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In industrial aluminum sheet surface defect detection, false detection, missed
detection, and low efficiency are prevalent challenges. Therefore, this paper
introduces an improved YOLOv8 algorithm to address these issues. Specifically,
the C2f-DSConvmodule incorporated enhances the network’s feature extraction
capabilities, and a small target detection layer (160 × 160) improves the
recognition of small targets. Besides, the DyHead dynamic detection head
augments target representation, and MPDIoU replaces the regression loss
function to refine detection accuracy. The improved algorithm is named
YOLOv8n-DSDM, with experimental evaluations on an industrial aluminum
sheet surface defect dataset demonstrating its effectiveness. YOLOv8n-DSDM
achieves an average mean average precision (mAP50%) of 94.7%, demonstrating
a 3.5% improvement over the original YOLOv8n. With a single-frame detection
time of 2.5 ms and a parameter count of 3.77 M, YOLOv8n-DSDMmeets the real-
time detection requirements for industrial applications.
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1 Introduction

The extensive development of technology has led to the widespread use of aluminum
and its alloys in diverse industries, including aerospace, transportation, construction, and
power generation. However, during the manufacturing process of industrial aluminum
sheets, various surface defects, e.g., scratches, pinholes, black spots, and creases, may arise
due to the quality of raw materials, production techniques, and equipment conditions.
These imperfections compromise the aluminum sheets’ aesthetic appeal and, more
importantly, diminish their mechanical strength and resistance to corrosion.
Consequently, industrial aluminum sheets’ usability and service life are adversely
affected. Therefore, effectively detecting and controlling surface defects in industrial
aluminum sheets is paramount in guaranteeing their quality and reliability.

The surface defect detection of industrial aluminum sheets in production workshops
primarily relies on manual visual inspection and tactile methods. However, these
approaches are inefficient and heavily influenced by human factors, hindering the detection
results’ accuracy and consistency. The traditional image detectionmethod consists of three steps:
image processing, feature extraction and target recognition. In recent years, with the
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advancements in computer vision, image processing, machine learning,
and other technologies, deep learning-based surface defect detection
methods have gained significant research attention. However, there are
still many challenges, such as the slow detection speed of the model,
which cannot meet the requirements of real-time detection, the
detection environment that affects the detection effect of the model
due to factors such as lighting, the low frequency of some defects low,
and the small number of available samples. Current deep learning-based
object detection algorithms are divided into one-stage and two-stage.
The one-stage object detection algorithms, such as the YOLO (You
Only Look Once) [1] series and the SSD (Single Shot MultiBox
Detector) [2] algorithm, simultaneously locate and classify objects.
Accordingly, the two-stage object detection algorithms, such as
RCNN [3], Fast R-CNN [4], Faster R-CNN [5], and R-FCN [6],
first generate candidate regions and then classify them.
Consequently, two-stage object detection algorithms offer higher
accuracy but slower detection speed than one-stage algorithms.

For surface defect detection in industrial settings, sacrificing a small
portion of detection accuracy and employing a one-stage object
detection algorithm is a more practical choice. Currently, several
industrial surface defect detection solutions have been proposed. For
instance, Sun et al. [7] developed an object detection network based on
the R-FCN algorithm for detecting pin-like defects in unmanned aerial
vehicle inspection images. They achieved a detection accuracy of
83.45%. Huang et al. [8] proposed an improved aluminum profile
surface defect detection algorithm based on Faster R-CNN, which
enhanced detection accuracy by incorporating feature pyramids and
deformable convolution. However, the detection speed of that method
did not meet the industrial requirements, and it consumed a large
amount of computing resources. Wei et al. [9] introduced an improved
YOLOv3 method for detecting surface defects in steel rolling, utilizing
the PSA feature pyramid attention module for multi-scale feature
fusion. Their method achieved a detection accuracy of 80.01%. LI
et al. [10] developed a lightweight network, M2-BL-YOLOv4, for
detecting surface defects in aluminum based on the enhanced
YOLOv4. By modifying the backbone network to an inverted
residual structure, they significantly reduced the model’s parameters
and improved its detection speed. Xu et al. [11] proposed an industrial
aluminum sheet defect detection method based on YOLOv4, which
employed GhostNet [12] as the backbone network to enhance feature
extraction capability while reducing network parameters. This approach
achieved a detection accuracy of 90.98%. Besides, Tang et al. [13]
presented an improved YOLOv5 method for cylinder head forging
defect detection, which replaced the SPP-YOLO structure in the original
YOLOv5 head with the Decoupled Head structure. This modification
enabled the model to utilize multiple feature maps of varying sizes for
object detection, adapting to targets with diverse scales. Dou et al. [14]
applied an improved YOLOv7 for insulator detection tasks and
achieved significant accuracy improvement by incorporating a small
target detection layer. Zhou et al. [15] innovatively integrated a context
aggregation module (CAM) between the backbone and feature fusion
networks based on the YOLOv8 architecture. This approach enhanced
feature utilization and yielded a detection accuracy of 89.90% on the
photovoltaic cell EL dataset. However, there is still much room for
developing surface defect detection technology based on deep learning.
For example, defect detection can be fused with cross-modal retrieval
technology [16–20], and deep learning models can be used to fuse data
from differentmodalities (images and sensor data) to improve detection

