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In the railway system environment, the interconnection of a vast array of
intelligent sensing devices has brought about revolutionary changes in the
management and monitoring of railway transportation. However, this also
poses challenges to the communication service quality within the railway
Internet of Things (IoT). Through collective intelligence and collaboration, the
nodes within the railway IoT can not only share data and information but also
work synergistically to enhance the overall intelligence level and improve
decision-making quality of the network. Therefore, this paper proposes a
reconnection mechanism based on the computation of node game-theoretic
benefits and optimizes this process with the concept of swarm intelligence
collaboration. Initially, the game-theoretic benefit values of the nodes in the
railway IoT network are calculated. Subsequently, based on the weight priority of
the edges, the two edges with the larger weights are selected, and connections
are established between nodes with similar game-theoretic benefit values to
enhance the network’s robustness. This approach enables rapid networking and
efficient communication transmission within the railway IoT, providing robust
assurance for the safe and stable operation of the railway.
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1 Introduction

With the rapid development of new generation information [1] and communication
technologies (5G), the scale of Internet of Things (IoT) applications in the railway
environment has increased dramatically [2]. The rapid expansion of IoT applications,
while enhancing network service quality, also brings greater risks of network paralysis [3].
Device nodes in network applications are susceptible to failure due to various factors, such
as natural disaster activities, node malfunctions, and malicious attacks. Moreover, since IoT
applications are interconnected, the paralysis of a single network can easily lead to a chain
reaction causing the collapse of the entire railway IoT system [4]. Therefore, in the face of
partial device node failures, how to improve the quality of service (QoS) of complex IoT
applications and their robustness against network attacks [5], and to maximize the
maintenance of network topology communication capabilities, has become a bottleneck
in the development of large-scale railway IoT applications [6].
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When the topological structure of IoT applications is attacked,
measuring and optimizing the robustness and reliability of the
network topology is an important means to minimize the risk of
network failures [7]. In practical dynamic issues such as the
propagation and immunity of complex networks [8], and link
control [9], different topological structures exhibit different levels
of robustness in the face of deliberate attacks or random failures.
Therefore, altering the network’s topological structure is of
significant importance for enhancing the robustness of
complex networks.

The robustness of complex networks measures the network’s
ability to respond to external disturbances, such as deliberate attacks
or random failures [10]. Networks that maintain their functionality
under such changes (by removing some nodes or edges) are
considered more robust than those that do not. Current research
on improving the robustness of complex networks is mainly divided
into two categories: increasing the connections within the network
and reconnecting the network’s edges. Many infrastructures have
capacity limitations, such as transmission lines of power plants and
the number of flights in aviation systems, making it impractical to
increase the number of connections in a network. A substantial
amount of research has confirmed that the reconnection mechanism
[11] is a simple and effective method often used to adjust the
network’s topological structure to enhance its robustness. For the
topological structure of complex dynamic networks, it is generally
described by a coupling matrix, and most of the existing literature
discusses the case of constant coefficient coupling matrices. In actual
complex dynamic networks, due to the influence of external
environments, the topological structure cannot remain constant.
Therefore, it is necessary to introduce the concept of time-varying
topological structures in complex dynamic networks. Some scholars
have begun to consider this issue. For example, Refs. [12,13] discuss
the time-varying coupling strength in complex dynamic networks,
using adaptive laws to identify unknown parameters, achieving
adaptive synchronization of complex dynamic networks; Ref. [9]
discusses the control of complex networked supply chains with
multiple time-delay couplings and time-varying topological
structures, thereby enhancing the network’s ability to resist
collaborative attacks; and how the network’s performance in the
dynamics process feeds back and affects the evolution of the
topological structure.

Currently, IoT topology optimization methods [12] primarily
use the largest connected subgraph as a robustness metric to
quantify and optimize network topologies. Since the IoT topology
optimization problem is an NP-hard problem [14], to seek
approximate optimal solutions, most IoT topology optimization
methods are based on heuristic algorithms [15,16]. Meanwhile, in
complex networks, the scale-free network model more closely
resembles the structure of real-world networks and performs well
in resisting random network attacks (where each device node fails or
leaves the network with equal probability). However, it is prone to
network paralysis when facing malicious attacks (where important
nodes fail first). A multitude of researchers have proposed efficient
strategies to enhance the stability and resilience of IoT topological
structures. Rong et al [14] first classified the edges in the network as
effective, ineffective, and flexible edges, and then proposed a
heuristic optimization algorithm based on edge classification
(EC), designed to enhance the robustness of scale-free (SF)

networks against malicious attacks (MA). Qiu et al. [13]
introduced the ROSE strategy, an enhancement method for
wireless sensors in scale-free networks, which identifies and
protects key nodes in the network and optimizes the connection
structure to fend off malicious attacks. Zhao et al studied [17] a
specific type of network attack under the knapsack constraint—the
maximum vertex cover attack, which aims to maximize the number
of links associated with removed nodes under a limited budget.
Game theory, which describes the micro-interactions of network
nodes, is naturally a powerful tool to guide the adjustment of
topological structures, and applying cooperative game theory to
the optimization of IoT topologies will also face greater
opportunities and challenges.

