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The Lorentz symmetry breaking theory not only affects the space–time
background but also the dynamic behavior of bosons and fermions in curved
space–time. Therefore, the Lorentz symmetry breaking theory will affect the
quantum tunneling rate, Hawking temperature, black hole entropy, and other
physical quantities of black holes. According to the modification of the
space–time background and the modification of the particle dynamic
equations, the quantum tunneling radiation of the Kerr–Sen-like black hole in
bumblebee gravitational theory and its related contents are deeply studied. The
researchmethods and a series of new results obtained in this paper are discussed.
This makes the research methods and conclusions in this paper of more
astrophysical significance and reference value.
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1 Introduction

Lorentz symmetry is the basic relationship of general relativity and quantum field theory.
General relativity is a gravity theory that cannot be renormalized. Therefore, researchers put
forward string theory, M-theory, and loop quantum gravity theory for studying quantum
gravity theory. The studies on string theory and quantum gravity theory show that the Lorentz
symmetry needs to be modified on the Planck scale in the case of high energy. The theory of
Lorentz symmetry breaking in high energy physics includes the Horava–Lifshitz theory
proposed by Horava in 2009. Another Lorentz symmetry breaking theory of gravity is the
Einstein-aether theory. Since Einstein gravity theory cannot be renormalized, the quantum
gravity theory combined with gravity theory and quantum theory as well as the grand unified
theory in physics cannot be constructed so far. On the other hand, significant amounts of dark
matter and dark energy are observed in cosmology, but these results still cannot be reasonably
explained by current gravity theory. Since the publication of general relativity more than
100 years ago, researchers of physics and astronomy have always been studying Einstein’s
gravity theory and the modified gravity theory. The supersymmetry theory, scalar tensor
gravity theory, f(R) theory, f (R, T) gravity theory, Rastall gravity theory, and Finsler gravity
theory are all gravity theories with modification. This paper studies the modification of
Bekenstein–Hawking entropy in the Kerr–Sen-like black hole in the bumblebee gravity theory
and its related projects [1, 2]. We consider two impacts of Lorentz symmetry breaking in
curved space–time, namely, the impact on the space–time background and the influence on
the dynamic equations of bosons and fermions in curved space–time. Without the Lorentz-
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breaking modification for the space–time background, people have
modified the dynamic equations of bosons and fermions in static,
stationary, and non-stationary black hole space–time with Lorentz-
breaking modification and carried out a series of meaningful research
works on related topics [3–16]. [1, 2] show that in the
Einstein–bumblebee gravity theory, due to the influence of
Lorentz-breaking on the space–time background, the space–time
metric of the stationary Kerr–Sen-like black hole is modified to a
certain extent. In this modified space–time background, the
modifications to the dynamic equation of fermions by Lorentz-
breaking and related projects are studied. Section 2 introduces the
modification of space–time background and the modified dynamic
equation of fermions. Section 3 describes the modified form of black
hole entropy. The final section presents the research results.

2 The dynamic equation of fermions in
Einstein–bumblebee gravity and
Kerr–Sen-like black hole space–time

The Einstein–bumblebee gravity action including the term
Lorentz-breaking is expressed as follows [1, 2].

SEB � ∫ d4x
���−g√ 1

16πGN
R + λBμB]Rμ] − 1

4
Bμ]Bμ] − V Bμ( )[ ]{ }.

(1)
In Eq. 1, λ is a non-minimal coupling constant between gravity and
the bumblebee vector field Bμ. Obviously, when Bμ = 0, Eq. 1 is back
to the action of the Einstein gravitational field. Bμ] in Eq. 1 and the
following Eq. 2 is the field strength tensor corresponding to the
bumblebee field reads [1, 2].