accuracy. At the same time, there are still many problems in the surface
defect detection of industrial aluminum sheets, such as improving the
detection accuracy of the network for small targets, balancing real-time
and accuracy, and enhancing the generalization of algorithms.

YOLOv8, a novel algorithm in the YOLO series, introduced by
Ultralytics in January 2023, leverages the advancements made
throughout the development of the YOLO series to achieve high
detection accuracy and speed. Thus, YOLOv8 is well-suited for
targeted improvements in surface defect detection of industrial
aluminum sheets. Therefore, this paper proposes an industrial
aluminum sheet surface defect detection algorithm based on an
improved YOLOv8 to enhance defect detection accuracy.
Experimental results demonstrate that the improved YOLOv8n
algorithm achieves high accuracy on the industrial aluminum
sheet dataset while meeting the detection speed requirements for
industrial scenarios.

2 Introduction to YOLOv8 algorithm

The YOLOv8 algorithm is an advanced object detection model
refined and improved upon its predecessors, establishing it as a
powerful and highly accurate model. YOLOv8 encompasses five
models categorized by size: YOLOv8n, YOLOv8s, YOLOv8m,
YOLOv8l, and YOLOv8x. The YOLOv8n model was selected as
the baseline model due to its compact size and computational
efficiency, making it an appealing solution for surface defect
detection in industrial aluminum sheets. The structural details of
the YOLOv8n algorithm model are illustrated in Figure 1.

The YOLOv8 algorithm comprises three primary components:
Backbone, Neck, and Head. The Backbone extracts the features, the
Neck performs feature fusion, and the Head is utilized for object
classification and localization prediction. YOLOv8 introduces
significant innovations and improvements in each component
compared to its predecessors. Firstly, YOLOv8 introduces the
ELAN concept from YOLOv7 [21] and replaces the previous
C3 module with a new C2f module. This modification makes the
model more lightweight while obtaining more diverse gradient flow
information. Secondly, the Head part adopts a decoupled head
structure, using two parallel branches to handle the localization
and classification tasks separately, allowing the model to be
optimized for different tasks. Thirdly, YOLOv8 replaces the
anchor-based approach with an anchor-free one. It also employs
the Task-Aligned Assigner sample allocation strategy. Furthermore,
YOLOv8 uses the Varifocal Loss for classification and incorporates
the Distribution Focal Loss into the original Complete IoU Loss for
regression. These modifications enhance the model’s generalization
capability. Consequently, YOLOv8 emerges as a superior algorithm
within the YOLO series, surpassing the performance of most
detection algorithms, including YOLOv6 [22] and YOLOR [23].

3 Improving the YOLOv8 algorithm

3.1 C2f-DSConv module

In order to further enhance the algorithm’s detection accuracy,
this paper incorporates the DSConv (Dynamic Snake Convolution)
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[24] module proposed by Southeast University into the C2f module
of the YOLOv8 backbone and replaces the two Conv modules in the
original C2f module with the DSConv module. Traditional
convolutional operations have a fixed receptive field, which can
hinder capturing detailed features, particularly locally curved and
elongated features, which are challenging to detect due to their
limited presence in the image.