Based on this, to address the failure of some critical equipment
nodes and the chain reaction collapse effect of network attacks,
which affect the service quality of railway system communication
applications, this paper proposes a reconnection mechanism
calculated based on the measurement of game-theoretic benefits
between nodes. The first chapter introduces the essential knowledge
of complex networks and model construction, and on this basis,
constructs a cooperative game strategy, including interaction
strategies, transformation rules, and equilibrium balance analysis.
The second chapter proposes the initialization of the model and the
reconnection edge mechanism. The third chapter verifies the
optimized network robustness based on the game value
reconnection edge mechanism using Monte Carlo experiments in
complex networks.

2 Construction of multi-layer
topological network model in the
railway internet of things environment

2.1 Network representation

The network is modeled as a weighted graph G � (V, E), where
V � e1, e2, e3..., en{ } represents the set of nodes in the network and
E � (ei, ej) | ei, ej ∈ V{ } represents the set of edges. Let N � |V|
denote the number of nodes and M � |E| denote the number of
edges. Each edge eij connects nodes ei and ej, and has a weight wij ,
which reflects the importance of the connection between the nodes.

This paper only considers simple connected undirected graphs
without duplicate edges or self-loops, meaning that there is at most
one edge between any pair of nodes in the network, each edge has
two distinct endpoints, and there is at least one path between any
two nodes. The neighborhood of a node vi in the network G is
denoted as Nvi � (u, vi) ∈ E, u ∈ V{ }, representing the set of nodes
adjacent to node vi in the networkG. To avoid confusion, it is simply
noted as Ni. The degree dvi � |Ni| of a node vi, denoted as di,
represents the number of edges associated with node vi in the
network G.

2.2 Game strategy

Swarm intelligence collaboration is a large-scale sensing and
computing model based on collective intelligence, emphasizing the
completion of complex sensing and computing tasks through the
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participatory and collaborative nature of the group. This model
typically involves a large number of individuals who are
interconnected through communication technologies such as the
Internet, collectively engaging in a particular task or goal. The core
of swarm intelligence collaboration lies in how to effectively organize
and motivate these participants, as well as how to process and
analyze the vast amounts of data they generate.

By integrating swarm intelligence collaboration with cooperative
game theory, a more efficient and fair system can be created. In this
system, participants (who can be humans or intelligent devices) are
motivated to cooperate and jointly complete tasks or solve problems.
Cooperative game theory provides the tools and methods to design
such incentive mechanisms.

In the cooperative evolution within network structures, it is
assumed that each individual engages in a round of public goods
games with its neighbors at each clock cycle, where the neighbors are
the subjects of the individual’s game, related to the social network
structure that hosts the gaming group. The model includes three
types of topological structures for the gaming group: regular lattice
networks, BA scale-free networks, andWS small-world networks. In
each round of the game, there is no central leader to control;
individuals have two choices: to cooperate or to defect. The
specific strategy an individual chooses is related to a series of
factors, which is also what the experiment will investigate. The
strategies adopted will have an impact on neighboring subjects;
adopting a cooperative strategy generates positive externalities, from
which other subjects can benefit. These externalities reflect the social
ability of subjects to interact with their adjacent subjects. After
multiple rounds of the game, whether a stable evolutionary outcome
can be achieved is also influenced by the introduction of incentive
mechanisms in the experiment, which aim to shift the original
evolutionary outcome from defection to cooperation. Each subject
in the model is described by four elements:

1) The strategy for this round is either cooperation or defection;
2) The strategy from the previous round was either cooperation

or defection;
3) The score for this round;
4) To facilitate the observation of results during the simulation

process, subjects are also assigned different colors for
distinction. The specific rules are as shown in Table 1.

