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Accurate prediction of air quality index is a challenging task, in order to solve the
gradient problem of traditional neural network methods in the time series
prediction process as well as to improve the prediction accuracy, the study
proposes a hybrid quantum neural network prediction model based on quantum
activation function. The model utilizes a quantum classical convolutional neural
network to tap into spatial correlations between different time periods and
combines it with a quantum activation function so as to better avoid the
gradient problem and solve the death RELU problem for better spatial feature
extraction, and then uses the long short termmemory neural network to capture
the observations at different times. Experiments were conducted on different air
quality datasets using the model, which proved that the proposed quantum
activation function optimized hybrid quantum neural network algorithm showed
more remarkable advantages in prediction accuracy than other model
algorithms.
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1 Introduction

The Air Quality Index (AQI) is widely used to assess air quality, and its results can fully
reflect the actual air quality conditions [1–3]. Air quality problems [4] have a certain impact
on various industries, with a greater impact on healthcare [5], tourism [6], and economy [7].
Currently, two main types of methods are used for air quality prediction: linear regression
models and neural network models. Among these methods, support vector machine (SVM)
[8] and neural network [9] based models are particularly typical. Support vector machines
have been widely used as an algorithm for a variety of forecasting tasks including time series
data. For example, support vector regression-based prediction models consider weather
factors [10] and support vector machine-based weather prediction methods [11].
Traditional neural network models, such as for the complex problem of air quality
prediction, Chen and other researchers proposed an innovative prediction model that
uses an architecture that combines a dual LSTM (Long Short-Term Memory Network).
This architecture aims to improve the accuracy of the prediction results and the robustness
of the model [12]. 2019 Zahra Karevan et al. developed a data-driven weather forecasting
model based on LSTM to apply it in the field of weather forecasting. In addition, an
improved variant of LSTM called transduction LSTM (T-LSTM) was proposed, which
focuses on utilizing local information to improve the accuracy of time series prediction. The
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results of the study show that T-LSTM exhibits superior
performance to conventional methods in performing forecasting
tasks [13]. Zhang et al. proposed a Convolutional Neural Network-
Long Short-Term Memory (CNN-LSTM) model aimed at
improving air quality prediction accuracy [14]. However, there
are still many problems with current AI techniques when solving
time series prediction problems. The analysis speed of classical
computers may not be able to keep up with the real-world
challenges of changing weather conditions [15]. In addition, the
gradient problem may still be faced in the case of very long time
series data. Gradients in long time series are difficult to propagate
through the network, which leads to themodel’s inability to learn the
long-term time dependence. As quantum technology continues to
advance, machine learning algorithms [16] and advances in the field
of quantum computing ([17]; [18]) offer potential possibilities for
creating accurate air quality prediction models. Common quantum
architectures proposed so far include quantum BP neural networks
based on generalized quantum gate evolution [19], quantum neural
networks based on extreme learning machines [20], quantum
multilayer perceptron neural networks [21], quantum neural
networks (QNN) [22], quantum convolutional neural networks
(QCNN), and quantum long and short-term memory networks
(QLSTM) [23]. Quantum machine learning has become a current
research hotspot in the field of neural networks. Mitarai et al.
proposed a hybrid classical-quantum QML algorithm using
Variational Quantum Circuits (VQCs) [24], where VQCs can
learn a given task by tuning the parameters implemented on
them. Inspired by quantum computing, Chen Gong et al.
proposed a quantum particle swarm optimization algorithm
based on a diversity migration strategy by combining the
traditional migration strategy with the average Hamming
distance to increase the population diversity, and the results
show that the proposed algorithm outperforms other typical
optimization algorithms and has stable convergence [25]. Li-Hua
Gong et al. proposed a quantumK-nearest neighbor algorithm based
on the divide-and-conquer strategy, which utilizes quantum circuits
to calculate the fidelity between the test samples and each feature
vector of the training dataset, and demonstrates higher classification
efficiency in high-dimensional data processing, and the proposed
classification method has higher classification accuracy and shorter
computation time compared with typical quantum K-nearest
neighbor algorithms [26]. Nan-Run Zhou et al. designed an
image generation scheme based on quantum generative
adversarial network to convert the multimodal distribution of the
image into a single peak distribution by remapping method and
optimized the structure of the quantum generator to reduce the
required parameters, which led to the successful generation of
MNIST image and Fashion-MNIST image [27]. In 2019,
Quantum Convolutional Neural Network (QCNN) proposed by
Cong et al. extends the main features of CNN to quantum systems
for dealing with quantum physics problems in Hilbert space,
avoiding the exponential growth of data volume caused by
transferring quantum data to classical computing environments
[28]. Herrmann et al. proposed a novel quantum convolutional
neural network (QCNN) specifically designed for phase
classification and optimization of quantum error correcting
codes. This QCNN is structurally similar to conventional CNNs
and has the same network architecture [29]. Li-Hua Gong et al.

designed a quantum convolutional neural network (QCNN) based
on variational quantum circuits, and developed a tree-structured
hybrid magnitude coding method by combining the advantages of
angle coding and magnitude coding, and the experiments showed
that the QCNN achieves faster convergence speed and higher image
classification accuracy compared to classical convolutional neural
networks [30]. In 2022 Eric Paquet et al. proposed a new hybrid deep
quantum neural network for time series prediction, the
QuantumLeap system, and the experimental results clearly
demonstrated the accuracy and efficiency of the system in
regression and extrapolation mechanisms [31]. Researchers such
as Andrea Ceschini have proposed an innovative architecture that
combines stacked long and short-term memory layers with
variational quantum layers. This method achieves a significant
improvement in prediction error, demonstrating the ability to
approximate stochastic fluctuations more accurately. In addition,
the quantum variational approach has demonstrated its overall
effectiveness in performing prediction tasks [32]. Hong et al.
combined quantum-inspired neural networks for time series
prediction by cascading parallel convolutional neural networks
with both long and short-term memory and quantum-inspired
neural networks in order to realize an innovative neural network
technique. The results show that the proposed method outperforms
other methods in time series forecasting [33].