Inspired by deformable convolutions, DSConv introduces
deformable offsets to traditional convolutions. To prevent the
model from learning deformable offsets freely, which could lead
to deviations in the receptive field, DSConv employs an iterative
strategy. The position of each convolutional operation is determined
by using all deformable offsets concerning the central grid as a
reference, ensuring the continuity of attention. Figure 2 depicts the
DSConv coordinate calculation and the diagram of the
receptive field.

Regarding the DSConv coordinate calculation, first, assuming a
coordinate K with a size of 3 × 3 for the standard 2D convolution,
where the central coordinate is Ki � (xi, yi) and the dilation factor is
1, K can be represented as Eq. (1):

K � x − 1, y − 1( ), x − 1, y( ), . . . , x + 1, y + 1( ){ }, (1)

Next, deformable offsets are introduced to enhance the
flexibility of the convolutional kernel in capturing the target’s
complex geometric features. These offsets allow the receptive
field to better align with the actual shape of the target. However,
to prevent the receptive field from deviating excessively from the
target due to unconstrained learning by the model, DSConv
applies constraints to the deformable offsets in the x-axis and
y-axis directions. Taking the x-axis direction as an example,
each grid in K is represented as Ki ± c � (xi + c, yi + c),
c � 0, 1, 2, 3, 4{ }. Starting from the center grid Ki, each
subsequent grid is incremented by a deformable offset
△ � δ|δ ∈ [−1, 1]{ }. Since deformable offsets are typically
fractional, bilinear interpolation is used. As depicted in
Figure 2A, the grid coordinates in the x-axis direction are
expressed as Eq. (2):

Ki±c � xi+c, yi+c( ) � xi + c, yi +∑i+c
i △y)

xi−c, yi−c( ) � xi − c, yi +∑i
i−c△y)

⎧⎨⎩ , (2)

FIGURE 1
Architecture of the YOLOv8n Algorithm model.
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In the y-axis direction, the grid coordinates are shown in Eq. (3):

Kj±c � xj+c, yj+c( ) � xj + ∑j+c
j △x, yj + c)

xj−c, yj−c( ) � xj + ∑j
j−c△x, yj − c)

⎧⎨⎩ , (3)

As illustrated in Figure 2B, the dynamic adjustment of
DSConv in the x and y directions allows its receptive field to
cover a range of 9 × 9. Furthermore, DSConv can better adapt to
elongated and curved structures from a structural perspective,
allowing it to capture more important fine-grained features.

3.2 Addition of small object detection layer

Due to uncontrollable factors in industrial environments,
aluminum plates often exhibit surface defects, including
numerous small objects like holes and tiny scratches. In
convolutional neural networks (CNNs), lower-level feature
maps have larger dimensions and smaller receptive fields,
providing abundant location information and fine-grained
features. Conversely, higher-level feature maps have smaller
dimensions and larger receptive fields, capturing semantic
information [25].

In the original YOLOv8 architecture, the Neck module
combines features extracted from the backbone and generates
three distinct scales of feature maps to detect objects of varying
sizes: 20 × 20, 40 × 40, and 80 × 80. Specifically, the 20 × 20 detects
large target objects exceeding 32 × 32, the 40 × 40 medium-sized
objects larger than 16 × 16, and the 80 × 80 smaller objects exceeding
8 × 8. When the downsampling factor of the neck is large, the deeper
feature map will lose detailed information about the small target,
which makes the small target sample difficult to predict.

However, the original YOLOv8 detection layers prove ineffective
for detecting minute defects on industrial aluminum plates, often
leading to missed detections. Therefore, an additional 160 × 160
detection layer is added at the end of the model to detect tiny
objects smaller than 8 × 8. Figure 3 illustrates an upsampling
operation added to the neck module after the second upsampling,
resulting in a 160 × 160 feature map. This feature map is concatenated
with the 160 × 160 feature map from the backbone module, creating a

new prediction scale. The modified YOLOv8 model now comprises
four detection layers, enhancing its capability to detect small objects.

