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The stock price data are sampled at discrete times (e.g., hourly, daily, weekly, etc).
When data are sampled at discrete times, they appear as a sequence of
discontinuous jump events, even if they have been sampled from a
continuous process. On the other hand, distinguishing between discontinuities
due to finite sampling of the continuous stochastic process and real jump
discontinuities in the sample path is often a challenging task. Such
considerations, led us to the question: Can discrete data (e.g., stock price) be
modeled using only jump-drift processes, regardless of whether the sampled
time series originally belongs to the class of continuous processes or
discontinuous processes? To answer this question, we built a stochastic
dynamical equation in the general form dy(t) � �μdt +∑N

i�1ξ idJi(t), which
includes a deterministic drift term (�μdt) and a combination of stochastic terms
with jumpy behaviors (ξ idJi(t)), and used it tomodel the log-price time series y(t).
In this article, we first introduce this equation in its simplest form, including a drift
term and a stochastic term, and show that such a jump-drift equation is capable
of reconstructing stock prices in Black-Scholes diffusion markets. Afterwards, we
extend the equation by considering two jump processes, and show that such a
drift-jump-jump equation enables us to reconstruct stock prices in jump-
diffusion markets more accurately than the old jump-diffusion model. To
demonstrate the practical applications of the proposed method, we analyze
real-world data, including the daily stock price of two different shares and gold
price data with two different time horizons (hourly and weekly). Our analysis
supports the practical applicability of the methodology. It should be noted that
the presented approach is expandable and can be used even in non-financial
research fields.
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1 Introduction

The stock price is known as a highly volatile variable in a stock market. Price
fluctuations, which occur randomly and frequently and sometimes include sudden
jumps, increase investment risk and cause concern for investors and company owners
who want to increase their capital. Therefore, researchers are propelled to study the
fluctuating behavior of the market to find a way to model prices (or improve existing
models) to advise investors looking for the best investments [1–5]. So far, significant
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progress has been made in this field, the most important of which is
stock price modeling via continuous stochastic processes and
discontinuous jump processes. The “arithmetic Brownian
motion” model was the first mathematical model of stock prices,
presented by Louis Bachelier in [6]. In his proposedmodel, Bachelier
assumed that the discount rate is zero and the stochastic differential
equation (SDE) governing the stock price is as follows:

dS t( ) � σdW t( ) (1)
where S(t) is the spot stock price at time t, σ is diffusion coefficient
(known as volatility), and W(t), t≥ 0}{ is a scalar Wiener process (a
standard Brownian motion). Integration of Eq. 1 over (t, t + Δt)
yields the stochastic solution of the equation:

ΔS t( ) � σΔW t( )
where ΔS(t) � S(t + Δt) − S(t) is the relative change in the price
during a time lag Δt, and ΔW(t) � W(t + Δt) −W(t) is the
increment of the wiener process which is computed as
ΔW(t) � η

��
Δt

√
, where η is a random variable that follows a

normal (Gaussian) distribution with zero mean and unit
variance, i.e., η ~ N(0, 1). Therefore, the following can be written:

S t + Δt( ) � S t( ) + σ η
��
Δt

√
(2)

The main shortcoming of Bachelier’s model is that it
assumes that the future value of the assets follows a normal
distribution. Based on this assumption, Eq. 2 can lead to a
negative stock price with a positive probability, which is not
possible in reality. In [7] Osborn demonstrated that the future
value of the stock should follow a log-normal distribution, but
the log-return of the stock follows a normal distribution.
Shortly, the Bachelier model was modified by Samuelson in
[8], where he introduced the “geometric Brownian motion”
model (also known as Black-Sholes model). In this model, it
is assumed that the price of the risky stock evolves according to
the following SDE:

dS t( ) � μS t( )dt + σS t( )dW t( ) (3)
where µ and σ are the drift and diffusion coefficients, and again
W(t), t≥ 0}{ is a scalar Wiener process. The field of mathematical
finance has gained significant attention since Black and Scholes
published their work in [9, 10]. They contributed to the world of
finance via the introduction of Itô calculus to financial mathematics,
and also the Black-Scholes formula. By choosing y(t) � ln[S(t)]
and applying Itô’s lemma [11, 12], Eq. 3 becomes:

dy t( ) � μ − σ2

2
( )dt + σdW t( ) (4)

Integration of Eq. 4 over (t, t + Δt) gives us:

Δy t( ) � μ − σ2

2
( )Δt + σΔW t( )

where Δy(t) � y(t + Δt) − y(t) � ln[S(t+Δt)S(t) ] represents the
logarithmic increment of stock price data (known as log-return),
Δt is the length of time interval between two consecutive trading
periods, and ΔW(t) � η

��
Δt

√
, η ~ N(0, 1). Therefore, the following

can be written:

Δy t( ) � μ − σ2

2
( )Δt + ση

��
Δt

√
(5)

In turn, the stock price can be determined from Eq. 5 as:

S t + Δt( ) � S t( )e μ−σ2
2( )Δt+ση ��

Δt
√[ ] (6)

Eq. 6 enables one to simulate the possible stock price trajectories
with time step Δt, through the Black-Sholes model. For this purpose,
one must first find the parameters μ and σ2 from historical log-
returns data based on the following relations:

M1 � <Δy t( )> � μ − σ2

2
( )Δt

M2 � < Δy t( ) − <Δy t( )>( )2 > � σ2Δt (7)
where < . . . > denotes averaging over the data, so thatM1 andM2

in Eq. 7 are the mean and variance of the historical log-returns data,
respectively. Having M1 and M2, first σ2 is obtained:

σ2 � 1
Δt

M2

once σ2 is identified, the parameter μ is obtained from the first
moment M1.