An innovative hybrid model is proposed to face the many
challenges in air quality prediction research nowadays, such as
poor prediction accuracy and computational efficiency. The
contribution of this paper is as follows.

i. Based on the concept of variational quantum circuits [34], a
quantum hybrid neural network prediction structure
(HQCNN-LSTM) is designed. The quantum classical neural
network (HQCNN) is used to extract the features of the time
series data to form the input feature vector, which consists of a
quantum convolutional layer and a classical convolutional
layer. The quantum convolutional layer has three parts:
coding [35], parameterized variational quantum circuits
designed quantum convolution kernel, and measurements,
and after the output of the corresponding features from the
quantum convolutional layer, the information is passed into
the classical unit of the architecture. The output of the
HQCNN is then sent to the Long Short-Term Memory
(LSTM) [36] network for training to improve the air quality
prediction accuracy.

ii. A new quantum activation function is introduced to optimize
the quantum hybrid neural network model, which effectively
avoids the “ReLU death” problem in the convolutional layer,
and avoids the problems of information loss and gradient
disappearance, which provides an effective guarantee for the
robustness and performance of the model, and thus has
better accuracy.

iii. Explore the performance of a hybrid quantum classical
neural network based on quantum activation functions.
Experiments using the dataset are unfolded to compare
the performance differences of other models including
classical and quantum for the same task in the air quality
prediction task, which is used to verify the superiority and
reliability of the improved model.
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2 Proposed methodology

In this paper, a hybrid framework [37] approach
incorporating quantum computing is proposed, as shown in
Figure 1. The method skillfully combines a quantum classical
convolutional network optimized using a quantum activation
function and a long-short-term memory network (LSTM) for
prediction of air quality, an important time-series data.
Compared to other conventional frameworks, this method
skillfully utilizes the respective advantages of quantum and

classical computers to divide the learning task. In the hybrid
computing model, the quantum neural network is first
responsible for transforming and encoding the input data into
feature expressions that can be processed by the variational
quantum circuit (VQC). The VQC then performs the required
computation by rotating and entangling the quantum bits. The
results of the VQC calculations are measured and the resulting
output is passed to the classical neural network, which in turn
leads to the prediction results. This hybrid quantum neural
network is also optimized using a quantum activation function

FIGURE 1
Model structure diagram.

FIGURE 2
Quantum classical convolutional neural network.
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in order to accurately calibrate the air quality predictions and the
method calculates the error loss between the predicted and actual
values. Based on the loss, the optimizer continuously adjusts the
learnable parameters and VQC in the classical neural network by

back propagating the loss function until the model converges,
thus minimizing the prediction error.

2.1 Quantum classical convolutional
neural networks

In the field of weather prediction, the application of time-
series prediction usually requires the analysis of large data
containing multiple sets of dynamic variables and a high
demand for real-time prediction. However, this also poses the
challenge that classical computers [38] cannot keep up with
changing weather conditions in a real-time manner. In order to
improve the accuracy of air quality prediction, this study proposes
a quantum classical convolutional neural network (HQCNN) as

FIGURE 3
Circuit diagram of quantum convolutional layer.

FIGURE 4
LSTM cell.

FIGURE 5
Presentation of model flow charts.
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FIGURE 6
Trend map of data sets.

FIGURE 7
Plot of correlation coefficients.
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shown in Figure 2, where a part of the neural network is made into
a quantum, and the function of the quantum convolutional layer is
consistent with the classical convolutional neural network. In the
architecture of the quantum classical convolutional neural
network, the network starts with an input layer, followed by a
quantum convolutional layer, followed by a classical convolutional
layer, then a pooling layer and a fully-connected layer, and finally
ends with an output layer, forming a complete processing flow.
This design allows the model to extract features from the temporal
and spatial dimensions separately, effectively realizing the capture
of spatial distribution characteristics of air quality over different
time periods. Through this spatio-temporal feature fusion
mechanism, the network is able to perform air quality
prediction more accurately.

In a quantum neural network, the first task is to transform the
input data X into a quantum state. Once the encoding of the

information is completed, a series of quantum gates are acted on
one or more quantum bits. These quantum gates are responsible for
manipulating the input quantum state and converting it into
another quantum state through operations such as entanglement
and rotation. This process, X→H, i.e., performing quantum feature
mapping, where H stands for Hilbert space, is a key step in quantum
computation. Specifically, the process of converting a one-
dimensional classical vector x � (x1, x2, . . . , xn)T into a quantum
state code can be described as shown in Eq. 1 below:

Uϕ(x): x ∈ RN → |ϕ〉 � ⊗N
j�1Vj cj xj( )( ) |0〉⊗N (1)

When the initial quantum states are all |1〉 and Ry as Vj, then the
quantum state corresponding to xj is shown in Eq. 2 below:

|ϕj〉 � cos
xi

2
( )|0〉 + sin

xi

2
( )|1〉 (2)