3.3 DyHead

YOLOv8 incorporates the decoupled head structure introduced
in YOLOX [26] for classification and localization tasks. However,
challenges arise in the industrial aluminum plate inspection process
due to variations in defect scales, random changes in angles, and
random distributions of defect positions, which the decoupled head
struggles to address effectively.

Researchers have investigated how to enhance the detection
performance of the Head, with improvements concentrated in three
primary areas. 1) Scale perception capability by addressing the
presence of targets or defects with vastly different scales within a
single image. 2) Spatial perception capability enhances the head’s
ability to handle targets with varying shapes and positions under
different viewpoints. 3) Task perception capability enables the Head
to adopt more suitable representation methods for diverse objects.

However, current research focuses on a single aspect of these
capabilities. For instance, DyHead (Dynamic Head) [27], proposed
by Microsoft, presents a novel dynamic detection Head that
simultaneously addresses all three capabilities. Its structure illustrated
in Figure 4 reveals that it leverages attention mechanisms in
hierarchical, spatial, and channel dimensions, unifying the attention
mechanisms of the detection Head, thereby improving detection
accuracy and providing a unified analytical perspective for
subsequent studies.

DyHead applies the following attention formula (Eq. 4) to the
given feature tensor F ∈ RL×S×C;

W F( ) � πC πS πL F( ) · F( ) · F( ) · F, (4)
where L, S, and C denote the dimensions of hierarchy, spatial extent,
and channel, respectively, πL, πS, and πC represent the attention
functions for these three dimensions πL signifies scale-aware
attention, by assigning weights to features of different hierarchical
levels based on their semantic relevance for fusion. This is
important for detecting objects of different sizes and distances. πS
denotes spatial-aware attention, focusing on discriminative regions

FIGURE 2
(A) Coordinate calculation diagram of DSConv, (B) DSConv receptive field.
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where spatial positions and feature hierarchies align consistently and πC
represents task-aware attention, it can dynamically control the ON and
OFF of the feature channel to support different tasks, and focusmore on
the key features of the current task. By unifying different attention
perspectives, DyHead significantly enhances the target representation
capability of the model with minimal computational overhead.

3.4 MPDIoU

YOLOv8’s loss comprises two components: classification loss
and regression loss. The classification loss evaluates the accuracy of
the predicted class, while the regression loss assesses the precision of
the predicted bounding box position. Besides, this paper introduces

FIGURE 3
Architecture of the YOLOv8 mode with detection layer.

FIGURE 4
Structure of DyHead.
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an improved regression loss function to enhance further the model’s
detection accuracy. The original YOLOv8 model employs the
Complete IoU Loss (CIoU) bounding box loss function [28],
which incorporates the impact of aspect ratio based on DIoU.
CIoU is formulated as Eqs 5–7:

CIoU � IoU − ρ2 b, bgt( )
c2

− αv, (5)

α � v
1 − IoU + v

, (6)

v � 4
π2 arctan

wgt

hgt
− arctan

w
h

( )2

, (7)

where IoU denotes the intersection over union, ρ2(b, bgt) is the
Euclidean distance between the center points of the predicted
and ground truth boxes, and c is the diagonal length of the
minimum enclosing rectangle that contains both the ground
truth and the predicted boxes. α denotes a weight coefficient, v
measures the similarity of aspect ratios, w and h are the width
and height of the ground truth box, and wgt and hgt represent the
width and height of the predicted box. The CIoU loss is
formulated as Eq. (8):

LOSSCIoU � 1 − IoU + ρ2 b, bgt( )
c2

+ αv, (8)

However, the aspect ratio defined in CIoU is a relative value and
does not reflect the actual relationship between the width and height
of the ground truth and the predicted bounding boxes. This may
hinder the model’s effective optimization of similarity. Moreover,
the bounding box loss function loses effectiveness when the
predicted and ground truth bounding boxes have the same aspect
ratio but different widths and heights.