Bμ] � ∂μB] − ∂]Bμ. (2)

V(Bμ) in Eq. 1 is the potential, and the functional form of the
potential V(Bμ) that induces Lorentz-breaking is

V � V BμB
μ ± b2( ), (3)

where b2 is a real positive constant and b2 provides field Bμ, a non-
vanishing vacuum expectation value (VEV). Eq. 3 is assumed to have
a minimum through the condition BμB

μ ± b2 = 0, which ensures a
non-zero VEV. 〈Bμ〉 � bμ will be supplied to the field Bμ by the
potential V. bμ is a function of the space–time coordinates, satisfying
the equation bμb

μ = ±b2,; here the plus–minus sign indicates that bμ

may have a time-like as well as space-like nature depending upon the
choice of the sign. According to [1, 2, 17–19], assuming a space-like
bumblebee field, which acquires a pure radial VEV, and naming ℓ =
λbμb

μ, we can express the space–time line element of the Kerr–Sen-
like black hole in bumblebee gravity theory as

ds2 � − 1 − 2Mr

ρ2
( )dt2 − 4Mra

����
1 + ℓ

√
ρ2

sin2θdtdφ

+ρ
2

Δ dr2 + ρ2dθ2 + Asin2θ

ρ2
dφ2,

(4)

where

Δ � r r + b( ) − 2Mr

1 + ℓ
+ a2, (5)

ρ2 � r r + b( ) + 1 + ℓ( )a2cos2θ
� r r + b( ) + 1 + ℓ( )a2 − 1 + ℓ( )a2sin2θ, (6)

A � r r + b( ) + 1 + ℓ( )a2[ ]2 − Δ 1 + ℓ( )2a2sin2θ, (7)
In the above Eqs 4–7, M is the mass of such a black hole, a = J/M is
the angular momentum per unit mass, J is the angular momentum,
and ℓ and b are expressed in the above content. Equation 4 is the
form in the Boyer–Lindquist coordinate and the space–time metric
of the stationary axisymmetric Kerr–Sen-like black hole after the
Lorentz-breaking modification. Such space–time background is not
only the modification of the stationary Kerr–Sen black hole but also
the development of Kerr–Sen metric. When ℓ = 0 and b = 0,
Kerr–Sen-like metric is back to Kerr metric. According to Eq. 4,
the components of non-zero covariant metric tensors are shown as
follows, respectively:

gtt � − 1

ρ2
ρ2 − 2Mr( ) � − 1

ρ2
r r + b( ) − 2Mr + 1 + ℓ( )a2cos2θ[ ],

grr � ρ2

Δ ,
gθθ � ρ2,

gφφ � 1

ρ2
Asin2θ,

gtφ � gφt � −2Mra
����
1 + ℓ

√
ρ2

sin2θ.

(8)
Then, the metric determinant g corresponding to gμ] is expressed as

g �
gtt 0
0 grr

0 gtφ

0 0
0 0
gφt 0

gθθ 0
0 gφφ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

� − 1 + ℓ( )sin2θ r r + b( ) + 1 + ℓ( )a2 − 1 + ℓ( )a2sin2θ[ ]2.
(9)

According to Eqs 8, 9, we can calculate the components of the non-
zero inverse metric tensors as follows:

gtt � −ρ
2

Δ
r r + b( ) + 1 + ℓ( )a2[ ]2 − 1 + ℓ( )2a2sin2θ

1 + ℓ( ) r r + b( ) + 1 + ℓ( )a2 − 1 + ℓ( )a2sin2θ[ ]2,
grr � Δ

ρ2
,

gθθ � 1

ρ2
,

gφφ � ρ2

Δ
r r + b( ) − 2Mr + 1 + ℓ( )a2 1 − sin2θ( )

1 + ℓ( )sin2θ r r + b( ) + 1 + ℓ( )a2 + 1 + ℓ( )a2sin2θ[ ],
gtφ � −ρ

2

Δ
2Mra

����
1 + ℓ

√
sin2θ

g

� ρ2

Δ
2Mra

1 + ℓ( )1/2 r r + b( ) + 1 + ℓ( )a2 − 1 + ℓ( )a2sin2θ[ ]2.
(10)

With the expression gμ], according to a hypersurface equation
F(xμ) � 0 based on the four-dimensional curved space–time
together with the normal vector nμ � ∂F

∂xμ, we can get
nμnμ � gμ]nμn] � gμ] ∂F

∂xμ
∂F
∂x]. If nμn

μ = 0, such a hypersurface is
the null hypersurface that can determine the event horizon of the
black hole, namely,

gμ] ∂F

∂xμ

∂F

∂x] � 0. (11)
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Substituting Eq. 10 into Eq. 11, it can be concluded that

grr ∂F

∂r
( )2

� 0, (12)

namely,

Δ|r�rH � rH rH + b( ) − 2MrH
1 + ℓ

+ a2 � 0. (13)
This is the equation that is satisfied by the event horizon of the
Kerr–Sen-like black hole. From this equation, it can be seen that the
outer horizon of this black hole, the event horizon, is expressed as

r+ � rH � M − b

2
+ 2M − b( )2 − 4 1 + ℓ( )a2[ ]12. (14)

According to Eqs 12–14, the event horizon rH of the black hole is
modified due to the influence of Lorentz-breaking on the space–time
background.