The main disadvantage of the Black-Scholes model is its
constant volatility assumption, while it is widely believed and
empirically confirmed that stock prices do not have constant
volatility, rather it varies during time [13–15]. This shortcoming
and unsatisfactory performance of the Black-Scholes model caused
researchers look for better alternatives and improve the classic
Black-Scholes model in two directions:

1- Adding a term with jumpy behavior to the Black-Scholes
equation to allow for random jumps in the stock price process
(jump-diffusion model e.g., Merton model [16])

2- Considering stochastic volatility for the stock price (e.g.,
Heston model [17] or GARCH model [18]).

Here we only focus on the first option and describe the jump-
diffusion model. Merton in [16] presented one of the first models in
which jump processes were used in financial modeling. To take into
account price discontinuities, Merton added a Poisson jump process
to the log-price while preserving the independence and stationarity
of log-returns. A jump-diffusion equation is generally written as:

dy t( ) � �μdt + σdW t( ) + ξdJ t( ) (8)
where �μ and σ are the drift and diffusion coefficients, W(t) is a
wiener process, and J(t) is a Poisson jump process with rate λ and
distributed size ξ which Merton assumed follows a Gaussian
distribution with zero mean and variance σ2ξ , i.e., ξ ~ N(0, σ2ξ ). It
was also assumed that Poisson process, jump size ξ and Wiener
process in Eq. 8 are three independent processes.

Integration of Eq. 8 over (t, t + Δt), leads to:

Δy t( ) � �μΔt + σΔW t( ) + ξΔJ t( )
here ΔJ(t) � J(t + Δt) − J(t) follows a Poisson distribution with
mean λΔt, and ΔW(t) � η

��
Δt

√
, η ~ N(0, 1). Therefore, the

following can be written:
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Δy t( ) � �μΔt + ση
��
Δt

√ + ξΔJ t( ) (9)
In turn, the stock price can be determined from Eq. 9 as:

S t + Δt( ) � S t( ) e �μΔt+ ση ��
Δt

√ + ξΔJ t( )( ) (10)

Eq. 10 enables one to simulate the possible stock price
trajectories with time step Δt, via the jump-diffusion model. For
this purpose, one must find the parameters �μ, σ2, σ2ξ and λΔt from
the historical log-returns data based on the following relations:

M1 � <Δy t( )> � �μΔt

M2 � < Δy t( ) − �μΔt( )2 > � σ2Δt + σ2ξλΔt

M4 � < Δy t( ) − �μΔt( )4 > � 3σ4ξλΔt

M6 � < Δy t( ) − �μΔt( )6 > � 15σ6ξλΔt (11)

where M1, M2, M4 and M6 are the statistical moments of the
historical log-returns data. Having these moments, first the jump
characteristics σ2ξ and λΔt are obtained from Eq. 11:

σ2ξ �
M6

5M4

λΔt � M4

3σ4ξ

once σ2ξ and λΔt are identified, the parameter σ2 is identified from
the second moment M2 and the parameter �μ is obtained from the
first moment M1.

The main shortcoming of the jump-diffusion model is that the
jumps reconstructed by the model have larger amplitudes than the
jumps in the actual data. Let us demonstrate how this problem
occurs. Suppose we want to model the daily prices of a stock via
jump-diffusion model. As mentioned, first we need to determine the
parameters �μ, σ2, σ2ξ and λΔt from the historical log-returns data.
Since in the Poisson jump process, the probability of occurrence of
more than one jump in any small time interval Δt is zero, so ΔJ in
Eq. 9 takes only the values of one (one jump) or 0 (no jump) with the
probabilities λΔt and 1 − λΔt, respectively [19]. Given these
probabilities, the data points can be reconstructed by one of the
following sub-equations:

If ΔJ � 0, meaning that no jump occurs at that Δt, then the data
point is reconstructed by:

Δy t( ) � �μΔt + ση
��
Δt

√
(12)

If ΔJ � 1, meaning that a jump occurs at that Δt, then the data
point is reconstructed by:

Δy t( ) � �μΔt + ση
��
Δt

√ + ξ (13)
As can be seen from Eqs 12, 13, the diffusion term ση

��
Δt

√
appears in both equations and is involved in the reconstruction of all
data points, even jumpy data points. Since the random variables
(ση

��
Δt

√
) and (ξ) are two independent zero mean normally

distributed variables with variances σ2Δt and σ2ξ , respectively,
their sum in Eq. 13 is also a normally distributed variable,
i.e., (ση ��

Δt
√ + ξ) ~ N(0, σ2ξ + σ2Δt ). The variance of this

distribution (σ2Δt + σ2ξ ) represents the amplitude of the
reconstructed jumps, which is larger than the amplitude of the
jumps in the historical data (σ2ξ ) that was originally obtained.
Obviously, if σ2Δt ≪ σ2ξ , so that σ2Δt can be neglected compared

to σ2ξ , then the data reconstructed by the jump-diffusion model will
be similar to the original data in the statistical sense, otherwise the
model will fail. This shortcoming led us to modify the jump-
diffusion equation in such a way that, if necessary, we can
discard the contribution of the diffusion term in Eq. 9 so that it
does not interfere with the reconstruction of the jumps. For this
purpose, we replace the diffusion term in Eq. 9 by a term with jumpy
behavior. This idea is supported by the fact that when data are
sampled at discrete times, they appear as a sequence of
discontinuous jump events, even if they have been sampled from
a continuous diffusion process [20]. This is precisely why
distinguishing between discontinuities due to discrete sampling of
continuous process and real discontinuities in a jump-diffusion
process is itself a challenging task [21]. Based on the above
considerations, we modify Eq. 9 by considering two jump process
with different distributed sizes ξ1 and ξ2 and different rates λ1Δt and
λ2Δt as follows:

Δy t( ) � �μΔt + ξ1ΔJ1 t( ) + ξ2ΔJ2 t( )
where ξ1ΔJ1(t) has replaced diffusion term in Eq. 9, and ξ2ΔJ2(t)
has the same role as ξΔJ. Each of ΔJ1(t) and ΔJ2(t) take the values of
1 and 0, but to avoid their simultaneous occurrence, we stipulate that
if ΔJ1(t) � 1, then ΔJ2(t) � 0 and vice versa. Applying this
condition causes each data point to be reconstructed by only one
of the jump events. The procedure is as follows:

If ΔJ1(t) � 1, and ΔJ2(t) � 0, then the data point is
reconstructed by:

Δy t( ) � �μΔt + ξ1

If ΔJ1(t) � 0, and ΔJ2(t) � 1, then the data point is
reconstructed by:

Δy t( ) � �μΔt + ξ2

With this modification, the shortcoming of the jump-diffusion
model can be solved. In this model, we assume that ξ1 and ξ2 are two
zero mean Gaussian random variables with variances σ2ξ1 and σ2ξ2 ,
i.e., ξ1 ~ N(0, σ2ξ1 ) and ξ2 ~ N(0, σ2ξ2 ). These two random variables
produce fluctuations that are additively superimposed on the
trajectory generated by the deterministic dynamics. In the
following, we will describe the model in detail and demonstrate
that all the unknown parameters of this modeling can be derived
directly from the historical stock price.

2 Model description

In [22] we have introduced a general dynamical stochastic
equation as follows, which includes a deterministic drift term
(�μdt) and a combination of stochastic terms with jumpy
behaviors (ξidJi(t)):

dy t( ) � �μdt +∑N

i�1ξ idJi t( ) (14)

where �μdt indicates the deterministic part of the process and
J1 (t), J2 (t), etc are Poisson jump processes. The jumps have
rates λ1, λ2 , etc and sizes ξ1, ξ2, etc, which we assume they have
zero mean Gaussian distributions with variances σ2ξ1, σ

2
ξ2, etc,

respectively. In this article, we intend to use this equation

Frontiers in Physics frontiersin.org03

Movahed and Noshad 10.3389/fphy.2024.1402593

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1402593


specifically to simulate asset prices. For this purpose, we first start
with the simplest form of Eq. 14, which includes a drift term and
only a jump process. We will demonstrate that such a jump-drift
equation is able to describe the discrete-time evolution of price time
series in the Black-Scholes markets. Since the real markets are
usually jump-diffusion markets, in the second section, we extend
modeling by considering two jump processes with different rates (λ1,
λ2) and different distributed sizes (ξ1, ξ2) and use it to model prices
in actual markets. In each stage, we will demonstrate that all
unknown parameters involved in the model can be derived non-
parametrically from the historical price data. It should be noted that
due to the small number of data points in the price time series, or the
lack of diversity in the distributed sizes of fluctuations, we will model
prices only by considering two jump processes. However, depending
on the number of available data points and the variety of amplitudes,
one can extend the proposed model.

2.1 Jump-drift modeling

In the first step, we consider Eq. 14 in its simplest form including
a drift term and a stochastic term with jumpy behavior, and show
that it can be used to reconstruct prices data of the diffusion markets
(e.g., Black-Scholes markets). The general form of a jump-drift
equation is as follows:

dy t( ) � �μdt + ξdJ t( ) (15)
where y(t) � ln (S(t)) is the log-price and �μdt denotes the
deterministic drift part of the dynamics and J(t) is a Poisson jump
process characterized by the rate λ and the size ξ. We assume that ξ is a
random variable with zero mean Gaussian distribution,
i.e., ξ ~ N(0, σ2ξ ). Also, we assume that Poisson-distributed jumps
dJ(t) and jump size ξ are two independent processes.

Integration of Eq. 15 over (t, t + Δt) gives us:

Δy t( ) � �μΔt + ξΔJ t( ) (16)
where Δy(t) � y(t + Δt) − y(t) � ln[S(t+Δt)S(t) ] is the log-return, Δt is
the length of time interval between two consecutive points and
ΔJ(t) � J(t + Δt) − J(t) follows a Poisson distribution with mean
λΔt.

In turn, the stock price can be determined as:

S t + Δt( ) � S t( ) e �μΔt+ξΔJ t( )( )

To reconstruct prices data with the above relation, we must find
three parameters �μ, σ2ξ and λΔt. We now show that all these parameters
can be estimated directly from the log-return time series Δy(t). For this
purpose, we derive the statistical moments of Δy(t) from Eq. 16 (note
that ΔJ(t) and ξ are two independent processes):

M1 � <Δy t( )> � < �μΔt> + < ξ > <ΔJ t( )>
M2 � < Δy t( ) − �μΔt( )2 > � < ξ2 > < (ΔJ t( ))2 >
M4� < Δy t( ) − �μΔt( )4 > � < ξ4 > < (ΔJ t( ))4 >

where < . . . > denotes averaging over the data, so that M1 is the
mean of log-returns, and M2, M4 and M6 are the other statistical
moments of log-returns about the mean. Since for small Δt, all of the
statistical moments of jumps are proportional to λΔt,

i.e., < (ΔJ(t))m > � λΔt [19, 20], as well as for a zero mean
Gaussian random variable ξ with variance σ2ξ , all of the even
order statistical moments are obtained by < ξ2l > � 2l!