Therefore, this paper proposes a new bounding box loss function
calledMPDIoU (Minimum Point Distance Intersection over Union)
[29], which measures the bounding box similarity based on the
minimum point distance. Specifically, it directly minimizes the
distances between the top-left and top-right points of the
predicted and ground truth bounding boxes, thereby simplifying
the computation process while considering the non-overlapping
area, distance between center points, and width and height
deviations. Therefore, MPDIoU can effectively replace CIoU as
the bounding box loss function and improve the algorithm’s
detection accuracy. The MPDIoU and MPDIoU LOSS are
formulated as Eqs 9, 10:

MPDIoU � IoU − d21
h2 + w2

− d22
h2 + w2

, (9)

LOSSMPDIoU � 1 − IoU + d21
h2 + w2

+ d22
h2 + w2

, (10)

where d1 represents the distance between the top-left points of the
predicted and ground truth boxes, d2 is the distance between the
bottom-right points of the predicted and ground truth boxes, and w
and h represent the width and height of the input image,
respectively.

The improved network incorporates DSConv into the C2f
module of the backbone to enhance the network’s feature
extraction capability. Additionally, a small object detection layer
is added to enhance the network’s ability to detect low-resolution

small objects, and DyHead is introduced to improve the
performance of the detection Head. Finally, the original
bounding box loss function is replaced with MPDIoU to improve
the algorithm’s accuracy. Figure 5 depicts the structure of the
improved YOLOv8-DSDM network.

4 Experimental setup and
results analysis

4.1 Dataset

The effectiveness of the YOLOv8n-DSDM algorithm is validated
on an industrial aluminum sheet surface defect dataset obtained
from the Paddle AI Studio Galaxy Community. All defect images are
captured using Hikvision industrial cameras. The dataset comprises
400 images in jpg format, with a resolution of 640 × 480, and
involves four types of defects: fold, crake, black, and hole. Each
image can contain one or more types of defects, and the total
number of defects in the dataset exceeds 1,000. As shown in
Figure 6, the dataset sample images illustrate the various types
of defects.

This study uses the MVTec Deep Learning Tool annotation
software to annotate the four types of defects. The annotated defects
are depicted in Figure 7, where yellow, blue, purple, and red
represent a fold, crake, black, and hole, respectively.

Furthermore, this study expands the original dataset through
data augmentation techniques to overcome the limited sample
size of the industrial aluminum sheet dataset and mitigate the risk
of overfitting. These techniques include random brightness
variation, scaling, Gaussian blur, Gaussian noise, horizontal
flipping, random rotation, and vertical flipping. The
augmented effects are illustrated in Figure 8. By applying
these data augmentation techniques, the total sample size
increases from 400 to 3,200, thereby enhancing data diversity
and improving the robustness of the deep learning model. To
ensure unbiased evaluation, the dataset is divided into training,
validation, and testing sets based on a ratio of 7:1:2. Thus, the
number of training, validation, and test sets is 2,240, 320, and
640, respectively.

After data augmentation, the specific defect data statistics are
presented in Table 1.

4.2 Experimental environment and training
parameters

The experimental environment and hardware configuration are
reported in Table 2, and the training parameters are presented in
Table 3. All experiments are conducted under the same experimental
environment and parameter settings to ensure validity.

4.3 Evaluation metrics

This study uses four evaluation metrics, including mAP@0.5,
single-image detection time T, FLOPs, and the number of
parameters Params, which are defined as follows:
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FIGURE 5
Architecture of the improved YOLOv8 algorithm model.

FIGURE 6
Industrial aluminum sheet surface defect Dataset. (A) Fold, (B) Crake, (C) Black, (D) Hole.
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(1) mAP is the mean average precision, as shown in Eq. (11):

mAP � 1
class

∑class

i�1 APi, (11)

where class is the total number of categories and APi is the mean
average precision of the ith category, and mAP@0.5 is the mean of the
mean average precision of all categories when IoU is 0.5. The higher the
value of mAP@0.5, the better the detection performance of the model.

FIGURE 7
Annotated defects. (A) Fold and Black, (B) Black, Crake and Hole.

FIGURE 8
Visualization of the augmented data. (A) Original (B) Random brightness variation (C) Scaling (D) Gaussian blur (E) Gaussian noise (F) Horizontal
flipping (G) Random rotation (H) Vertical flipping.