FIGURE 8
Prediction effect of different models in Shanghai, the yellow curve indicates the trend of the actual air quality data in the Shanghai dataset, and the
green curve indicates the prediction trend of different models; when the trend of the predicted data in the yellow line and the trend of the actual data in
the green line are close to each other, it means that the model is more accurate and the prediction effect is more excellent.
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The specific representation of the quantum state represented by
the array x in tensor product form is shown in Eq. 3 below:

|ϕ〉 � ⊗N
j�1 cos

xi

2
( )|0〉 + sin

xi

2
( )|1〉 (3)

The quantum convolutional layer extracts the features or
patterns of quantum bits and can be constructed using the
unitary gates of any two quantum bits. The quantum convolution
kernel designed using VQC performs the unitary transformation Ui

on the quantum state, and the Ui operation acts against a pair of
neighboring quantum bits as shown in Figure 3.

The design of the baseline VQC is based on the creation of an
optimal circuit for the computation of N(α, β, γ) in order to
implement the two-qubit VQC from U(4). Here, each unitary
matrix in U ∈ (4) can be decomposed in the following way (Eq. 4):

U � A1 ⊗ A2( ) ·N α, β, γ( ) · A3 ⊗ A4( ) (4)

Where Aj ∈ U(2), ⊗ is the tensor product, and N(α, β, γ) �
exp(i[ασx ⊗ σx + βσy ⊗ σy + γσz ⊗ σz]). The parameters α, β,
γ ∈ R are defined as α � π

2 − 2θ, β � 2Ø − π
2, and γ � π

2 − 2λ. By
using the circuit design illustrated in Figure 3 in conjunction
with the regular decomposition technique, it is possible to realize
the unitary operations for U ∈ U(4), i.e., VQC. The first quantum
convolutional layer can express its output is shown in Eq. 5 below:

|φi θ( )〉〈φi θ( )| � TrGi Ui θi( )|φi−1〉〈φi−1|Ui θi( )t( ) (5)

Where TrGi(·) denotes the subsystem Gi, Ui is the VQC
operation (i.e., quantum convolution), and θi is the parameter of
the VQC of the ith quantum convolutional layer.

After the quantum transformation of the data, it needs to be
measured so that the output quantum state is converted
to classical information so that the subsequent part of the
classical neural network can process it accordingly. At the

FIGURE 9
Prediction effect of different models in Shenzhen, the yellow curve indicates the trend of the actual air quality data in the Shenzhen dataset, and the
green curve indicates the prediction trend of different models; when the trend of the predicted data in the yellow line and the trend of the actual data in
the green line are close to each other, it means that the model is more accurate and the prediction effect is more excellent.
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end of the variational quantum circuit is the measurement
layer, which is used to perform the measurement operation
on the quantum bits, and the output quantum states measure
the expectation value of each quantum bit. The expectation
value is obtained by measuring each quantum bit
using the Pauli matrix Z-gate, which is given in the following
Eq. 6:

Z � 1 0
0 −1( ) � |0〉〈0| − |1〉〈1| (6)

After the features X are processed in the quantum
convolutional layer, the quantum bits are collapsed into
computer-processable bit states. Next, these states are

combined with the classical convolutional layer and acted
upon by an activation function to generate the output feature
map X. This feature map is then fed into the pooling layer, which
has the ability to shrink in size for feature compression and
refinement. After spreading the feature map X into one-
dimensional vectors, the output AQI values are obtained using
a fully connected layer decoding. At this stage, the network
extracts the key features of the actual data by compressing the
two-dimensional input matrix, which ensures that the network is
able to accurately transform the input data into the
corresponding air quality index and establish an effective
mapping from input to output. When the network reaches the
expectation, the first phase of network training stops and the next
phase of training starts.

FIGURE 10
Prediction effect of different models in Chengdu, where: the yellow curve indicates the trend of the actual air quality data in the dataset of Chengdu,
and the green curve indicates the predictive trend of different models; when the predictive data trend of the yellow line and the trend of the actual data of
the green line are close to each other, then it means that the model is more accurate, and the prediction effect is more excellent; in short, the closer the
predictive data is to the actual data, the higher the accuracy of themodel. In short, the closer the predicted data are to the actual data, the higher the
accuracy of the model.
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2.2 Quantum activation function

In air quality prediction studies, the gradient problem [39]
usually arises, making accurate prediction a challenging task.
Although existing activation functions [40] have made progress
in solving the proposed problem, they often ignore the “dying ReLU
problem” of activation functions. In order to solve the problem that
gradients in long time series are difficult to propagate in the network
and the model cannot effectively learn the long time dependence,
this study introduces a quantum activation function (QRELU) in the
convolutional layer of the quantum classical convolutional neural

FIGURE 11
Prediction effect of different models in Hangzhou, where: the yellow curve indicates the trend of the actual air quality data in the dataset of
Hangzhou, and the green curve indicates the predictive trend of different models; when the predictive data trend of the yellow line and the trend of the
actual data of the green line are close to each other, then it means that the model is more accurate, and the prediction effect is more excellent; in short,
the closer the predictive data is to the actual data, the higher the accuracy of the model. In short, the closer the predicted data are to the actual data,
the higher the accuracy of the model.

TABLE 1 Shenzhen city - comparison of prediction results of different
models.

