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In the development of quantum technologies, a reliable means for
characterizing quantum devices, be it a measurement device, a state-
preparation device, or a transformation device, is crucial. However, the
conventional approach based on, for example, quantum state tomography
or process tomography relies on assumptions that are often not necessarily
justifiable in a realistic experimental setting. Although the device-independent
(DI) approach to this problem bypasses the shortcomings above by making
only minimal, justifiable assumptions, most of the theoretical proposals to
date only work in the idealized setting where independent and identically
distributed (i.i.d.) trials are assumed. Here, we provide a versatile solution for
rigorous device-independent certification that does not rely on the i.i.d.
assumption. Specifically, we describe how the prediction-based ratio (PBR)
protocol and martingale-based protocol developed for hypothesis testing can
be applied in the present context to achieve a device-independent
certification of desirable properties with confidence interval (CI). To
illustrate the versatility of these methods, we demonstrate how we can use
them to certify—with finite data—the underlying negativity, Hilbert space
dimension, entanglement depth, and fidelity to some target pure state. In
particular, we provide examples showing how the amount of certifiable
negativity and fidelity scales with the number of trials and how many
experimental trials one needs to certify a qutrit state space or the presence
of genuine tripartite entanglement. Overall, we have found that the PBR
protocol and the martingale-based protocol often offer similar
performance, even though the latter does have to presuppose any witness
(Bell-like inequality). In contrast, our findings also show that the performance
of the martingale-based protocol may be severely affected by one’s choice of
Bell-like inequality. Intriguingly, a Bell function useful for self-testing does not
necessarily give the optimal confidence-gain rate for certifying the fidelity to
the corresponding target state.
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1 Introduction

The proper analysis of quantum experiments is an indispensable
part in the development of quantum technologies. However, it is not
trivial to reliably characterize a quantum setup, which may include,
e.g., measurement and state-preparation devices. Moreover,
imperfections in the experimental setup can easily result in a
mismatch [1–3] between the characterization tools developed for
an idealized situation and an actual experimental situation.
However, we can circumvent this problem by the so-called
“device-independent approach” [4, 5]. In quantum information,
the term “device-independent” (DI) was first coined [6] in the task of
quantum key distribution [7–9], even though the idea was already
perceived independently but implicitly in [10, 11].

In a nutshell, the DI approach is a framework for analyzing
physical systems without relying on any assumption about the
degrees of freedom measured. Its basis is Bell nonlocality [5, 12],
which shows that no local-hidden-variable (LHV) theory can
reproduce all quantum predictions, even though no further
assumption is made about the details of such a theory. For
example, it is known that the violation of Bell inequalities [12]
obtained by locally measuring a shared state implies [13] shared
entanglement [14], which is a powerful resource in many quantum
information processing tasks. More generally, many other desirable
properties of the underlying state [15–23], measurements [22–28],
and channel [21, 29, 30] may be derived directly from the
observation of a Bell inequality-violating correlation between
measurement outcomes. Recently, the DI approach has also been
incorporated into the security analysis of quantum secure direct
communication; see, for example, [31] and references therein.

However, due to statistical fluctuations, even when the
experimental trials are independent and identically distributed
(i.i.d.), relative frequencies of the measurement outcomes
obtained from a Bell experiment do not faithfully represent the
underlying distribution. In particular, such raw distributions
estimated from the experimental results typically [32–34] lead to
a violation of the nonsignaling conditions [35, 36], which is a
prerequisite for the analysis shown in [16–30]. In other words,
statistical fluctuations render many theoretical tools developed for
such a purpose inapplicable. To address this issue, some ad hoc
methods [32–34] have been proposed to regularize the relative
frequencies obtained to ensure that the resulting distribution
satisfy the nonsignaling conditions. In [37], a more in-depth
discussion was provided, and two better-motivated regularization
methods were proposed.

Although these more recent attempts do provide a point
estimator that fits within the framework of the usual DI analysis,
they are still problematic in two aspects. First, they do not provide
any confidence region associated with the estimate. However, any
real experiment necessarily involves only a finite number of
experimental trials. Therefore a useful analysis should provide
not only an estimate but also an indication of the reliability of
such an estimate. In many of the Bell experiments reported [38–41],
this is achieved by reporting the standard deviations of Bell
violations. However, for finite, especially relatively small numbers
of trials, the central limit theorem is not warranted, so the usual
interpretation of standard deviations may become dubious. Second,
these usual approaches and those that provide a DI point estimator

[32–34, 37] implicitly assume that the experimental trials are i.i.d.
and hence free of the memory effect [42, 43] (see more discussions in
[5, 44–46]). Again, in a realistic experimental setting, the i.i.d.
assumption may be difficult to justify.

For the tasks of DI randomness expansion [47, 48] and DI
quantum key distribution [49, 50], specific tools [51–59] have been
developed to overcome the abovementioned problems. Here, we are
interested in providing a general solution to other device-
independent certification tasks1 that 1) can provide a confidence
region and two) does not a priori require the i.i.d. assumption. Our
approach is inspired by the prediction-based ratio (PBR) protocol
developed in [60] and the martingale-based method proposed by
Gill [43, 61] for performing a hypothesis testing against the
assumption of Bell locality. Following [62], we further adapt
these earlier methods and illustrate how they can be used for the
device-independent certification of various properties of interest,
including the underlying amount of entanglement and its fidelity
with respect to some target quantum state.