TABLE 1 Statistical analysis of defective industrial aluminum sheets.

Defect type Quantity of each type Total

Before augmentation After augmentation Before augmentation After augmentation

Fold 195 1,365 1,429 10,003

Crake 475 3,325

Black 523 3,661

Hole 236 1,652
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(2) The inference speed of the model is measured based on the
single-image detection time T in milliseconds (ms).

(3) FLOPs, or floating-point operations per second, measure
computational complexity, reflecting the model’s complexity.

(4) Params, or the number of parameters, refers to the total
number of trainable parameters in the model, which indicates
the model’s size.

4.4 Ablation experiments of integrating the
C2f-DSConv module

Ablation experiments are also conducted on the divided test set
to demonstrate the effectiveness of the proposed algorithm and the
effectiveness of the C2f-DSConv module in detecting elongated and
curved defects on the surface of industrial aluminum plates. In order
to ensure the validity of the experiments, the experimental
environment and parameter settings were the ones described in
the previous section. Table 4 reports the corresponding results.

According to the experimental results presented in Table 4,
incorporating the C2f-DSConv module significantly improves the
detection accuracy for various defect types. Compared to the
baseline model, the accuracy for wrinkles, scratches, dirt, and holes
increases by 0.6%, 3.1%, 0.5%, and 1.3%, respectively. Notably, the
improvement in scratch detection is the most pronounced, which is
important, as scratches on industrial aluminum sheets often exhibit
irregular, elongated, and curved shapes, with slender structures
occupying a relatively small portion of the image and having
limited pixel representation. Moreover, these structures are

susceptible to interference from complex backgrounds. Therefore,
the experimental results demonstrate that integrating DSConv into
the C2f module effectively enhances the model’s ability to detect
slender and subtle defects. In order to more intuitively demonstrate
the effectiveness of adding the C2f-DSConv module to Crake defects,
this paper visualizes the feature map in the form of a heat map, which
can help us intuitively understand which regions are most important
for the model’s decision-making. The heat map detection effect is
shown in Figure 9. As can be seen from the figure, the model with the
C2f-DSConv module pays more attention to the defective part and
gives it more weight.

4.5 Ablation experiments of adding small
target detection layer

The following ablation experiments assess the efficacy of the
YOLOv8 algorithm enhanced with a small target detection layer.
The experimental setup and parameter configurations are the ones
previously described. The corresponding findings are reported
in Table 5.

In this study, a 160 × 160 small target detection layer is
incorporated into the original set of detection layers (20 × 20,
40 × 40, and 80 × 80) in YOLOv8 to identify targets smaller
than 8 × 8. The experimental results presented in Table 5
indicate that compared to the original model, the average
accuracy for detecting wrinkles increased by 0.4%, scratches by
1.3%, dirt by 0.4%, and holes by 7.4%, with the most notable
enhancement observed in hole detection. This outcome can be
attributed to the predominance of hole sizes smaller than 8 ×
8 on the surface of industrial aluminum sheets, which the
original three detection layers struggle to identify effectively.
Consequently, these results demonstrate that adding a small
target detection layer can significantly enhance the model’s
detection capability for small targets. At the same time, to more
intuitively verify the effectiveness of the hole after adding a small
target detection layer, the feature map is displayed in the form of a
heat map, as illustrated in Figure 10. As seen in the figure, the model
gives more weight to the background before adding the small object
detection layer, and after adding the detection layer, the red part of
the heat map is mostly concentrated in the defect part to be detected.

4.6 Ablation experiments

The proposed model introduces four enhancements to the
YOLOv8 model. Hence, six ablation experiments evaluate the
effect of these enhancements, including the original model

TABLE 2 Experimental environment parameters.

Parameter Value

CPU Intel i9-13900K

Memory 128 GB

GPU NVIDIA RTX4090 *2

Operating System Ubuntu 20.04

Programming Language Python3.8

Libraries/Frameworks PyTorch2.0.1+CUDA11.8

Development Environment PyCharm

TABLE 3 Training parameters.