Model RMSE MAPE MAE

LSTM 14.3845 0.2658 11.4082

CNN-LSTM 12.7454 0.2285 9.9285

QRELU-CNN-LSTM 12.3632 0.2161 9.6196

HQCNN-LSTM 12.2231 0.2127 9.3862

QRELU-HQCNN-LSTM 11.4827 0.2011 8.8771
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network, so that it evaluates the output of the convolution operator,
the bias term, and the feature information of the consecutive layers,
thus avoiding the gradient problem better and improving the
prediction accuracy.

The Quantum Activation Function utilizes a quantum
computing approach to provide an innovative solution to the
“dying ReLU problem” of the traditional ReLU activation
function, ensuring that neurons remain active. By integrating
the core principles of quantum computing - superposition and
entanglement - the function helps the network to reach a global
optimum in the solution process. Utilizing the proposed Leaky
RELU method as a baseline, the quantum concepts of
superposition and entanglement are incorporated on this
basis, thus enabling the function to provide not only positive
but also negative solutions. By strategically choosing positive
solutions to avoid negative ones, the “dying ReLU” problem is
solved in a precisely controlled manner, realizing that only the
positive results are retained while the negative effects are
eliminated.

Positive solutions of the ReLU function and negative values of
the LReLU are chosen as starting points for improvement. Using the
principle of quantum entanglement, tensor product operations are
performed on the candidate Hilbert state spaces of these two ReLUs
(i.e., HRELU) and LReLUs (i.e., HLRELU) as follows Eq. 7:

HReLU ⊗ HLReLU (7)

With the Hilbert ReLU-based system in state |α〉ReLU and the
Hilbert LReLU-based system in state |α〉LReLU, the resulting state in
the hybrid system will be described by the following Eq. 8:

|α〉ReLU ⊗ |α〉LReLU (8)
In entangled or nonseparable states, the formulas for these

product states can be generalized to obtain the following Eq. 9:

|α〉QReLU � ∑
ReLU,LReLU

kReLU,LReLU|0|1〉ReLU ⊗ |0|1〉LReLU (9)

The entangled state of the quantum-based solution is shown in
Eq. 10 below:

|1〉LReLU ⊗ |0〉ReLU − 2|0〉ReLU ⊗ |1〉LReLU (10)

In the classical form, the following Eq. 11: can be derived:

R υ( )QReLU � φ × υ − 2υ, ∀υ≤ 0 (11)

For positive values (υ>0), keeping R(υ) � υ, as shown in ReLU,
and for negative values, increasing the novelty of the entanglement
solution, avoiding the “death of ReLU” by keeping the solution
positive with this new quantum state.

2.3 LSTM networks

In this study, according to the encoder-decoder [41]
architecture, the HQCNN (Hybrid Quantum Convolutional
Neural Network) assumes the role of an encoder, which is
responsible for encoding the input data, and the LSTM (Long
Short-TermMemory) serves as a decoder to receive these encoded
features and interpret them. In a long short-term memory
network (LSTM), the forgetting gate is responsible for
deciding, with a certain probability, the amount of information
that the cell should forget about the state of the hidden unit.
Meanwhile, the input gate is responsible for processing the
neuron input at the current time step. The output gate, on the
other hand, controls the output that the neuron should produce at
the current moment. Specifically, the input of the current moment
and the hidden unit state of the previous moment together update
the cell state through the influence of the forgetting gate and the
input gate. The cell then passes the cell state along the time axis in

TABLE 3 Chengdu city-comparison of prediction results of different
models.

Model RMSE MAPE MAE

LSTM 31.9795 0.3334 23.3889

CNN-LSTM 31.4973 0.2679 22.8685

QRELU-CNN-LSTM 30.1059 0.2650 22.0391

HQCNN-LSTM 31.0761 0.2616 22.3811

QRELU-HQCNN-LSTM 29.7534 0.2592 21.9500

TABLE 4 Hongzhou city-comparison of prediction results of different
models.

Model RMSE MAPE MAE

LSTM 23.8157 0.3097 15.8861

CNN-LSTM 23.0884 0.2859 14.8546

QRELU-CNN-LSTM 22.3154 0.2630 14.2872

HQCNN-LSTM 21.8892 0.2611 14.0258

QRELU-HQCNN-LSTM 21.7895 0.2581 13.8983

TABLE 5 Shenzhen City—comparison of the results of indicators with
different activation functions.

Model RMSE MAPE MAE

RELU-HQCNN-LSTM 12.2231 0.2127 9.3862

LRELU-HQCNN-LSTM 12.5970 0.2119 9.6049

RRELU-HQCNN-LSTM 13.1001 0.2133 9.8719

PRELU-HQCNN-LSTM 12.5838 0.2112 9.5873

QRELU-HQCNN-LSTM 11.4827 0.2011 8.8771

TABLE 2 Shanghai - comparison of prediction results of different models.