2l l!< ξ2 > l ,
the above relations become (note that < ξ > � 0 and < ξ2 > � σ2ξ ):

M1 � �μΔt

M2 � σ2ξλΔt

M4 � 3σ4ξλΔt (17)

According to the first relation in Eq. 17, the mean of log-returns
(M1) gives us the drift parameter �μ, and the second and fourth-order
moments (M2, M4) identify the jump characteristics, namely,:

�μ � 1
Δt

M1

σ2ξ �
M4

3M2

λΔt � M2

σ2ξ
(18)

We claim that the proposed jump-drift dynamics enable us to
model diffusion processes such as the Black-Scholes process. We will
check the validity of this claim by reconstructing a Black-Scholes
process via the new dynamics using the parameters determined from
Eq. 18. But before that, let us provide the following two criteria for
evaluating the reconstructed process:

1) We know from Wick’s theorem that for the time series of the
Black-Scholes process, the statistical moments of the data
satisfy the relation M4

3M2
2
≈ 1, which follows from the fact that

the short-time propagator of the Black-Scholes dynamics is a
Gaussian distribution. Therefore, if the proposed jump-drift
dynamics be capable of reconstructing a time series which is
statistically similar to the original Black-Scholes time series,
then the statistical moments of the reconstructed data should
satisfy the Wick’s relation, i.e., ( M4

3M2
2
)rec ≈ 1.

2) In continuation of the previous point, we find the ratio M4
3M2

2

from relations (17):

M4

3M2
2

� 3σ4ξλΔt
3 σ( 2

ξλΔt)2
� 1
λΔt

by comparing this relation with Wick’s relation, i.e., M4
3M2

2
≈ 1, we

expect that λΔt � 1. On the other, if λΔt � 1, then the second
moment in Eq. 17 becomes:

M2 � σ2ξ

this is while, the second moment in original Black-Scholes process is
M2 � σ2Δt (Eq. 7). Therefore, it can be concluded that if the new
model works correctly, the estimation of jumps amplitude ( σ2ξ )
should be equal to the variance of the original data (σ2Δt), namely,

σ2ξ � σ2Δt

In the following, we reconstruct a Black-Scholes process with
known drift and volatility parameters via the jump-drift equation,
and then evaluate the reconstructed data.

Example 1. First, we generate a synthetic time series Δy(t)with 106
data points via Black-Scholes dynamics (Eq. 5) and using preset
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parameters μ � 1.5 and σ � 1 with Δt � 0.004. In Figure 1, we have
shown the trajectory of 1,500 data points out of 106 generated data
points so that the fluctuations can be clearly seen (blue graph). By
obtaining the statistical moments Mn for n � 1, 2, 4 from the
generated data, and substituting in relations (18), we determine
the parameters required for the new modeling. The results are
as follows:

Statistical moments determined from generated data:

M1 � 0.004, M2 � 0.004, M4 � 4.8121p10−5,
M4

3M2
2

� 1.002

Required parameters for new modeling:

�μ � 1
Δt

M1 � 1

σ2ξ �
M4

3M2
� 0.00401 In agreement with σ2Δt � 0.004( )

FIGURE 1
Upper panel: A sample path of synthetic log-returns generated via Black-Scholes dynamics using the preset parameters μ � 1.5, σ � 1 and
Δt � 0.004. Lower panel: A sample path of log-returns reconstructed via jump-drift dynamics.

TABLE 1 A scale of judgment of forecast accuracy.

Mean absolute percentage
error (MAPE) (%)

Judgment of forecast
accuracy

Less than 10% Highly Accurate

11% to 20% Good Accurate

21% to 50% Reasonable Forecast

more than 50% Inaccurate Forecast

TABLE 2 values of the drift, jump amplitudes, and jump rates obtained from
historical daily prices of Apple and IBM stocks using the jump-jump-drift
modeling.

Stock �μ σ2ξ1 λ1Δt σ2ξ2 λ2Δt

APPLE 0.2772 2.5345 × 10−4 0.8248 0.0011 0.1752

IBM 0.1283 8.8795 × 10−5 0.6790 3.7351 × 10−4 0.3210
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λΔt � M2

σ2ξ
� 0.997 ≈ 1

In the second step, we reconstruct a time series Δy(t) via the
jump-drift equation (Eq. 16) with 106 data points. For comparison
with the original data, a sample path including 1,500 reconstructed
data points is shown in Figure 1 (red graph). Finally, to ensure that
the two time series (generated and reconstructed) are statistically
equivalent, we obtain the statistical moments of the reconstructed
data, and check the establishment of ( M4

3M2
2
)rec ≈ 1. The results are

as follows:
Statistical moments of reconstructed data:

M1 � 0.004, M2 � 0.004, M4 � 4.8172*10−5,

M4

3M2
2

( )
rec

� 0.9985 ≈ 1

As can be seen, the reconstructed data are statistically similar to
original data with high accuracy, and there is a very good agreement
between these results and the theory.

2.2 Jump-jump-drift modeling

In the previous section we modeled a continuous diffusion
process through the jump-drift equation. Since real markets are
usually jump-diffusion markets, the generalizing of jump-drift
modeling to a jump-jump-drift modeling improves the
characterization of real markets dynamics beyond a continuous
process. The general form of a jump-jump-drift equation is
as follows:

dy t( ) � �μdt + ξ1dJ1 t( ) + ξ2dJ2 t( ) (19)
where �μdt indicates the deterministic part of the process and J1 (t)
and J2 (t) are Poisson jump processes. The jumps have rates λ1 and
λ2 , and sizes ξ1 and ξ2, which we assume have zero mean Gaussian
distributions, i.e., ξ1 ~ N(0, σ2ξ1) and ξ2 ~ N(0, σ2ξ2). We call σ2ξ1 and
σ2ξ2 the jump amplitudes.