Parameter Value

Learning Rate 0.001

Learning Rate Decay Type cos_lr

Total Training Iterations 500

Batch Size 32

Optimizer Adam

Optimizer Momentum 0.937

Weight Decay Coefficient 0.0005

TABLE 4 Ablation experiments of the C2f-DSConv module.

Model AP@0.5 mAP@
0.5

Fold Crake Black Hole

YOLOv8n 94.2% 84.8% 97.3% 88.2% 91.2%

YOLOv8n +
DSConv

94.8% 87.9% 97.8% 89.5% 92.5%
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experiment, individual implementations of the four enhancements,
and their simultaneous integration. The experimental environment
and parameter configurations remained constant throughout the
trials, and the corresponding findings are summarized in Table 6.

M1 represents the experimental result of the original YOLOv8n
model, serving as the benchmark for comparing with other models.
It achieves a mAP@0.5 of 91.2%. M2 incorporates the C2f-DSConv
module, yielding a 1.3% increase in mAP@0.5 with a marginal rise in
the number of parameters, single-frame detection time, and
computational load. M3 introduces a small target detection layer,
reducing 0.09 M parameters, a 0.3 ms increase in single-frame
detection time, and a 4.1G rise in computational load while
enhancing mAP@0.5 by 2.3%. M4 integrates the DyHead

detection head, leading to a parameter increase of 0.48 M, a
single-frame detection time increase of 0.3 ms, and a 1.5G boost
in computational load, resulting in a mAP@0.5 increase of 2%.
M5 substitutes the boundary box loss function with MPDIoU,
maintaining the parameter count and computational load,
shortening the single-frame detection time by 0.2 ms, and
elevating mAP@0.5 by 0.4%. M6 combines all four improvement
methods simultaneously, resulting in a parameter increase of
0.76 M, a 1.2 ms single-frame detection time increase, an 11.6G
computational load increase, and the highest mAP@0.5 value of
94.7%. The improved M6 model sacrifices several parameters,
single-frame detection time, and computation to provide the
highest mAP@0.5 of 94.7%.

FIGURE 9
Comparison of the heat map effect of the C2F-DSConv module, (A) YOLOv8, (B) YOLOv8n + C2f-DSConv.

TABLE 5 Ablation experiments of small target detection layer.

Model AP@0.5 mAP@0.5

Fold Crake Black Hole

YOLOv8n 94.2% 84.8% 97.3% 88.2% 91.2%

YOLOv8n + Detection Layer 94.6% 86.1% 97.7% 95.6% 93.5%

FIGURE 10
Comparison of the heat map effect after adding the detection layer, (A) YOLOv8, (B) YOLOv8n + detection layer.
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4.7 Comparison of detection effects

In order to visually demonstrate the detection performance of
the enhanced YOLOv8-DSDM model, a comparative analysis is
conducted between the original model and the upgraded model
using the test environment and parameter settings reported in
Table 7. The corresponding results highlight that the improved
YOLOv8-DSDM exhibits enhanced detection accuracy across four
types of defects. Specifically, crease, scratch, dirt, and hole detection
accuracy increased by 1.5%, 2.9%, 1.9%, and 8%, respectively.
Consequently, the average mean accuracy mAP@
0.5 increases by 3.5%.

The YOLOv8 and YOLOv8n-DSDM models are challenged on
the test set, with the comparative results illustrated in Figure 11. The
visual display indicates that the original YOLOv8 model experiences
missed detections and imprecise bounding box localization. In
contrast, the enhanced model effectively identifies defects
overlooked by the original model, leading to closely aligned
detection boxes with the targets. Consequently, the YOLOv8n-
DSDM model demonstrates an overall superior detection
performance.

4.8 Comparison with other mainstream
object detection algorithms

To assess further the effectiveness of the proposed YOLOv8-
DSDM algorithm, comparative experiments are conducted under
consistent conditions using an industrial aluminum sheet surface
defect dataset. The evaluated algorithms are SSD, Faster R-CNN,
DETR [30], RT-DETR [31], YOLOv5 [32], YOLOv6 [22],
YOLOv7 [33], YOLOv7-tiny [34], and YOLOv8, with the
corresponding results presented in Table 8.