2.3 Interaction and strategy transition rules

The most important part of evolutionary game theory is the
interaction between individuals (interact) and the selection stage of
the next round of strategy. Assuming all individuals are

homogeneous and have the same set of strategies. When an
individual adopts a cooperative strategy, the net benefit it
receives is the cooperative benefit R minus the cooperation cost
c. For the convenience of studying the problem, let the benefit R be
the total number of all neighboring nodes plus one (which is itself),
and the cooperation cost is 1, so the net benefit for each node is its
total number of neighboring nodes. When a node chooses a
defection strategy, the defector will gain a certain benefit, and
due to the cooperation of neighboring nodes, the defector will
free-ride and enjoy the positive external benefits from the
cooperating neighbors, so its benefit is the defection incentive
multiplied by the total number of cooperators among its
neighboring nodes.

Therefore, for each individual, the number of cooperators
among its neighboring nodes is counted, and if the individual is a
cooperator, its score is the total number of cooperators among its
neighbors; if the individual is a defector, its score is the product of
the defection benefit and the total number of cooperating
neighbors. In this paper, we mainly adopt the strategy of
choosing the one with the highest score among the
neighboring nodes as the strategy for the next round,
characterizing the feature of learning from the strong in
evolutionary games.

2.4 Strategy space and equilibrium analysis

The incentive rules here are refined into rewards (R) and
punishments (P). The incentive policy will either reward
cooperators as the sole strategy or punish defectors as the sole
strategy. Individuals will react to external stimuli, that is, they will
consider the rewards or punishments given by the central authority
before making decisions. The model compares three scenarios: no
policy, reward policy, and punishment policy, to determine which
one achieves the optimal outcome (the optimal outcome is
determined by the number of cooperators), in order to identify
the best solution. When a reward mechanism is introduced into the
model, corresponding to rewards for cooperators in reality, a
reward (reward) is introduced, and the utility function of
cooperators increases, while the utility function of individuals
adopting a defection strategy remains unchanged. When a
punishment mechanism is introduced into the model,
corresponding to punishments for defectors in reality, a
punishment (punishment) is introduced, and the utility
function of defectors will decrease by a value P, while the utility
function of individuals adopting a cooperation strategy
remains unchanged.

The individual payoff is characterized as follows:

TABLE 1 Rules of cooperative evolution in network structure.

Color Previous round strategy Current round strategy

Blue Cooperate Cooperate

Red Defect Defect

Green Defect Cooperate

Yellow Cooperate Defect
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pxy � pxpyR + 1 − px( )pyT + px 1 − py( )S + 1 − px( ) 1 − py( )P
(1)

The average revenue is as follows:

rx � ∑Ωx| |

y�1
pxy/ Ωx| | (2)

where |Ωx| is the number of neighbors of node x.
The expected outcome is related to the number of initial

cooperators, the size of the group, the magnitude of the defection
payoff, and the network’s topological structure. Subsequently,
targeted improvements in parameter settings, as well as the
magnitude of imposed incentives, expected rewards, and
punishments, will also affect the final evolutionary outcome.

2.5 Paramter settings

The previous section introduced the algorithms of game theory;
now we will begin to set initial values for the relevant parameters of
network initialization, representing their meanings and ranges.

1) Num—nodes: It represents the total number of nodes in the
network, which is also the scale of the gaming group, and its
value range varies slightly depending on the network;

2) Initial—cooperation: It represents the initial probability of
cooperation, with a value range between 0% to 100%;

3) Defection—award: It represents the defection payoff, with a
value range between 0 to 10;

4) In models with incentive mechanisms, there are also
parameters for reward and punishment.

Table 2 displays the experimental parameters and their
value ranges.

3 Topology reconstruction of railway
internet of things based on
cooperative benefits

3.1 Network state initialization

Initializing the network requires setting the network’s state
information vector to the topological environmental state. The

following description details how to convert the IoT topology
structure into the corresponding environmental state vector, as
shown in Figure 1. It is essential to reduce the storage space of
the topology structure for large-scale topologies. First, the
topology structure is converted into an adjacency matrix, an
operation frequently used in other IoT applications. In this
paper, by analyzing the network topology structure and
optimization action operations, it is found that only network
nodes within each other’s communication range can have a
connection relationship. Therefore, information from other
nodes within the node’s communication range is of
significant value. As shown in Figure 1, node a’s upper
triangular relationship is [1, 0, 0, 0], but since a is not within
the communication range of c and d, the only effective position
is b with [1]; similarly, node b has no connection with node d
and node e, so its effective position is c with [1]; node c’s
effective position is d with [1]; node d’s effective position is a
with [1], and node d has no effective position because it only
considers the upper triangular matrix. In summary, finally, the
topology is linked in the order of the adjacency matrix numbers
to form an environmental vector of [0, 1, 1, 1].