In order to research the quantum tunneling radiation
characteristics of the Kerr–Sen-like black hole, we can consider
the expression of the action quantity of spin 1/2 fermions, which has
been modified by Lorentz-breaking theory. Due to the particularity
of spin 1/2 fermions, one of the action modification terms is the
chiral, and the other two are aether-like field vector and
Carroll–Field–Jackiw (CFJ). In fact, the first discovered Lorentz-
breaking term is the CFJ term [20–22]. In the later research process,
researchers proposed the aether-like vector modification term uμ for
the scalar field. For the spinor field, the chiral term and the aether-
like term were proposed. The Lorentz-breaking modification of field
theory models has attracted widespread attention [23–29]. There
have been some reports on the use of Lorentz-breaking theory to
modify fermion dynamic equations in flat and curved space–time
[30–33]. Now, based on the particularity of the Kerr–Sen-like black
hole metric and considering the fermions of spin 1/2, we can express
the modified spinor field action as [29–32]

SF � ∫ d4x
���−g√

�ψ

iγμ ∂μ + iΩμ( ) 1 − dZ2

m2 γ
μγ] ∂μ + iΩμ( ) ∂] + iΩ]( )[ ]{

+cZ
m
μμμ] ∂μ + iΩμ( ) ∂] + iΩ]( ) + f

Zm
γ5 − m

Z
}ψ,

(15)

where Ωμ and Ω] are spinor contacts, �ψ is the conjugate of ψ, γμ and
γβ are the gammametrics of Kerr–Sen-like space–time,m is the mass
of spin 1/2 fermions, and d, c, and f separately correspond to the CFJ
term, aether-like term, and chiral term. The covariant derivative in
Eq. 15 is ∂;μ = ∂μ + iΩμ. It should be noted that a, b, and c are all
dimensionless real small quantities, and d

m≪ 1, f
m≪ 1, c

m≪ 1.
According to Eq. 15 and the variational principle, we can obtain
the spinor field equation. Applying the variational principle to Eq.
15, from

δSF � 0, (16)
we can obtain

δ �ψ iγμ ∂μ + iΩμ( ) 1 − dZ2

m2 γ
μγ] ∂μ + iΩμ( ) ∂] + iΩ]( )[ ]{{

+cZ
m
uμu] ∂μ + iΩμ( ) ∂] + iΩ]( ) + f

Zm
γ5 − m

Z
}ψ � 0.

(17)

Due to δ �ψ � ∂ �ψ
∂xμ δx

μ, δψ � ∂ψ
∂xμ δx

μ, and δxμ ≠ 0, and according to
Eqs 16, 17, the matrix form of the modified fermion dynamic
equation for spin 1/2 is obtained as follows:

iγμ ∂μ + iΩμ( ) 1 − dZ2

m2 γ
μγ] ∂μ + iΩμ( ) ∂] + iΩ]( )[ ]{

+cZ
m
uμu] ∂μ + iΩμ( ) ∂] + iΩ]( ) + f

Zm
γ5 − m

Z
}ψ � 0.

(18)

Multiplying by [1 + dZ2

m2 γμγ](∂μ + iΩμ)(∂] + iΩ])] on both sides and
omitting higher-order small quantities of d2, Eq. 18 can be
rewritten as

iγμ ∂μ + iΩμ( ) + 1 + dZ2

m2 γ
μγ] ∂μ + iΩμ( ) ∂] + iΩ]( )[ ]{

×
cZ

m
uμuv ∂μ + iΩμ( ) ∂] + iΩ]( ) + f

Zm
γ5 − m

Z
[ ]}ψ � 0.