Model RMSE MAPE MAE

LSTM 60.8678 0.5574 46.4671

CNN-LSTM 58.3157 0.5368 44.0428

QRELU-CNN-LSTM 56.5811 0.5074 42.2921

HQCNN-LSTM 57.1439 0.5199 43.0907

QRELU-HQCNN-LSTM 55.5842 0.4601 40.9113
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channels with little information decay, allowing the network to
effectively preserve long-term time-dependent information,
i.e., preserve long-term memory. As for the specific content of
the neuron’s output at the current moment, it is selectively
controlled by the output gate. In the quantum convolutional
classical network, the output produced by the pooling layer
will be used as input to the LSTM layer for further processing.
The input matrix is compressed and then the extracted features
are converted into highly concentrated one-dimensional vectors
with time series features. The values of Oc

(t,...,t−D) and O
f
(t,...,t−D) for

the D days between time t are the model inputs, and the
prediction target is the AQI for the N days after the time t (D
and N are the set time windows). w is the weight, h is the hidden
layer information, and b is the bias. Figure 4 of the classical LSTM

network is shown below and the following equations are used to
represent the training process of the LSTM.

i. The LSTM first selectively forgets some past AQI data
information and other factors as shown in Eq. 12 below:

ft � σ Wf ht−1, xt[ ] + bf( ) (12)

ii. The new information selected to be deposited during the
update of the cell state comes from two parts, as shown in
Eq. 13 below. The sigmoid layer of the “input threshold” is
responsible for filtering out the information that needs to be
updated, while the tanh layer generates a new vector of
candidate values as shown in Eq. 14 below:

FIGURE 12
Prediction results of optimization model with different activation functions in Shanghai city, the yellow curve indicates the trend of the actual air
quality data in the Shanghai dataset, and the green curve indicates the trend of the data prediction using different activation function optimization
HQCNN-LSTMmodels; when the trend of the predicted data in the yellow line is closer to the trend of the actual data in the green line, it means that the
model is more accurate, and the prediction results are more excellent. In short, the closer the predicted data is to the actual data, the higher the
accuracy of the model.
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it � σ Wi ht−1, xt[ ] + bi( ) (13)
Ct′ � tanh WC ht−1, xt[ ] + bt( ) (14)

iii. Update the previous state as shown in Eq. 15 below:

Ct � ftct−1 + itCt′ (15)

iv. Finally, the output information is determined as shown in Eqs
16, 17 below, i.e., the predicted AQI:

ot � σ Wo ht−1, xt[ ] + b0( ) (16)
ht � ot tanh Ct( ) (17)

2.4 Algorithmic flow

In this study, an algorithm for optimizing quantum hybrid
neural networks with quantum activation functions is proposed,
which integrates a quantum classical hybrid network with a long
short-term memory (LSTM) network to create a novel hybrid
model. In this model, it is mainly composed of two parts: feature
extraction and air quality prediction. The algorithm accelerates the
learning rate of the neural network by quantizing part of the
convolutional layer of the convolutional neural network, taking
full advantage of the efficient parallel processing capability of
quantum computing as well as the deep extraction of features.
The long and short-term memory network can retain useful

FIGURE 13
Prediction results of optimization model with different activation functions for Shenzhen city, the yellow curve indicates the trend of the actual air
quality data in the Shenzhen dataset, and the green curve indicates the trend of the data prediction using different activation function optimization
HQCNN-LSTMmodels; when the trend of the predicted data in the yellow line is closer to the trend of the actual data in the green line, it means that the
model is more accurate and the prediction results are better. In short, the closer the predicted data is to the actual data, the higher the accuracy of
the model.
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feature information for a long time by utilizing forgetting gates,
input gates, and output gates, and has good time series data
processing capability. Therefore, the Hybrid Quantum
Convolutional Neural Network (HQCNN) partially serves the
purpose of automatic extraction of features which are
subsequently passed to the LSTM network for accurate air
quality prediction.

The feature extraction stage consists of an input layer, a
quantum convolutional layer, a classical convolutional layer, and
a classical pooling layer. Among them, the convolution filter of the
quantum convolution layer consists of a VQC, in which a four-
quantum-bit variational circuit is used instead of a convolution
kernel to realize the extraction of features, and the variational circuit
layer of the VQC is used to perform a quantum state you

transformation on the encoded data, and then this result is
output to form the corresponding output feature data after
measurement. Then after the classical convolutional layer of
convolutional calculation, the convolutional kernel is slid with
the data in steps for the convolutional operation, and then this
result is summed with the bias of this convolutional layer to realize
the nonlinear output using the quantum activation function. This is
then followed by a pooling layer using maximum pooling method
for data reduction and further feature extraction.

Among them, the convolution part of the classical convolutional
layer uses the “QRELU” activation function to evaluate the result of
the convolution operation, the bias term and the feature information
of the successive layers, and the output feature information of the
convolutional layer is evaluated as shown in Eqs 18, 19 below:

FIGURE 14
Prediction results of optimization model with different activation functions for Chengdu city, the yellow curve indicates the trend of the actual air
quality data in the dataset of Chengdu city, and the green curve indicates the trend of the data prediction using different activation functions of the
optimized hybrid quantum neural network model; when the trend of the predicted data in the yellow line is closer to the trend of the actual data in the
green line, it means that the model is more accurate and the prediction is more excellent. In short, the closer the predicted data are to the actual
data, the higher the accuracy of the model.
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aik � Qrelu zik( ) � zik, z
i
k ≥ 0

αzik − 2zik, z
i
k ≤ 0

{ (18)

aik � Qrelu zik( )
zik � ∑k�1a

i−1
k ⊗ rimk + bik

{ (19)

where ai−1k is the input of the convolution filter, aik is the output, r is
the convolution kernel, b is the bias term, and ⊗ denotes the
convolution operator.

These features are then passed to the LSTM network in a one-to-
one fashion, thus entering the air quality prediction part in order to
further exploit the time-dependent features. At the end of the network, a
deep neural network containing a single hidden layer is used as a fully-
connected layer that constitutes the output layer of the HQCNN-LSTM

network model, responsible for the final fitting and prediction of the
data. The output of the model is the predicted value at time point t,
giving the framework a higher sequential prediction capability. Figure 5
illustrates the specific flow of the method.