3.2 Initialization of network edge weights

In the analysis of complex networks, the degree of a node
plays a fundamental and crucial role. BA scale-free networks [17]
typically exhibit scale-free characteristics, with a degree
distribution that follows a power-law rule, indicating that
most nodes in the network have only a few connections, while
a small fraction of nodes have a large number of connections. In
the context of cooperative and competitive relationships between
nodes, the most important factor is the expected benefit of
cooperation with neighbors. According to the clustering effect
reflected in Ref. [18], it is known that the more neighbors a node
has, the easier it is to form a cluster, so nodes with a higher degree
may often generate better benefits over time. This paper assigns
weights to each edge in the network by calculating the absolute
difference in the expected benefits of node cooperation, thereby
characterizing the similarity between nodes, and using the
magnitude of edge weights to measure whether nodes have
the conditions for reconnection, as shown in the
following formula:

wij � ri − rj
∣∣∣∣ ∣∣∣∣ (3)

TABLE 2 Experimental parameters and their value ranges.

Network structure
parameters

Parameter meaning Random
network

BA scale-free
network

WS small-world
network

Num-nodes Total Number of Network Nodes,
Initial

500 1,000 1,500

Initial-cooperation Cooperation Probability 0–1 0–1 0–1

Defection-award Defection Reward B B B

Reward Reward R R R

Punishment Punishment P P P
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where ri represents the degree value of node vi, and wij represents
the weight of edge (vi, vj). The larger the weight value of the edge,
the greater the difference between the two endpoints of that edge.

3.3 Edge selection strategy

To enhance the stability of the network, the strategy for selecting
edges to swap is to disconnect edges with a large difference in
expected benefits, while nodes with similar benefit values are more
likely to connect with each other. The algorithm proposed in this
paper assigns weights to each edge using Formula 3, and when
selecting edges for reconnection, the decision is based on the weight
of the edges. The probability of choosing two edges is directly
proportional to the weight of the edges, following the rule as stated.

Πij � wij∑
u,v( )∈E

wuv
(4)

According to Formula 4, edges with larger weights have a higher
probability of being selected, and these edges typically connect two
nodes with a large deviation in benefit values. Therefore, the
algorithm can quickly identify the edges with larger differences
and then select the two edges with the highest edge weights
(requiring at least four nodes and two edges for disconnection
and reconnection), and reconnect their endpoints. This can
eliminate the benefit gap and rapidly enhance the stability of
the network.

3.4 Node homophily

Homophily can analyze and understand the connection
preferences between nodes, which is the phenomenon that
similar nodes tend to connect with each other. Connection
preferences also stem from the attributes of nodes, such as
routing frequency, bandwidth, climatic environment, antenna
technology, etc. This can help designers optimize network
structures and improve network efficiency and performance.
According to Formula 5, prioritize the reconnection operation of

four distinct nodes connected by two edges with larger weights.
According to the benefit values, the four nodes are sorted in non-
decreasing order, i.e., r1 ≥ r2 ≥ r3 ≥ r4. Then, there are three ways for
the reconnection mechanism to connect these four nodes: (1)
(vr(1), vr(2)) and (vr(3), vr(4)) ; (2) (vr(1), vr(3)) and (vr(2), vr(4)); (3)
(vr(1), vr(4)) and (vr(2), vr(3)).Therefore, this paper determines the
optimal connection method between nodes by comparing the
changes in the homophily coefficient of the three edge
connection methods.

The homophily coefficient is an indicator that measures the
similarity or difference in connections between nodes in a network.
Choosing the reconnection method that results in the smallest
change in the homophily coefficient can be considered optimal.
The homophily coefficient reveals the preference for connections
between nodes in the network.When nodes with higher connectivity
in the network tend to connect with other nodes of similar
connectivity, the network is referred to as a homophilous
network. As shown in Formula 6.

ρ � 1 −
∑
i,j( )∈E

ri − rj( )2

∑N
i�1
r3i − 1

2M ∑N
i�1
r2i( )

2 (5)

where ri represents the expected benefit value of node vi , N
represents the number of nodes in the network, and M
represents the number of edges in the network.