(19)

This is the modified form of the dynamic equation of spin 1/
2 fermions, also known as a matrix equation. According to the
WKB approximation theory, the wave function ψ is expressed as

ψ � λ
ξ

( )ei
Z S, (20)

where S is the action of spin 1/2 fermions. Substituting Eq. 20 into
Eq. 19, an equation in the matrix form can be obtained as follows:

−γμ∂μS + 1 − d

m2γ
μγ]∂μS∂]S( )[

− c

m
uμu]∂μS∂]S + f

m
γ5 −m( )] λ

ξ
( ) � 0,

(21)

where ZΩμ and ZΩ] are omitted. Equation 21 is a matrix equation,
which is actually an eigenmatrix. Accordingly, the condition for
nontrivial solutions in Eq. 21 is that the value of the determinant
corresponding to the matrix is 0.

−γμ∂μS + 1 − d

m2γ
μγ]∂μS∂]S( ) − c

m
uμu]∂μS∂]S + f

m
γ50 −m( ) � 0,

(22)

where γμ is the gamma matrix in curved space–time, γ5 is the matrix
in the chiral modification term, and γ50 is the coefficient
corresponding to γ5. The relationship between γ5 and γμ is as follows:

γμγ] + γ]γμ � 2gμ]I, (23)
γ5γμ + γμγ5 � 0. (24)

where I in Eq. 23 is a unit matrix. After multiplying both sides of Eq.
22 by γ]∂]S and omitting the higher-order small quantities, the
following field equation is obtained:

gμ] 1 − 2d( )∂μS∂]S + 2cuμu]∂μS∂]S +m2 − 2fr50 � 0. (25)

This is the spinor field equation for fermions with spin 1/2 in
Kern–Sen-like black hole space–time. Calculate S from Eq. 25;
then, according to the WKB approximation theory and the
black hole quantum tunneling radiation theory, we can
research the quantum tunneling radiation characteristics of
such black holes.
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3 Modification of the Kerr–Sen-like
black hole entropy by Lorentz-
breaking theory

To solve the field in Eq. 25 in the Kerr–Sen-like space–time
background, the four components of the aether-like field vector uμ

are selected as follows:

ut � ct���
gtt

√ , utut � ututgtt � C2
t ,

ur � cr���
grr

√ , urur � ururgrr � C2
r ,

uθ � cθ���
gθθ

√ , uθuθ � uθuθgθθ � C2
θ ,

uφ � cφ���
gφφ

√ , uφuφ � uφuφgφφ � C2
φ.

(26)

Obviously, uμuμ is a constant and meets the basic conditions of the
aether-liker field vector. In Eq. 25, γ50 is determined by the matrix
corresponding to the Kerr–Sen-like space–time metric. Based on the
characteristics of such a black hole metric, the four components of
the gamma matrix are constructed as follows:

γt �
���
gtt

√ I 0
0 −I( ),

γr � ���
grr

√ 0 σ1

σ1 0
( ),

γθ �
���
gθθ

√
0 σ2

σ2 0
( ),

γφ � gtφ���
gtt

√ I 0
0 −I( ) +

����������
gφφ − gtφ( )2

gtt

√
0 σ3

σ3 0
( ),

(27)

where σ1, σ2, σ3 are Pauli matrices, namely,

σ1 � 0 1
1 0

( ), σ2 � 0 −i
i 0

( ), σ3 � 1 0
0 −1( ). (28)

From Eqs 27, 28, we obtain

γtγφ + γφγt � 2gtφI,
γrγr � grrI,
γθγθ � gθθI,
γφγφ � gφφI.

(29)

Equations 23 and 29 are completely consistent. According to Eq. 27
and the Kerr–Sen-like metric feature, we can construct γ5 as follows:

γ5 � sin θ��
g

√ I 0
0 −I( ) 0 σ1

σ1 0
( ) 0 σ2

σ2 0
( ) 0 σ3

σ3 0
( )

� 1 + ℓ( )−1
2

r r + b( ) + 1 + ℓ( )a2 − 1 + ℓ( )a2 sin2 θ
I 0
0 I

( )
� γ50

I 0
0 I

( ) .

(30)

where γ5 is a Hermitian matrix. From Eqs 27, 30, we can obtain

γtγ5 + γ5γt � 0,
γrγ5 + γ5γr � 0,
γθγ5 + γ5γθ � 0,
γφγ5 + γ5γφ � 0.