The specific stages of the air quality prediction algorithm based
on quantum activation function optimization hybrid quantum
neural network (QRELU-HQCNN-LSTM) are as follows:

Step 1: The air quality time series dataset is input, containing
daily measured data related to PM2.5, PM10, SO2, CO,
NO2, O3, etc.

Step 2: Dividing the dataset, in this paper, 76% of the dataset is
used as the training set and 24% is used as the test set.

FIGURE 15
Prediction results of different activation function optimization models in Hangzhou, where: the yellow curve indicates the trend of the actual air
quality data in the Hangzhou dataset, and the green curve indicates the trend of the data prediction using different activation functions to optimize the
hybrid quantum neural network model; when the trend of the predicted data in the yellow line is closer to the trend of the actual data in the green line, it
means that the model is more accurate and the prediction is better. In short, the closer the predicted data are to the actual data, the higher the
accuracy of the model.
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Step 3: Data normalization [42]. In order to eliminate the
influence of different dimensions, Min-Max Scalering
normalization is used to scale the data to
the range [0,1].

Step 4: HQCCN layer, which sends the processed data to the
quantum convolutional layer for feature extraction,
prepares the quantum state, and obtains the training
set and test set; constructs a hybrid quantum-classical
convolutional neural network and uses the QRELU
activation function in the convolutional layer; and sets
the values of the batch size, epoch, and the learning rate;
the quantum system undergoes the You transformation;
and then goes through the classical part of the output to
obtain the data output1.

Step 5: The LSTM layer, which inputs the data output1 to the
LSTM layer and uses its hidden state to compute the time
series to get the output data output2. Meanwhile, the
optimal model best-model. h5 is automatically saved
during the training process and the optimal model is
called when in the subsequent prediction.

Step 6: The fully connected layer, which inputs the data
output2 computed by the LSTM layer to the fully
connected layer to get output3.

Step 7: To determine whether to end, where the end condition is
to complete the set epoch. If the number of times reaches
the standard, then end the model training, otherwise,
continue to train the model in accordance with step 4.

Step 8: End.

3 Experimentation and analysis

3.1 Experimental data and indicators

The data for this study were obtained from the historical air
quality data of Shanghai, Chengdu, Shenzhen and Hangzhou
published by Weatherpost.com, and the samples were selected
from the three air pollutant datasets of Shanghai, Chengdu, and
Shenzhen from 2015-01-01 2016-12-31, and the air pollutant
dataset of Hangzhou from 2022-01-01 2023-12-31. Among
them, the Shanghai, Chengdu and Shenzhen datasets each
have 731 sets of data, and the Hangzhou dataset has a total of
720 sets of data, in which the daily measured PM2.5, PM10, SO2,
CO, NO2, O3, and AQI indexes are used as the input parameters,
whereas the AQI indexes are used as the prediction targets of
the model.

Since the time series data was collected manually, missing data,
data redundancy and some unforeseen problems inevitably occurred
during the data collection process. The air quality data collected for
these cities showed the same problems, therefore, data preprocessing
was done before the experiment started.

i. Handling of missing values

During the collection of air quality data, some dates
corresponding to the various indices were missing, and the
mean-filling approach was adopted for continuous variables, and
the median-filling approach was adopted for discrete variables, in
which the missing data were filled accordingly. For some irrelevant
or obviously low relevance feature variables, such as the AQI data of
the day, air quality level data, etc., a direct deletion method was
adopted so as not to affect the learning and generalization ability of
the subsequent model.

ii. Handling of outliers

In the process of data analysis, it is common to encounter data
points that are outside the predefined reasonable range or exhibit
significant outliers. By applying the method based on the median
absolute deviation and combining it with the calculation of the sum
of the distances of each observation from the mean, we are able to
effectively identify and deal with the outliers, thus ensuring the
robustness and reliability of the data analysis.

The trend of air quality index (AQI) and air pollutant
concentration over time for each dataset collected in this paper
after the above two steps of preprocessing is shown in
Figure 6 below.

After pre-preprocessing the air quality time-series dataset of the
four cities, the QRELU-HQCNN-LSTMmodel has a high sensitivity
to the data scale due to the different orders of magnitude of the air

TABLE 8 Hangzhou city - comparison of indicator results for different
activation functions.

Model RMSE MAPE MAE

RELU-HQCNN-LSTM 21.8892 0.2611 14.0258

LRELU-HQCNN-LSTM 22.6846 0.2624 14.3201

RRELU-HQCNN-LSTM 23.3965 0.2702 14.8156

PRELU-HQCNN-LSTM 22.1747 0.2697 14.2388

QRELU-HQCNN-LSTM 21.7895 0.2581 13.8983

TABLE 7 Chengdu city—comparison of indicator results for different
activation functions.

Model RMSE MAPE MAE

RELU-HQCNN-LSTM 31.0761 0.2616 22.3811

LRELU-HQCNN-LSTM 30.8210 0.2703 23.0481

RRELU-HQCNN-LSTM 31.7788 0.2637 23.2472

PRELU-HQCNN-LSTM 31.2843 0.2703 23.2625

QRELU-HQCNN-LSTM 29.7534 0.2592 21.9500

TABLE 6 Shanghai—comparison of indicator results for different activation
functions.