Since the reconstruction mechanism in this paper does not
change the degree values of the nodes during the reconnection

process. Therefore, ∑N
i�1
r3i − 1

2M(∑
N

i�1
r2i )2 is a constant during the

calculation process. The network’s homophily coefficient is only
related to the square of the difference in degree values at the two
endpoints of each edge. Consequently, the difference in the
homophily coefficient for the three edge connection methods is
as shown in Formulas 6–8.

ρ 1( ) − ρ 2( ) �
2 r 2( ) − r 3( )( ) r 1( ) − r 4( )( )

∑N
i�1
r3i − 1

2M ∑N
i�1
r2i( )

2 ≥ 0 (6)

FIGURE 1
The state information vector of the network is transformed into the state of the topological environment.
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ρ 2( ) − ρ 3( ) �
2 r 1( ) − r 2( )( ) r 3( ) − r 4( )( )

∑N
i�1
r3i − 1

2M ∑N
i�1
r2i( )

2 ≥ 0 (7)

ρ 1( ) − ρ 3( ) �
2 r 2( ) − r 4( )( ) r 1( ) − r 3( )( )

∑N
i�1
r3i − 1

2M ∑N
i�1
r2i( )

2 ≥ 0 (8)

From Formulas 6–8, it can be seen that ρ(1) ≥ ρ(2) ≥ ρ(3) , which
means that the first reconnection method will cause the greatest
increase in homophily. Therefore, this paper performs the
reconnection operation based on the first method of edge
connection, which is to sort the four nodes selected by edge
weight in non-increasing order according to their degree values,
creating two edges between nodes with similar game-theoretic
benefits. Similarly, during the reconnection process, the network
is not allowed to have duplicate edges and self-loops, and the
network must remain connected. Additionally, this paper uses
the collective cooperation rate to judge the cooperative
performance of the network after reconnection; if the network
cooperation increases, the reconnection operation is maintained,
otherwise, the reconnection operation is undone.

4 Experimental simulation

4.1 Reconstruction network statistical
indicator test

The experiment is conducted using the python, where the network
is modeled as a weighted graph and evolves according to the method by
Nowak and May in reference [19]. This method places “agents” in a
two-dimensional spatial array to explore the changing spatial patterns of
nodes. In this paper’s experiment, the two-dimensional grid space is
replaced with a more three-dimensional BA scale-free network. In the
model, when a reward system is implemented to encourage cooperative
behavior, the utility function of cooperators is enhanced, manifested as
an additional reward, while the utility function of individuals adopting a
defection strategy remains unchanged. Similarly, when the model
adopts punitive measures to sanction defection, the utility function
of defectors will suffer a loss, specifically reflected in the deduction of a
fixed amount P as a penalty. In this case, the utility function of
individuals choosing a cooperative strategy remains unchanged. The
specific value is set toR � 1,T � b, S � 0,P � 0.At the beginning of the
experiment, an initial probability of cooperation is randomly assigned to
each node in the network graph. The evolutionary game strategy
introduced in Chapter 1 is then used for calculations, with the
defection payoff set to b = 1.2 and the time step MCS = 5,000.
Subsequently, the network begins to evolve. After the network
reaches a preliminary state of stability, reconnection operations are
performed based on the average payoff of each node using the algorithm
from Figure 2, and the reconnected network undergoes degree
distribution testing and natural connectivity testing.

The degree distribution in a communication network describes
the probability distribution of the number of connections (degree) of
various nodes within the network, such as routers, switches, and
terminal devices. This distribution influences the efficiency of
communication within the network.

Through the simulation analysis of the optimization of complex
network topological structures, the following basic conclusions can
be drawn:

1) The simulation analysis has verified the effectiveness and
feasibility of the complex network topology optimization
model and the solution model. As the topological structure
continues to be optimized, the natural connectivity value
continuously increases, indicating that the network’s
resilience to destruction is constantly strengthening.

2) By comparing the results of Figures 3A, B, it can be observed
that the degree distribution of the network has changed after
optimization, where nodes with high degree values and those
with low degree values have gradually decreased, while nodes
with a moderate degree (around 74) have significantly
increased. This results in the entire network’s cooperation
rate being in an optimal state, possibly because a very high
degree value can lead to traffic congestion, which is not
conducive to collective interests; too low a degree value can
also affect the decrease in selfish benefits of individual entities.
Therefore, the reconnection edge strategy in this paper serves
as the best way to balance the interests of individuals and the
collective.

3) Analyzing the relationship between natural connectivity and the
number of evolutionary generations, as well as the relationship
between fitness values and the number of evolutionary
generations, as depicted in Figures 4, 5, reveals a common
pattern. It is evident that both of these metrics increase with
the increase in the number of evolutionary generations. This
suggests that nodes with higher degrees are more likely to form
new connections with other nodes that also have high degrees.