Integration of Eq. 19 over (t, t + Δt) gives us:

Δy t( ) � �μΔt + ξ1ΔJ1 t( ) + ξ2ΔJ2 t( ) (20)

FIGURE 2
Upper panel: Time plot of actual daily log-returns of Apple stock from 1 June 2020 to 1 June 2023 (756 data points). Lower panel: Time plot of
reconstructed daily log-returns of Apple stock using the proposed jump-jump-drift model.
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Furthermore, the stock price can be determined from Eq. 20 as:

S t + Δt( ) � S t( ) e �μΔt+ξ1ΔJ1 t( )+ξ2ΔJ2 t( )( ) (21)

In modeling the stock price via Eq. 21, we also assume that two
jumps do not occur simultaneously, which means that in the time
interval (t, t + Δt], if, for example, ΔJ1(t) occurs and takes the value
of 1, ΔJ2(t) does not occur and its value is 0, and vice versa. Let λ1Δt
and λ2Δt be the probabilities of occurrence of ΔJ1(t) and ΔJ2(t) in a
small time step Δt, if we assume only one of the jumps (ΔJ1(t) or
ΔJ2(t)) occurs in each time step, then we can write:

λ1Δt + λ2Δt � 1 (22)

According to this condition, we can discard one of the jump
events at each time step, and reconstruct the corresponding data
point by another jump event.

To model the stock prices via Eq. 20, we must find the five
unknown parameters �μ, λ1Δt, λ2Δt, σ2ξ1 and σ2ξ2. We now show that
all these parameters can be estimated directly from the log-returns

time series Δy(t). For this purpose, we derive the statistical
moments of Δy(t) from Eq. 20 (note that ξ1 and ξ2 are two
Gaussian random variables independent from the jumps, and
ΔJ1(t) and ΔJ2(t) do not occur simultaneously):

M1 � <Δy t( )> � < �μΔt> + < ξ1 > <ΔJ1 t( )> + < ξ2 > <ΔJ2 t( )>
M2 � < Δy t( ) − �μΔt( )2 > � < ξ1

2 > < ΔJ1 t( )( )2 > + < ξ2
2 > < ΔJ2 t( )( )2( )>

M4 � < Δy t( ) − �μΔt( )4 > � < ξ1
4 > < ΔJ1 t( )( )4 > + < ξ2

4 > < ΔJ2 t( )( )4( )>
M6 � < Δy t( ) − �μΔt( )6 > � < ξ1

6 > < ΔJ1 t( )( )6 > + < ξ2
6 > < ΔJ2 t( )( )6( )>

By using the relations < (ΔJ1(t))m > � λ1Δt and
< (ΔJ2(t))m > � λ2Δt for the statistical moments of jump
processes, and the relations < ξ2l1 > � 2l!

2l l!< ξ21 > l and < ξ2l2 > �
2l!
2l l!< ξ

2
2 > l for the even order statistical moments of zero mean

Gaussian random variables ξ1 and ξ2 with variances σ2ξ1 and σ2ξ2 ,
we will have (note that < ξ1 > � < ξ2 > � 0, < ξ21 > � σ2ξ1 ,
and < ξ22 > � σ2ξ2 ):

FIGURE 3
Upper panel: Time plot of actual daily log-returns of IBM stock from 1 June 2020 to 1 June 2023 (756 data points). Lower panel: Time plot of
reconstructed daily log-returns of IBM stock using the proposed jump-jump-drift model.

Frontiers in Physics frontiersin.org07

Movahed and Noshad 10.3389/fphy.2024.1402593

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1402593


FIGURE 4
Graphical representation of the predicted paths of the daily price of Apple stock using jump-jump-drift modeling. The time period of all predictions is
30 days and their starting point is 1 June 2023. The cyan graph is the actual price path realized over the same 30 days, and the colored graphs are the
1,000 possible paths predicted by the model.

FIGURE 5
Graphical representation of the predicted paths of the daily price of IBM stock using jump-jump-drift modeling. The time period of all predictions is
30 days and their starting point is 1 June 2023. The cyan graph is the actual price path realized over the same 30 days, and the colored graphs are the
1,000 possible paths predicted by the model.
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M1 � �μΔt

M2 � σ2ξ1 λ1Δt + σ2ξ2λ2Δt

M4 � 3σ4ξ1 λ1Δt + 3σ4ξ2 λ2Δt

M6 � 15σ6ξ1 λ1Δt + 15σ6ξ2 λ2Δt

To find the five unknowns �μ, λ1Δt, λ2Δt, σ2ξ1 and σ2ξ2, we need to add
one more equation to the above relations. For this purpose, we use Eq. 22
as λ1Δt � 1 − λ2Δt, and reduce the number of unknowns, sowewill have:

M1 � �μΔt

M2 � σ2ξ1 + σ2ξ2 − σ2ξ1( ) λ2Δt
M4 � 3σ4ξ1 + 3 σ4ξ2 − σ4ξ1( )λ2Δt
M6 � 15σ6ξ1 + 15 σ6ξ2 − σ6ξ1( )λ2Δt (23)

Having the statistical moments M1,M2,M4 and M6 from the
log-return time series and solving the above system of equations
numerically, the four unknown parameters �μ, λ2Δt, σ2ξ1 and σ2ξ2 are
determined. Once λ2Δt is identified, λ1Δt is obtained from Eq. 22.