To this end, we structure the rest of this paper as follows. In
Section 2.1, we explain the basic concepts relevant to the
understanding of DI certification in the ideal setting. After that,
we introduce in Section 2.2 our adapted statistical tools for
performing a rigorous device-independent certification. Results
obtained from these tools are then presented in Section 3.1.
Finally, we provide some concluding remarks and future
directions in Section 4.

2 Materials and methods

2.1 Preliminaries

2.1.1 Correlations and Bell inequalities
The starting point of the DI approach is a Bell test. To this end, a

bipartite Bell scenario was considered, where two observers, Alice
and Bob, can choose, respectively, their measurements labeled by
x, y ∈ {0, 1, . . .} and register outcomes a, b ∈ {0, 1, . . .}.2 In the i.i.d.
setting, one can estimate the underlying correlation between
measurement outcomes, i.e., �P � {P(ab|xy)}, from the registered
empirical frequencies. Interestingly, as Bell first showed in [12],
highly nontrivial conclusions can be drawn by inspecting �P alone.

For example, correlations that can be produced in an LHV
theory have to satisfy a Bell inequality:

∑
x,y,a,b

βabxyP ab|xy( )≤L BL �β( ), (1)

where the Bell coefficients βabxy ∈ R, �β ≔ {βabxy}, and BL({ �β}) is the so-
called local (upper) bound. Here, we use L to signify that the
inequality holds under the assumption that �P is compatible with

1 Note that the same task is called device-independent verification in [102].

2 If a third party is involved in the Bell test, as in the case of 2.1.2.2, and 3.1.2,

we denote by z and c, respectively, its label for the measurement setting

and outcome. All other notations generalize accordingly.
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the LHV theory. Explicitly, the nature of such a theory demands that
�P is factorizable in the form [5, 12]:

P ab|xy( )�L ∑
λ

qλPA a|xλ( )PB b|yλ( ), (2)

where qλ ≥ 0 for all λ,∑λqλ � 1, and PA(a|xλ), PB(b|yλ) ∈ [0, 1] are
local response functions.

In an actual Bell test, the measurement settings ought to be
chosen randomly according to some predetermined distributions
Pxy. To manifest this fact, one may write Equation 1 using the
unconditional joint distribution P(abxy) � P(ab|xy)Pxy such that
Pxy � ∑a,bP(abxy). In turn, we can then write a Bell inequality as a
bound on the expectation value of a Bell function I(υ), defined in
terms of �β and Pxy, i.e.,

〈I υ( )〉 ≔
〈βabxy〉
Pxy

≤
L
BL �β( ), (3)

where υ � (a, b, x, y) is the quadruple of random variables for the
measurement outcomes (a, b) and settings (x, y). As an example,
the famous Clauser–Horne–Shimony–Holt (CHSH) Bell inequality
[63] may be specified via

ICHSH: β
ab
xy � −1( )xy+a+b and BL � 2, (4)

or equivalently, in terms of the correlator
Exy ≔ ∑a,b�0,1(−1)a+bP(ab|xy), as

S CHSH � ∑
x,y�0,1

−1( )xyExy ≤
L
2, (5)

where S CHSH � 〈ICHSH(υ)〉.
In contrast, quantum theory allows correlations that cannot be

cast in the form of Equation 2. In fact, in a bipartite Bell test, general
quantum correlations read as

P ab|xy( )�Q tr ρM A( )
a|x ⊗ M B( )

b|y( ), (6)

where {M(A)
a|x } and {M(B)

b|y } are, respectively, the local positive-
operator-valued measure (POVM) describing Alice and Bob’s
local measurements. For the benefits of subsequent discussions, it
is also worth noting that both LHV and quantum correlations satisfy
the nonsignaling conditions [35, 36]:

∑
a

P ab|xy( ) � ∑
a

P ab|x′y( ) ∀ x, x′,

∑
b

P ab|xy( ) � ∑
b

P ab|xy′( ) ∀ y, y′. (7)

For the CHSH Bell function, cf. Equation 4, quantum theory
dictates the upper bound as

〈ICHSH υ( )〉≤Q BQ � 2
�
2

√
, (8)

which can be seen as a Bell-like inequality. Other Bell and Bell-like
inequalities relevant to this work will be presented in the
corresponding sections below.

2.1.2 Examples of properties to be certified
2.1.2.1 Negativity and dimension

As mentioned above, with local measurements on a quantum
system, a Bell inequality-violating correlation �P ∉ L necessarily

originates [13] from an entangled state ρ. Interestingly, the
entanglement of the underlying ρ can also be lower bounded [17,
18, 20, 23] directly from the observed correlation �P. In this work, we
focus on negativity [64], but it is worth noting that DI entanglement
quantification can also be achieved, e.g., for the linear entropy of
entanglement [18], generalized robustness of entanglement [23],
and one-shot distillable entanglement [20].

