is 34,685g, resulting in a reduction rate of 32.87%. This reduction
is attributed to the fact that when the stress wave reaches the interface
between the base and the buffering structure, the plastic collapse of the
buffering structure absorbs a large amount of kinetic energy from the
detonator, resulting in a decrease in overload peak. The high wave
impedance of the detonator potting material causes the transmitted
wave to be weaker than the incident wave, thereby attenuating the
stress wave and protecting the internal electronic components of the
detonator, allowing them to record experimental data intact. Reference
[11] used a conventional rubber buffer gasket with an overload peak of
470,000 g under the same working condition, and the combined buffer
scheme in this paper reduced the maximum overload by 12315 g
compared to it. The experimental data indicate that the combined
buffering protection impact of IBS and potting material is significant.

The effectiveness and scalability of this method have been
demonstrated, and the missile storage system has survived well with
normal data recovery. It can be correctly recorded and read back,
meeting the design requirements of fast response, high tracking
accuracy, and good stability of the fuze control system. It can be
used as a buffer protection for fuze in typical penetration
environments, high overload, and strong impact. The dynamic
impact test further verifies the engineering applicability of this method.

8 Conclusion

This study calculated the basic mechanical properties of IBS,
elucidated the energy absorption mechanism of IBS penetration
process, and developed a theoretical mechanical model for in-plane
uniaxial loading. Through finite element analysis, a comparison was
made between IBS and traditional concave hexagonal structures, and
the stress distribution in key areas of both was analyzed. SCFs of IBS
curved edges under different penetration overloads were calculated,
and the impact of geometric parameters such as cell wall thickness,
aspect ratio, and curvature on SCF was further analyzed. A nonlinear
fitting function for SCF was established, and a method for predicting

FIGURE 15
Distribution of DSCF in fuze potting material. (A) Relationship between DSCF and wave number. (B) Relationship between DSCF and radius. (C)
Relationship between DSCF and depth. (D) Relationship between DSCF and frequency.
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SCF at peak stress locations in IBS was proposed, with the accuracy
of SCF fitting function predictions being validated. To more
precisely explain the phenomenon of stress wave propagation
and scattering, and to accurately determine the location of
dynamic stress concentration in the potting material, numerical
results of DSCF around the bubbles under different physical
parameters were provided. Finally, dynamic impact testing was
conducted on the combined buffering protection scheme. The
main conclusions are outlined as follows:

1) Throughout the stages of the penetration process, the degree of
stress concentration in traditional structures is greater than
that in IBS, indicating that IBS provides better buffering
protection for fuze.

2) In the context of the same penetration overload, the peak stress
decreases with the increase of wall thickness. For cells with the
same wall thickness, as the penetration overload increases, the
peak stress also increases. Additionally, cells with smaller wall
thickness show a more pronounced response to overload. The
impact of side length on peak stress is negligible. The peak
stress increases with the increase of curvature. Cells with larger
curvature exhibit a more pronounced response to overload.

3) DSCF around the bubbles in the potting material is
significantly impacted by the dimensionless wave number,
showing symmetrical distribution along the X-axis and
increases with the increase of wave number. The change in
DSCF with bubble radius (r) is not significant. With increasing
bubble depth, DSCF also increases, emphasizing the
importance of the strength and stability of the projectile tail
section. Low-frequency stress wave incidence has a more
severe impact on bubble DSCF.

4) The overload peak attenuation rates are 39.42% at an initial
velocity of 50 m/s and 32.87% at an initial velocity of 70 m/s. IBS
effectively protects the internal electronic components of fuze,
demonstrating significant buffering protection effectiveness.

With the strengthening of future construction projects, fuze will
face more severe tests. Future fuze buffer materials should have the
characteristics of lightweight, higher specific energy absorption,
better filtering performance, easy processing, easy installation,
and high forming accuracy.

FIGURE 16
Single impact platform.

TABLE 4 Cell geometric parameters.

Parameter Value

Thickness t/mm 0.6

Inclination angle θ/(°) 45

Curvature k 1.5

Height h/mm 1.4

Side length L/mm 6

FIGURE 17
IBS solid material.

TABLE 5 Material impedance parameters.

Material ρ/g·cm-3 C/103 ms ρC (106Pa)·m−1·s−1

Fuze casing 2.77 5.09 14.10

Polyurethane 1.20 0.75 0.90

Epoxy resin 1.20 1.35 1.62

Circuit board 1.80 3.05 5.49
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