We claim that the proposed dynamics enables us to model time
series with jump discontinuities more accurately than the classic
jump-diffusion dynamics. We will check the validity of this claim by
reconstructing a jump-diffusion process via the jump-jump-drift
equation. But before that, let us prove this claim by showing that the
new relations in Eq. 23 are generalizations of the old jump-diffusion
relations in Eq. 11. For this purpose, we consider the case in which

TABLE 3 values of the drift, jump amplitudes, and jump rates obtained from
historical gold prices (weekly and hourly) using jump-jump-drift modeling.

Time
horizon

�μ σ2ξ1 λ1Δt σ2ξ2 λ2Δt

weekly 0.0728 2.0482 × 10−4 0.54 9.5290 × 10−4 0.46

hourly −0.2114 2.0184 × 10−6 0.9228 2.3761 × 10−5 0.0772

FIGURE 6
Upper panel: Time plot of actual weekly log-returns of gold prices from 5 January 2004 to 3 January 2022 (940 data points). Lower panel: Time plot
of reconstructed weekly log-returns of gold prices using the proposed jump-jump-drift model.
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σ2ξ1 ≪ σ2ξ2 , so that σ2ξ1 can be ignored compared to σ2ξ2 , and at the
same time σ2ξ1 be so small that σ4ξ1 � σ6ξ1 � 0. Under these special
conditions, relations (23) can be written as follows:

M1 � �μΔt

M2 � σ2ξ1 + σ2ξ2 λ2Δt

M4 � 3σ4ξ2λ2Δt

M6 � 15σ6ξ2 λ2Δt

As can be seen, these relations are similar to relations of jump-
diffusion model (Eq. 11), so that σ2ξ1 has replaced σ

2Δt, and identifies
the diffusion part, and σ2ξ2 λ2Δt has the same role as σ2ξ λΔt. This
means that under these special conditions ( σ2ξ1 ≪ σ2ξ2 and
σ4ξ1 � σ6ξ1 � 0), the new model works like the jump-diffusion model
and the parameters obtained from the data are the same in both
models. But if the data fluctuations are such that these conditions are
not satisfied, it is clear that the proposed model will lead to more
accurate estimates than the jump-diffusion model. By analyzing stock
prices, we found that although the release of exciting news in the

market causes sudden jumps in log-returns, the amplitude of these
jumps is not so much larger than the amplitude of the fluctuations in
normal days. Therefore, it seems that the new model has a better
performance for modeling and forecasting prices.

In the following, to demonstrate the reliability of the newmodel,
we test it on synthetic data. Furthermore, to ensure the effectiveness
of the proposed approach in different conditions, we test the model
with different synthetic data.

Example 2: First, we test the model with data generated through
the Black-Scholes process in Example 1. By obtaining the statistical
momentsMn for n � 1, 2, 4, 6 from the generated data, and replacing
them in relations (23), we determine the parameters required for the
new modeling via the numerical solution of the obtained system of
equations. Since the data generated in example 1 are diffusive data,
and we have already modeled it through the jump-drift equation, we
expect the occurrence rate of one of the jumps to be zero when we
model the same data through the jump-jump-drift equation. The
following results, confirm our opinion:

FIGURE 7
Upper panel: Time plot of actual hourly log-returns of gold prices from 11 March 2022 to 11 November 2022 (3,999 data points). Lower panel: Time
plot of reconstructed hourly log-returns of gold prices using the proposed jump-jump-drift model.
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FIGURE 8
Graphical representation of the predicted paths of the weekly price of gold using jump-jump-drift modeling. The time period of all predictions is
30 weeks and their starting point is 3 January 2022. The cyan graph is the actual price path realized over the same 30 weeks, and the colored graphs are
the 1,000 possible paths predicted by the model.

FIGURE 9
Graphical representation of the predicted paths of the hourly price of gold using jump-jump-drift modeling. The time period of all predictions is
300 h and their starting point is 11 November 2022. The cyan graph is the actual price path realized over the same 300 h, and the colored graphs are the
1,000 possible paths predicted by the model.
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�μ � 1

σ2ξ1 � 0.004

λ1Δt � 0.9999 ≈ 1

σ2
ξ2 � 0.0007

λ2Δt � 0.0001 ≈ 0

The value of λ2Δt ≈ 0 show that when the time series belongs to
the class of continuous diffusion processes (e.g., Black-Scholes
process), the jump-jump-drift dynamics, models it by using only
one jump process and completely omitting the second jump process.
In the next step, we test the model on two synthetic log-return time
series generated via jump-diffusion Equation 9 with preset
parameters. Each time series contains 3 × 106 data points which
generated by considering �μ � 5 and σ � 2 with a sampling interval
Δt � 0.0001, so that σ2Δt � 0.0004. The jumps in both time series
have the same jump rate λΔt � 0.3 (jump rate per data point), but
the amplitude of the jumps are σ2ξ � 0.1 and σ2ξ � 0.001, respectively.
We deliberately choose these jump amplitudes with different orders
of magnitude to observe the effect of their amplitude in retrieving
the coefficients. Note that in the first case

σ2
ξ

σ2Δt � 250 and in the
second case

σ2
ξ

σ2Δt � 2.5, that is, in the first case, the variance of
diffusion part (σ2Δt) is negligible compared to the amplitude of
jumps (σ2ξ ), and as mentioned earlier, we expect both models show
almost the same results, but in the second case, we expect the
estimates of the new model to be more accurate than the jump-
diffusion model.