The mAP@0.5 of the SSD algorithm is 67.4%, with a parameter
size of 13.69 M. The single image detection time is 1.5 ms, and the
computational complexity is 78.20G. The detection accuracy of SSD

is relatively subpar, leaving room for optimizing its computational
complexity. Comparatively, while the Faster R-CNN algorithm
enhances the mAP@0.5 by 5.2%, unlike SSD, it has a
considerable increase in parameter size to 27.69 M, accompanied
by a surge in single image detection time to 23.9 ms and a substantial
rise in computational complexity to 190.83 G. The DETR algorithm,
on the other hand, yields a noteworthy 20.8% improvement in
mAP@0.5 relative to SSD, with an increase in parameter size of
27.59 M, an increase in single image detection time of 32.8 ms, and
an increase in computational complexity of 7.80G. RT-DETR has
been optimized based on DETR to achieve real-time object
detection, and its mAP@50% can reach 90.4%, and the single
detection time is 5 ms. However, the parameters and calculations
are still large, which are 28.45 M and 100.6G, respectively. These
algorithms have large computational and parameter sizes, making
them unsuitable for industrial applications.

Among the YOLO series algorithms, YOLOv5 has the optimal
parameter size, single image detection time, and computational
complexity, with values of 2.50 M, 1.0 ms, and 7.1G, respectively.
YOLOv8 has the highest mAP@0.5, reaching 91.2%. Compared to
YOLOv5, YOLOv8 slightly increases mAP@0.5, parameter size,
single image detection time, and computational complexity of
1.2%, 0.51 M, 0.3 ms, and 1.0G, respectively. The improved
YOLOv8-DSDM algorithm, compared to the original
YOLOv8 algorithm, achieves a 3.5% increase in mAP@0.5,
reaching 94.7%, at the cost of a parameter size of 0.76 M, single
image detection time of 1.2 ms, and computational complexity of
11.6G. In order to see the performance of the proposed model
YOLOv8-DSDMmore intuitively, the PR curves of each comparison
model are given in this paper, as shown in Figure 12. In summary,
the proposed YOLOv8-DSDM algorithm outperforms current
mainstream algorithms in terms of comprehensive performance.

5 Conclusion

This study proposes an enhanced algorithm model, YOLOv8-
DSDM, specifically designed to detect defects on industrial
aluminum surfaces. This novel model aims to overcome the
challenges of low detection accuracy and slow processing speeds
associated with conventional methods. Indeed, incorporating
DSConv into the C2f module improves the network’s feature
extraction capacity. Additionally, introducing a 160 × 160 small
object detection layer significantly enhances the network’s capability
to identify small-scale targets. Substituting the original detection

TABLE 6 Ablation Experiments of the Proposed Improvement Methods. (√ denotes the use of a specific method and × its non-utilization).

C2f-DSConv Detection layer DyHead MPDIoU Params (M) T (ms) FLOPs (G) mAP@0.5

M1 × × × × 3.01 1.3 8.1 91.2%

M2 √ × × × 3.27 1.5 8.2 92.5%

M3 × √ × × 2.92 1.6 12.2 93.5%

M4 × × √ × 3.49 1.6 9.6 93.2%

M5 × × × √ 3.01 1.1 8.1 91.6%

M6 √ √ √ √ 3.77 2.5 19.7 94.7%

TABLE 7 Ablation experiments of the improved model.

Model AP@0.5 mAP@0.5

Fold Crake Black Hole

YOLOv8n 94.2% 84.8% 97.3% 88.2% 91.2%

YOLOv8n-DSDM 95.7% 87.7% 99.2% 96.2% 94.7%
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head with the dynamic detection head (DyHead) enhances the
expressive capacity of the detection head. Moreover, by replacing
the original bounding box loss function with the MPDIoU method,
we bolster the model’s ability to regress bounding boxes while

enhancing detection speed. Our experimental findings
unequivocally illustrate the substantial advancements in the
detection performance of the proposed model. Subsequent efforts
will refine the network structure to elevate detection accuracy and
streamline model complexity.
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