4.2 Robustness analysis

The purpose of complex network topology optimization is to
enhance the network’s resilience. The analysis mentioned above
establishes a topology optimization model using natural
connectivity as a measure of network resilience, significantly
improving the network’s resistance to destruction. Here, two types
of strategies are adopted: random (node and edge removal) attacks
and malicious (node and edge removal) attacks. These are
implemented before and after the optimization of complex
network topologies to analyze the changes in network resilience, as
shown in Figures 6–9.

Through simulation analysis, it is known that complex network
topologies before and after optimization exhibit the following
characteristics when facing different attack strategies:

1) In the random node removal attack strategy (Figure 6), the
optimized network’s resistance to attacks is higher than the
resistance before optimization, mainly reflected in the slower
decline in network resilience as the proportion of node
removal increases. Analyzing the network’s topological
structure, using the average degree as a dividing line, the
proportion of nodes with low degrees in the optimized
network increases, while the proportion of nodes with high
degrees decreases. Therefore, under the random attack
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strategy, the average probability of low-degree nodes being
attacked in the optimized network is higher than that of high-
degree nodes, and the impact of low-degree nodes on network
resilience is also smaller, thus demonstrating stronger
resistance to attacks.

2) In the random edge removal attack strategy (Figure 7), the
network’s resistance to attacks is similar before and after
optimization, and it is only when the edge removal ratio
exceeds approximately 0.6 that the optimized network’s
resistance to attacks shows a slight improvement.

FIGURE 2
Demonstration framework for optimization algorithms based on game reconnection mechanism.

FIGURE 3
Compared Degree Distribution between no optimized network (A) and optimized network (B).
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3) In the degree-based node removal attack strategy (see Figure 8),
where nodes are removed in descending order of degree, the
optimized network exhibits poorer resilience against this attack
method. The removal of a small number (about 10%) of high-
degree nodes leads to a significant decrease (about 40%) in
network resilience, almost paralyzing the network; whereas the
network before optimization demonstrates relatively stronger
resilience against such attacks.

4) In the betweenness-based edge removal attack strategy (see Figure
9), where edges are removed in order of their betweenness
centrality, the optimized network shows relatively stronger
resilience against this attack method. The removal of a
minority (about 20%) of edges with high betweenness has a
limited impact on network resilience. The analysis attributes this
to the tendency of low-degree nodes in the optimized network to
connect with high-degree nodes, which results in the edges
connecting high-degree nodes also having relatively high
betweenness, thus the edges have stronger redundancy.

FIGURE 4
The relationship between natural connectivity and evolutionary
generations.

FIGURE 5
The relationship between fitness value and evolutionary
generations.

FIGURE 6
Comparison of random node removal attack and initial
connectivity.

FIGURE 7
Comparison of random edge removal attack and initial
connectivity.

FIGURE 8
Comparison of degree-based node removal attack and initial
connectivity.
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Conversely, for the network structure before optimization, the
situation is the opposite.

This paper considers attack strategies, which belong to the dynamic
optimization of network topological structures. The optimized network
has enhanced resilience against node removal attacks.

5 Conclusion

This paper introduces a rewiring strategy based on node game
payoff, which assigns initial cooperation rates to nodes through
cooperative game play, and adjusts cooperation benefits during
dynamic interactions. It introduces reward and punishment
mechanisms to achieve average payoff. In this process, each
network node not only makes decisions based on its own payoff
but also considers the collective intelligence synergy of the entire
network to achieve overall optimization. Building on this, the
paper uses the average payoff between nodes for rewiring and
evaluates the rewiring effect with the collective cooperation rate.
The experimental results show that the optimization algorithm
proposed in this paper performs better in terms of the proportion
of nodes in natural connectivity and robustness indicators when
subjected to attacks such as random node attacks, random edge
attacks, degree centrality attacks, and betweenness centrality
attacks on the multi-layer network topology of the Internet of
Things (IoT) in the railway sector. It is also found that the network
exhibits poor resistance to attacks when facing degree-based node
removal attacks. Therefore, in practical applications, it is necessary
to choose different network topological structures based on the
specific real threats faced. In conclusion, the research findings of
this paper provide a reference for achieving rapid networking,
efficient transmission, and secure and stable operation of
communication in the IoT for the railway sector.
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FIGURE 9
Comparison of betweenness-based edge removal attack and
initial connectivity.
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