By obtaining the statistical moments Mn for n � 1, 2, 4, 6 from
the generated data, and substituting in relations (11) and (23), we
determine the parameters of the two models. The following results
are estimated from the numerical solution of the corresponding
system of equations:

Case1:
Preset parameters:

�μ � 1, σ2Δt � 0.0004, σ2
ξ � 0.1, λΔt � 0.3

Estimated parameters via jump-diffusion model:

�μ � 1, σ2Δt � 0.00031, σ2ξ � 0.1005, λΔt � 0.299

Estimated parameters via jump-jump-drift model:

�μ � 1, σ2ξ1 � 0.00045, σ2ξ2 � 0.1005, λ2Δt � 0.299, λ1Δt � 0.701

Case2:
Preset parameters:

�μ � 1, σ2Δt � 0.0004, σ2
ξ � 0.001, λΔt � 0.3

Estimated parameters via jump-diffusion model:

�μ � 1, σ2Δt � 0.00013, σ2ξ � 0.0012, λΔt � 0.5

Estimated parameters via jump-jump-drift model:

�μ � 1, σ2ξ1 � 0.00040, σ2ξ2 � 0.0014, λ2Δt � 0.302, λ1Δt � 0.698

The above results show that in the first case, both models lead to
almost the same results, but in the second case, the proposed model

leads to more accurate results (note that in the new model, σ2ξ1 is an
estimate for the variance of the diffusive data, i.e., σ2ξ1 � σ2Δt, and σ2ξ2
is an estimate for the variance of the jumpy data, i.e., σ2ξ2 � σ2ξ ).

3 Data and methodology

Our dataset comprises the daily closing prices of the Apple and
IBM stocks, as well as gold prices with two different time horizons
(weekly and hourly). For Apple and IBM stocks, the historical data
that will be used are daily closing prices from 1 June 2020 to 1 June
2023, which are obtained from Yahoo Finance source. For gold, the
historical data that will be used are weekly gold prices from 5 January
2004 to 3 January 2022, as well as hourly gold prices from 11 March
2022 to 11 November 2022, which are obtained from dukascopy
historical data source.

For each of the collected data, we will obtain log-returns time
series Δy(t) by:

Δy t( ) � ln
S t + Δt( )
S t( )[ ], t � 1, 2, . . . . . .

where S(t) and S(t + 1) are consecutive prices in the price time
series. Afterwards, we will determine the statistical moments of log-
returns data as follows:

M1 � Δy � 1
N

∑N
t�1
Δy t( )

Mn � 1
N

∑N

t�1(Δy t( ) − Δy)n, for n � 2, 4, 6

where N is the number of log-returns data points. By determining
these statistical moments and replacing them in relations (23), we
will identify the required parameters of the model, i.e., �μ, σ2ξ1, σ

2
ξ2,

λ1Δt, λ2Δt. Using these parameters, we will reconstruct the log-
returns data by the following equation:

Δy t( ) � �μΔt + ξ1ΔJ1 t( ) + ξ2ΔJ2 t( )
In addition, we will use the following equation to forecast prices

for several time steps after the chosen historical period:

S t + 1( ) � S t( ) e �μΔt+ξ1ΔJ1 t( )+ξ2ΔJ2 t( )( )

To determine the forecasts accuracy, we will use “Mean Absolute
Percentage Error” (MAPE) calculation as follows:

MAPE � 1
N

∑N

t�1
F t( ) − S t( )| |

S t( )
where F(t) is the forecasted price at time t, S(t) is the actual stock
price at time t, andN is the number of predicted data points. We will
use MAPE values to evaluate our forecasting method. A scale for
judging model accuracy based on the MAPE criterion was presented
by Lawrence et al. [23], and is shown in Table 1.

3.1 Research output and discussion

In the following, considering the elements described in the
methodology, we first model Apple and IBM stocks and predict
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their prices for a period of 30 days. Historical data used are daily
closing stock prices from 1 June 2020 to 1 June 2023. For daily prices,
the trading period is Δt � 1

252 years (based on a year with an average
of 252 stock trading days). The parameters obtained from the model
are presented in Table 2. Based on this table, in both stocks, σ2ξ2 is not
more than one order of magnitude larger than σ2ξ1 , so that for Apple

stock we have
σ2
ξ2

σ2
ξ1

� 4.34, and for IBM stock this ratio is
σ2
ξ2

σ2
ξ1

� 4.2. As

mentioned earlier, in this situation, the new model has better
performance. Furthermore, for the Apple stock, the jump rates
are λ1Δt � 0.8248 and λ2Δt � 0.1752, which means that, in the
data reconstruction stage, 82.48% of the data points are
reconstructed by using a Gaussian random variable with smaller

variance σ2ξ1 , and 17/52% of the data points are reconstructed by

using a Gaussian random variable with larger variance σ2ξ2 . This is

while, these rates for the IBM stock are λ1Δt � 0.6790 and
λ2Δt � 0.3210, respectively.

To reconstruct log-return data through proposed model, we use
the equation Δy(t) � �μΔt + ξ1ΔJ1(t) + ξ2ΔJ2(t) and reconstruct a
time series for Δy(t) that is statistically similar to the original ones.
Figures 2, 3 show the actual and reconstructed log-returns of Apple
and IBM stocks, respectively.