Model RMSE MAPE MAE

RELU-HQCNN-LSTM 57.1439 0.5199 43.0907

LRELU-HQCNN-LSTM 57.6912 0.5368 43.6989

RRELU-HQCNN-LSTM 58.2853 0.5012 43.2309

PRELU-HQCNN-LSTM 57.1919 0.5252 43.3051

QRELU-HQCNN-LSTM 55.5842 0.4601 40.9113
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quality data. In order to avoid problems such as slow convergence
speed of the model affected by large data variations, normalization of
the dataset according to Eq. 20 is necessary.

Xn � X −Xmin

Xmax −Xmin
(20)

Air quality prediction is essentially a regression problem [43]. In
order to effectively evaluate the performance of the prediction
model, three key metrics were selected in this study: root mean
square error (RMSE), mean absolute error (MAE), and mean
absolute percentage error (MAPE). These metrics are used to
quantify the accuracy of the model’s predictions; the smaller their
value, the more accurate the model’s predictions. The relevant
equations are shown in Eqs 21–23 below:

RMSE �
















1
N

∑N
n�1

yn − y
∧
n( )2

√√
(21)

MAE � 1
N

∑N
n�1

yn − y
∧
n

∣∣∣∣∣∣ ∣∣∣∣∣∣ (22)

MAPE � 1
N

∑N
n�1

yn − y
∧
n

∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣
yn

(23)

where n represents the number of samples in the time series, yn
represents the actual observations in the time series forecast, and ŷn

represents the corresponding predicted values in the time
series forecast.

3.2 Data correlation analysis

In this experiment, Pearson correlation coefficient [44] (p =
0.05) was used to correlate the data characteristics of the four air
quality datasets, and from the correlation coefficient plots of each
factor of the air quality data (Figure 7), it can be seen that there are
positive correlations between various pollutants, and these
relationships can be quantified to obtain specific correlation
coefficient values. These correlation coefficient values can help us
understand the degree of correlation between different pollutants
and provide important references for further air quality studies.
After the preprocessed data were evaluated for feature importance
and correlation analysis, a total of 731 data from Shanghai, Chengdu
and Shenzhen datasets and 720 data from Hangzhou dataset used in
this study were screened, and the first 76% of the dataset was divided
as the training set with the remaining 24% as the test set.

3.3 Experimental environment and
parameters

In this section, we evaluate the performance of the proposed
QRELU-HQCNN-LSTMmodel against other models such as CNN-
LSTM; the parameters of the QRELU optimization model are set as
follows: the model combines a convolutional layer for the QRELU
activation function and an LSTM layer for the Tanh activation
function, with a number of filters of 16, a learning rate of 0.004, and a

number of training rounds of 100. The batch training size is 256, the
optimizer is Adam and the loss function used is RMSE (Root Mean
Square Error). The parameter selection method is grid search
method. All experiments were performed on a 12th Gen Intel(R)
Core(TM) i9-12900H, 2.50 GHz, GTX1660Ti GPU computer. All
models were built on the Keras 2.2.4 framework and the code was
edited using the Python 3.9 based Juypter Notebook.

3.4 Experimental results and analysis

Firstly, in order to prove the effectiveness of the QRELU-
HQCNN-LSTM algorithm for predicting air quality, it is
compared and then tested in detail, which is based on quantum
theory and re-optimized on the basis of classical neural networks.
The performance of the QRELU-HQCNN-LSTM algorithm under
the same conditions on different datasets is then carefully verified
and proved that it does have some advantages. In this section of
experiments the corresponding models and their variant network
CNN-LSTM models are built on the datasets of Shanghai,
Chengdu, Shenzhen and Hangzhou for comparison. LSTM,
CNN-LSTM, QRELU-CNN-LSTM and QRELU-HQCNN-LSTM
models are selected for predicting the air quality and the prediction
results are compared and analyzed, and the prediction results of
Shanghai City, Chengdu City, Shenzhen City, and Hangzhou City
are shown in Figures 8–11, respectively.As can be seen from the
above figure, the overall trend of the predicted and actual values of
each prediction model is the same, when the data curve has a large
downward trend, the other models can not fit well, and the
predicted values of the QRELU-HQCNN-LSTM model
proposed in this paper are closer to the real values. The main
reason is that HQCNN can learn better from the original input
sequence, thus avoiding the error caused by manual extraction of
features; adding QRELU activation function to HQCNN can more
effectively avoid the “death” problem, thus the QRELU-HQCNN-
LSTM algorithm has a higher prediction accuracy, higher output
curve fitting, and higher prediction accuracy. The QRELU-
HQCNN-LSTM algorithm has higher prediction accuracy and
higher output curve fit.