(31)

Obviously, γ5 in Eq. 31 completely meets the requirements of Eq. 24,
and correct γ5 is merely constructed by correctly choosing γμ. By
substituting Eq. 26 and gμ] into Eq. 25, Eq. 25 can be simplified as

gtt 1 − 2d( ) ∂S

∂t
( )2

+ grr 1 − 2d( ) ∂S

∂r
( )2

+ 2gtφ 1 − 2d( ) ∂S
∂t

∂S

∂φ

+gθθ ∂S

∂t
( )2

+ gφφ ∂S

∂φ
( )2

+ 2cuμu] ∂S

∂xμ

∂S

∂x] +m2 − 2fγ50 � 0,

(32)
where the modification term corresponding to Kerr–Sen-like
space–time is expressed as

2cuμu] ∂S

∂xμ

∂S

∂x] � 2cuμuλg
λ] ∂S

∂xμ

∂S

∂x]

� 2c C2
t g

tt ∂S

∂t
( )2

+ C2
rg

rr ∂S

∂r
( )2

+ 2C2
t g

tφ∂S

∂t

∂S

∂φ
[
+C2

θg
θθ ∂S

∂θ
( )2

+ C2
φg

φφ ∂S

∂φ
( )2]

+ 4c ur ∂S

∂t
( ) ∂S

∂r
( )[ +uθ ∂S

∂r
( ) ∂S

∂θ
( ) + uφ ∂S

∂r
( )

∂S

∂φ
( ) + uθ ut∂S

∂t

∂S

∂θ
+ uφ∂S

∂θ

∂S

∂φ
( )].

(33)
Killing vector ( ∂

∂φ)α exists in Kerr–Sen-like space–time and then ∂S
∂φ �

n (constant). The S in Eq. 32 can be separated as

S � −ωt + R r( ) + Θ θ( ) + nφ. (34)
By substituting Eqs 10, 33, 34 into Eq. 32 and multiplying both sides
of Eq. 32 by [r(r + b) + (1 + ℓ)a2 − (1 + ℓ)a2 sin2 θ]2, ρ2, and Δ
respectively, by separating variables and considering

Δ|r→rH � 0, (35)

we can get the radial dynamic equation of Eq. 32 at rH as follows:

− 1 − 2d + 2cC2
t( ) rH rH + b( ) + 1 + ℓ( )a2[ ]2ω2

+ 1 + ℓ( ) 1 − 2d + 2cC2
r( ) Δ2 dR

dr( )2[ ]∣∣∣∣∣∣∣r→rH

− 1 − 2d + 2cC2
φ( )a2n2

+2 1 − 2d + 2cC2
t( ) rH rH + b( ) + 1 + ℓ( )a2[ ]ωn � 0 .

(36)

From this Eqs 35, 36, we can obtain

dR
dr( )2∣∣∣∣∣r→rH

� 1

Δ2 r→ rH|
1 − 2d + 2cC2

t( ) rH rH + b( ) + 1 + ℓ( )a2[ ]2
1+ ℓ( ) 1 − 2d + 2cC2

r( )
ω2 − 2

ωn

rH rH + b( ) + 1 + ℓ( )a2[ + a2n2

rH rH + b( ) + 1 + ℓ( )a2[ ]2⎤⎦
� 1

Δ2 r→ rH|
1 − 2d + 2cC2

t( ) rH rH + b( ) + 1 + ℓ( )a2[ ]2
1+ ℓ( ) 1 − 2d + 2cC2

r( ) ω−ω0( )2,
(37)

where

ω0 � an

rH rH + b( ) + 1 + ℓ( )a2. (38)

Taking square roots on both sides of Eq. 37, we can obtain
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dR±

dr
r → rH|

� ±
1

Δ|r→rH

�������������������
1 − 2d + 2cC2

t( )
1 + ℓ( ) 1 − 2d + 2cC2

r( )
√

rH rH + b( ) + 1 + ℓ( )a2[ ] ω − ω0( ).