To predict stock prices, we use parameters estimated from
historical data. The forecast period is 30 days and is related to the
days after the selected historical period. Simulation of predictions is
done by 1,000 realization of the trajectory. Each trajectory is realized
using the equation S(t + 1) � S(t) e( �μΔt+ ξ1ΔJ1(t) + ξ2ΔJ2(t) ) with
30 iterations. Figures 4, 5 show the daily forecasts of Apple and
IBM stock prices, respectively. In order to compare the predictions
with the actual prices, the graph of realized prices in the same 30 days
is also shown in each figure (cyan graph). As can be seen, in both
stocks, the actual prices are located within the predicted trajectories. In
addition, the data analysis shows that all 1,000 predicted trajectories of
Apple stock price have MAPE values less than 20% (with the smallest
MAPE = 1.4%, the largest MAPE = 19.8% and the average MAPE =
5.84%). Meanwhile, the corresponding values obtained through the
jump-diffusion model are as follows:

The smallest MAPE = 1.51%, the largest MAPE = 24.3%, and the
average MAPE = 6.32%. These results show that the jump-jump-
drift model has a better performance than the jump-diffusionmodel,
and if the time period of the forecasts becomes larger (e.g., in annual
forecasts), the difference between the forecasts of the two models
becomes more visible.

The results of IBM stock price predictions are even more
surprising than Apple stock. Analysis of IBM stock simulation
outputs shows that all 1,000 predicted trajectories have MAPE
values less than 15% (with the smallest MAPE = 1.22%, the largest
MAPE = 14.02% and the average MAPE = 4.62%), indicating good
accuracy of themodel predictions. The corresponding values obtained
through jump-diffusion model are as follows:

The smallest MAPE = 1.62%, the largest MAPE = 20.7%, and the
average MAPE = 5.12%.

Finally, to see the effectiveness of the proposed approach for
different time horizons, we simulate gold prices with two different
time horizons. Historical data used are weekly gold price from
5 January 2004 to 3 January 2022, as well as hourly gold prices from
11 March 2022 to 11 November 2022. For weekly prices, the trading

period is Δt � 1
52 years (based on a year with an average of 52 trading

weeks), while for hourly prices, the trading period is Δt � 1
5916 years

(based on 2022 with 5,916 trading hours). The parameters obtained
from the model are presented in Table 3. Based on this table, in both
cases, σ2ξ2 is not more than one order of magnitude larger than σ2ξ1 , so
that for weekly data we have

σ2
ξ2

σ2
ξ1

� 4.6, and for hourly data this ratio

is
σ2
ξ2

σ2
ξ1

� 11.7.

To reconstruct log-return data through proposed model, we use
the equation Δy(t) � �μΔt + ξ1ΔJ1(t) + ξ2ΔJ2(t) and reconstruct a
time series for Δy(t) that is statistically similar to the original ones.
Figures 6, 7 show the actual and reconstructed log-returns of weekly
and hourly prices of gold, respectively.

To predict gold prices, we use parameters estimated from historical
data. The forecast period for weekly price is 30 weeks and for hourly
price is 300 h and related to the times after historical periods. Simulation
of predictions is done by 1,000 realization of the trajectory. Each
trajectory is realized using the equation S(t + 1) �
S(t)e( �μΔt+ ξ1ΔJ1(t) + ξ2ΔJ2(t)) with 30 iterations for weekly gold price
and 300 iterations for hourly gold price. Figures 8, 9 show the
weekly and hourly gold price forecasts, respectively. As can be seen,
in both cases, the actual prices are located within the trajectories
predicted by the model. Furthermore, the data analysis shows that all
1,000 predicted trajectories of weekly gold price have MAPE values less
than 30% (with the smallest MAPE = 2.1%, the largest MAPE = 29.43%
and the average MAPE = 7.57%), which are acceptable forecasts. The
corresponding values obtained by jump-diffusion model are as follows:

The smallest MAPE = 2.3%, the largest MPAE = 35.7%, and the
average MAPE = 7.85%.

Analysis of hourly gold prices shows that all 1,000 predicted
paths have MAPE values less than 10% (with the smallest MAPE =
0.51%, the largest MPAE = 7.17% and the average MAPE = 1.82%),
indicating very high accuracy of the model predictions for hourly
time horizons. The corresponding values obtained by jump-
diffusion model are as follows:

The smallest MAPE = 0.8%, the largest MPAE = 10.3%, and the
average MAPE = 2.15%.

4 Conclusion

We discussed that when data are sampled at discrete times (e.g.,
stock prices), they appear as a sequence of discontinuous jump
events, even if they have been sampled from a continuous process.
This issue gave us the idea to propose a new modeling in which
random variations in the sample path of a measured time series are
attributed to jump events, even if the time series belongs to the class
of diffusion processes. Based on this, we introduced a new dynamical
stochastic equation including a deterministic drift term and a
combination of several stochastic terms with jumpy behaviors.
The general form of this equation is as follows:

dy t( ) � �μdt +∑N
i�1
ξ idJi t( )

In this modeling we also assumed that the jump events do not
occur simultaneously so that the jumps have no overlap. We started
with the simplest form of equation including a deterministic drift term

Frontiers in Physics frontiersin.org13

Movahed and Noshad 10.3389/fphy.2024.1402593

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1402593


and a jump process as the stochastic component, and argued that it
can be used to describe the discrete-time evolution of a diffusion
process, e.g., Black-Scholes process. Afterwards, we extended the
equation by considering two jump processes with different
distributed sizes, and used it to model assets such as stock prices
and gold prices with different time horizons. We also demonstrated
that in all cases the proposed model works better than the old jump
model. It should be noted that, due to the small number of available
price data and the lack of diversity in the amplitudes of jumps, in this
article we modeled prices data only by considering two jump
processes. However, depending on the number of data points and
variation in the amplitudes of fluctuations, more stochastic terms can
be kept in the equation to increase the accuracy of the modeling. But
on the other hand, the more the number of terms in the equation, the
need to solve the system of equations withmore unknowns, the cost of
which must be paid in the form of longer runtime.
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