In order to better reflect the superiority of the prediction accuracy of
the QRELU-HQCNN-LSTMmodel proposed in this paper, the RMSE,
MAPE andMAE of the different models on the corresponding datasets
are listed in Table 1, Table 2, Table 3, and Table 4, respectively. The
RMSE, MAE, and MAPE stand for the root-mean-square-error, the
mean-absolute error, and the mean-absolute-percentage-error of the
prediction, respectively. By comparing the data in the three tables, it is
clear that the HQCNN-LSTM model outperforms the CNN-LSTM
model in terms of performance. Specifically, in Table 1, the HQCNN-
LSTM model reduces the RMSE by 0.5223, the MAPE by
0.0158 percentage points, and the MAE by 0.5423 accordingly;
Table 2 shows that the model reduces the RMSE by 1.1718, the
MAPE by 0.0169 percentage points, and the MAE by 0.9521; and in
Table 3, the RMSE is reduced by 0.4212, the MAPE is reduced by
0.0063 percentage points, and the MAE is reduced by 0.4874; while in
Table 4, the RMSE is reduced by 1.1992, the MAPE is reduced by
0.0248 percentage points, and the MAE is reduced by 0.8288. This
suggests that quantum entanglement enhances the performance of
CNN-LSTM models in extracting localized data important features,
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which improves the prediction effect and accuracy of the model.
Compared with the HQCNN-LSTM model, the QRELU-HQCNN-
LSTMmodel exhibits amore significant enhancement, with a reduction
of 0.7407 in RMSE, 0.0116% in MAPE, and 0.5091 in MAE in Table 1;
in Table 2, a reduction of 1.5597 in RMSE, 0.0598% in MAPE, and
2.1794; in Table 3, RMSE decreased by 1.3227, MAPE decreased by
0.0024%, and MAE decreased by 0.4311; and in Table 4, RMSE
decreased by 0.0997, MAPE decreased by 0.003%, and MAE
decreased by 0.1275. This indicates that the QRELU-HQCNN-
LSTM model is better in fitting the anomalies and It also improves
the model’s ability to fit and predict the true value of AQI. Compared
with the CNN-LSTM model, the QRELU-HQCNN-LSTM model
shows significant improvement in prediction accuracy. The reason
behind this achievement is that the QRELU-HQCNN-LSTM algorithm
is more capable of optimization, which helps the model to obtain a
better network structure and learning speed.

In order to further demonstrate the superiority of the quantum
activation function optimized prediction model proposed in this
paper, which can perform air quality prediction more accurately,
four datasets, namely, Shanghai City, Chengdu City, Shenzhen City,
and Hangzhou City, are selected for demonstration. The effect of
activation function on the performance of the HQCNN-LSTM
algorithm is explored, and it is observed that the selection of
different activation functions for the optimization of the
quantum hybrid neural network will present different results. In
this section, the performance of the QRELU activation function
under the same conditions is carefully verified using different
datasets, and it is proved that it does have certain advantages
and can effectively solve the “death problem” of the RELU
function. By looking at Figure 12, the predicted values and the
true values of the Shanghai dataset are compared with those of the
Shenzhen, Chengdu and Hangzhou datasets, as shown in Figures
13–15, respectively.

From the data in Tables 5–8, it is obvious that the QRELU
activation function shows the best performance in all the
indexes, in Table 5, the RMSE, MAPE, and MAE reach
11.4827,0.2011%,8.8771 respectively; in Table 6, the RMSE, MAPE,
and MAE reach 55.5842, 0.4601%, and 40.9113; in Table 7, RMSE,
MAPE, and MAE reach 29.7534, 0.2592%, and 21.9500, respectively;
and in Table 8, RMSE, MAPE, and MAE reach 21.7895, 0.2581%, and
13.8983, respectively; in comparison, the model optimized by QRELU
activation function performs optimally in these indicators. Among the
various activation functions, the QRELU-HQCNN-LSTM model has
the highest prediction accuracy, and most of its predicted values match
with the actual values, and the QRELU activation function obviously
has a more obvious impact on the improvement of model performance.
This indicates that the QRELU activation function solves the “dying
problem” in the traditional activation function to a certain extent, and
improves the fitting ability of the HQCNN-LSTM model to the real
value of the air quality, which further improves the accuracy and
stability of the model.

The QRELU-HQCNN-LSTM model highlights the advantages
of quantum computing in handling complex data and problems. The
superiority of hybrid quantum neural networks is demonstrated
when dealing with real data, and although it may be more time-
consuming at runtime, the advanced features of quantum
computing enable higher prediction accuracy and stronger data
processing. When dealing with air quality data, the quantum

superposition and entanglement states of quantum computing
give the HQCNN-LSTM model a unique advantage in parallel
processing and complex problem solving, and it can more
accurately fit the real values; at the same time, the introduction
of the quantum activation function not only solves the “dying
problem” of the traditional activation function, but also improves
the performance of the hybrid quantum neural network on the data.
At the same time, the introduction of quantum activation function
not only solves the “dying problem” of traditional activation
function, but also improves the sensitivity of hybrid quantum
neural network to the data and the depth of feature extraction,
which further enhances the accuracy and stability of the model.

4 Conclusion

This paper focuses on the prediction of a typical air quality
index, i.e., the prediction of future AQI based on historical air quality
data. In this paper, a HQCNN-LSTM model based on QRELU
activation function is proposed, aiming at extracting the spatial
features of the air quality index over different time periods using
quantum convolutional neural network. The model is improved by
the quantum activation function, which effectively avoids the dead
ReLU problem and improves the stability and performance
performance of the model. Subsequently, the temporal features of
the air quality index are extracted using LSTM network, which
realizes the effective fusion of spatio-temporal information. By
simulating the datasets of three cities, this paper demonstrates
that the proposed model can significantly improve the prediction
accuracy of the AQI. By comparing the error metrics RMSE, MAPE
and MAE, it is clearly demonstrated that the QRELU-HQCNN-
LSTM model outperforms the LRELU-HQCNN-LSTM, RRELU-
HQCNN-LSTM and PRELU-HQCNN-LSTM models in terms of
prediction performance. This demonstrates the significant value and
practical significance of the model used in this paper in air quality
prediction.
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