(39)

In the above Eq. 39, ω0 is shown in Eq. 38. Using the residue theorem
integrals, we can obtain

R± � ± i2π rH rH + b( ) + 1 + ℓ( )a2[ ] �������������������
1 − 2d + 2cC2

t( )
1 + ℓ( ) 1 − 2d + 2cC2

r( )
√

ω − ω0( ).
(40)

According to the WKB approximation theory and the quantum
tunneling radiation theory, we can get that the quantum tunneling
rate of the spin 1/2 fermions at the event horizon of the black hole is

Γ ~ exp −2ImS±( ) � exp −2ImR±( ) � exp −ω − ω0

TH
[ ], (41)

where

TH � 1 + ℓ( ) 1 − 2d + 2cC2
r( )[ ]1/2

2π rH rH + b( ) + 1 + ℓ( )a2[ ] 1 − 2d + 2cC2
t( )1/2. (42)

This is the modified expression for Hawking temperature, where ℓ
and b are the modification terms due to the influence of Lorentz-
breaking on the space–time background. d is the modification term
of the CFJ term. c, Ct, and Cr are modification terms caused by the
aether-like field vector. The new significance of Eqs 41, 42 is
including the modification for background and also for the

dynamic behavior of spin 1/2 fermions in the curved space–time
backgrounds, where ω0 is the chemical potential, due to the rotation
of the black hole; a ≠ 0; andω0 ≠ 0. Soω0 is related to ℓ and b and also
to a = J/M. This is the basic feature of the stationary Kerr–Sen-like
black hole thermodynamics.

In order to more intuitively represent the influence of ℓ, b, d, c,
Cr, and Ct on the quantum tunneling rate of the Kerr–Sen-like black
hole, the figures Γ − (ω − ω0) are drawn.

As can be seen from Figures 1, 2, the Lorentz-breaking
bumblebee gravity theory has modified the space–time
background of the Kerr–Sen-like black hole. After the correction,
the Kerr–Sen black hole space–time background becomes the
Kerr–Sen-like black hole. Figure 1 shows the comparison of the
quantum tunneling rates of the Kerr–Sen-like black hole and Kerr-
Sen black hole. Figure 2 shows a schematic diagram of the quantum
tunneling rate of the Kerr–Sen-like black hole affected by the CFJ
and the aether-like correction terms.

Another major physical quantity in black hole thermodynamics
is black hole entropy. The entropy of black holes is closely related
to Hawking temperature. Due to the modified Hawking temperature
expressed in Eq. 42, there should be corresponding modified black hole
entropy. According to the first law of black hole thermodynamics, the
Bekenstein–Hawking entropy SBH of the black hole is related to the
Hawking temperature of the black hole as

dM � THdSBH +ΩdJ, (43)
where Ω is the rotational angular velocity. From Eq. 43, we obtain
the following equation:

FIGURE 1
Variation of the quantum tunneling rate for different parameters such as ℓ and b.
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SBH � ∫ dM −VdJ

TH

≈∫ dM −VdJ

Th

1 + ℓ( ) 1 − 2d + 2cC2
r( )

1 − 2d + 2cC2
t

[ ]1
2

1 − rHb + ℓa2

r2H + a2
+/( ).

(44)
From Eq. 44, we obtain the following equation:

Th � 1
2π r2 + a2( ). (45)

In the above Eq. 45, Th is the Hawking temperature at the event
horizon of the Kerr black hole before modification, so Eq. 44 with
the integral is

SBH � SBH′
1 + ℓ( ) 1 − 2d + 2cC2

r( )
1 − 2d + 2cC2

t

[ ]1
2

1 − rHb + ℓa2

r2H + a2
+/( ), (46)

where SBH′ is the Bekenstein–Hawking entropy before modification.
From the analysis of the quantum theory, the entropy of the black
hole is proportional to the area of the event horizon measured in
Planck area. This means that the black hole has an entropy
proportional to its area, that is SBH′ ∝AH, which is the specific
form of the entropy increasing principle in black hole
thermodynamics. According to the second law of black hole
thermodynamics, entropy never decreases in the clockwise
direction. This is a merely physical law that can show the arrow
of time. SBH′ in Eq. 46 can be obtained by calculating the area AH.

From Eq. 4, r = rH, when considering dt = 0 and dr = 0, the two-
dimensional line element is obtained as follows:

dσ2 � ρ2 dθ2 + Asin2θ

ρ2
dφ2. (47)

The metric determinant corresponding to Eq. 47 is

gσ � gθθ 0
0 gφφ

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ � Asin2θ. (48)

Therefore, according to Eq. 48, the event horizon area AH of such a
black hole is

AH � ∫ ��
gσ

√
dθdφ � ��

A
√ ∫ sinθdθdφ � 4π rH rH + b( ) + 1 + ℓ( )a2[ ].

(49)
Then,

SBH′ � AH

4
� π rH rH + b( ) + 1 + ℓ( )a2[ ]. (50)

Substituting Eq. 50 into Eq. 46, the expression of the modification
entropy of such a black hole is

SBH � π rH rH + b( ) + 1 + ℓ( )a2[ ]
1 + ℓ( ) 1 − 2d + 2cC2

r( )
1 − 2d + 2cC2

t

[ ]1
2

1 − rHb + ℓa2

r2H + a2
+/( ). (51)

FIGURE 2
Variation of the quantum tunneling rate for different parameters such as d, c, Cr, and Ct.
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It can be seen that the modified entropy SBH of the black hole is
related to d, b, ℓ, c, Ct, and Cr. If using ΔSBH to express the
Bekenstein–Hawking entropy transformation, then the expression
of the quantum tunneling rate, as shown in Eq. 41, can be
rewritten as

Γ � exp ΔSBH( ). (52)
Eqs 40–42, 49–52 indicate that due to Lorentz-breaking, both the
space–time background and quantum tunneling radiation are
affected to some extent. A series of conclusions obtained above
are of certain practical significance for research on black hole
thermodynamics.

4 Conclusion

First, it should be noted that this term containing f in Eq. 25
does not appear in the abovementioned series of results, which is
because Δ|r→rH � 0 makes Δ(m2 − 2fγ50)|r→rH � 0. However, if we
research the non-thermal radiation of the black hole, there must
be a term containing f in the distribution of Dirac positive and
negative energy levels of spin 1/2 fermions in the space–time of
such a black hole. This term appearing in the expression of the
Dirac energy level distribution will have a certain influence on the
particle energy level distribution. Since γ50 ∝

1
r2 and γ50|r→∞ � 0,

there is still a correct conclusion that the Dirac energy level, when
r → ∞, is approaching to ± m. Second, when ℓ = 0, the
abovementioned series of results correspond to the Kerr–Sen
black hole. When ℓ = 0 and b = 0, the abovementioned results
correspond to the relevant results of the classical Kerr black hole.
When ℓ ≠ 0, a = 0 and b = 0, the abovementioned results
correspond to the results of Schwarzschild-like black hole.
When ℓ = 0, a = 0 and b = 0, the abovementioned results
correspond to the Schwarzschild black hole.

In the previous literature on the modification of the quantum
tunneling radiation of the black hole by Lorentz-breaking, the
modification of the space–time background by Lorentz-breaking
was generally not considered [12–15]. Therefore, the novelty of the
abovementioned research content is that the Lorentz-breaking
modification of space–time background and the fermion
dynamics equation are taken into account at the same time,
and a series of novel outcomes are obtained. In a future in-
depth research process, we should consider the effects of
Lorentz-breaking theory on the space–time background of
static, stationary, and non-stationary black holes. In the process
of measuring the shadow of the black hole, for example, we should
take into account the effect of Lorentz-breaking theory. All these
research contents should continuously enrich the content of
quantum gravity theory research.

For bosons, the abovementioned methods cannot be used to
research the dynamic characteristics of bosons, and it is necessary to
research the dynamic behavior of bosons from the modified form of
the scalar field equation. For other static, stationary, and non-
stationary black holes, the abovementioned research methods can

be used to study the quantum tunneling radiation characteristics of
fermions and the physical significance of black hole temperature and
black hole entropy modification. We need to deeply understand the
conclusions mentioned above, especially the profound meaning of
black hole entropy. Black hole entropy is one of the important
physical quantities in black hole physics, and it is directly
proportional to the area of the black hole. According to the
second law of black hole thermodynamics, the area of a black
hole will never decrease in the clockwise direction, which means
that black hole entropy will not decrease. When we explore black
hole entropy from the perspective of quantum theory, black hole
entropy is directly proportional to the area of the event horizon
measured in the Planck area, which is a scientific project worthy of
in-depth research.
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