For a bipartite density operator ρ, let ρTA be its partial
transposition [65] with respect to subsystem A. Then, the
negativity for a bipartite density operator ρ is defined as [64]
N (ρ) ≔ ∑λi < 0|λi(ρTA )|, i.e., the sum of the absolute value of all
negative eigenvalues λi < 0 of ρTA . Using a variational
characterization of negativity provided in [64], it was shown in
[17] that N (ρ) is lower bounded by the optimum value of the
following semidefinite program (SDP):

min χ
ℓ
σ−[ ]tr, (9a)

s.t. χ
ℓ
ρ[ ] � χ

ℓ
σ+[ ] − χ

ℓ
σ−[ ], χ

ℓ
σ±[ ]T �A ⪰ 0, (9b)

χ
ℓ
ρ[ ] ⪰ 0, χ

ℓ
ρ[ ]tr � 1, (9c)

where χ
ℓ
[ρ] is the moment matrix that can be obtained by

applying a particular local map on ρ (see [17] for details), �A is
the output Hilbert space of the local map on A, and χ

ℓ
[σ]tr � tr[σ]

represents the trace of the underlying operator σ. It is worth
noting that for every integer ℓ ≥ 1, the constraints of Equation 9c
provide a superset characterization of the quantum set Q of
correlations, analogous to those considered in [66–68]. Indeed,
all entries from �P appear somewhere in the moment matrix
χ
ℓ
[ρ]; see [17].
As an explicit example, note that an observed violation of the

CHSH Bell inequality of Equation 5 gives the following nontrivial
negativity lower bound of the underlying state ρ:

N ρ( )≥ S CHSH − 2
4

�
2

√ − 1( ). (10)

In addition, it is worth noting that if ρ acts on CdA ⊗ CdB with
d � min {dA, dB}, then the maximal possible negativity N (ρ) is
upper bounded by N d

max ≔ d−1
2 . Consequently, the observation of

a large enough negativity also provides a nontrivial lower bound on
the local Hilbert space dimension of the underlying system. More
precisely, if the lower bound on N (ρ) obtained from Equations 9a,
9b and 9c exceeds N d

max, one immediately deduces that ρ must act
on a local Hilbert space of dimension ≥ d + 1, thereby giving a
dimension witness [15].

From Equations 5, 8 and 10, nonetheless, we see that a violation
of the CHSH Bell inequality can never witness a local Hilbert space
dimension >2. Instead, witnessing a local Hilbert space beyond
qubits can be achieved by observing a reasonably strong violation of
the three-outcome Collins–Gisin–Linden–Massar–Popescu
(CGLMP) Bell inequality [69] (see also [70]), defined by

ICGLMP3: β
ab
xy � −1( )x y−1( ) δ 2( )

a−b − 1 − δ 2( )
x δ 2( )

y−1[ ]δ 3( )
b−a−1{ }

− δ 2( )
x δ 2( )

y−1δ
3( )
b−a+1 and BL �β( ) � 2, (11)

where δ(d)f � 1 if mod(f, d) � 0 and vanishes otherwise. Denoting
the corresponding expectation value by S CGLMP3 � 〈ICGLMP3(υ)〉,
the results from [17, 71, 72] suggest a negativity lower bound that
increases linearly with S CGLMP3 from 1

2 whenever S CGLMP3 ≥ 3�
2

√ + 1
2.

Frontiers in Physics frontiersin.org03

Chang et al. 10.3389/fphy.2024.1434095

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1434095


2.1.2.2 Entanglement depth
In a many-body system, entanglement can occur in various

forms or structures [73]. In particular, an n-partite quantum state
that is not fully separable is not necessarily genuinely n-partite
entangled either. To witness the latter, one could rely on the
demonstration of so-called genuine multipartite nonlocality [74].
However, as remarked in [16], it is possible to witness genuine
multipartite entanglement without relying on this strong form of
multipartite nonlocality. In fact, using the SDP introduced in [17],
one can even systematically construct DI witnesses of this kind,
starting from a givenmultipartite Bell function, say �β � {βabcxyz}. Later,
it was further shown in [19] (see also [75]) that the extent to which a
multipartite Bell inequality is violated can be used to witness (lower-
bound) the underlying entanglement depth [76, 77], i.e., the extent
to which a many-body entanglement is needed to prepare the given
multipartite state.

For illustration, consider the expectation value of the Mermin
Bell function [78] IMermin(υ) with υ � (a, b, c, x, y, z):

SMermin � 〈IMermin υ( )〉 � 〈βabcxyz〉
Pxyz

� ∑′
x,y,z

−1( )xyzExyz, (12)

where Exyz ≔ ∑1
a,b,c�0(−1)a+b+cP(abc|xyz) is the tripartite

correlator, the restricted sum ∑′ is over all combinations of
x, y, z ∈ {0, 1} such that mod(x + y + z, 2) � 1, Pxyz � 1

4 for the
same combinations of x, y, z, and the Bell coefficients is

βabcxyz � −1( )xyz+a+b+cδ 2( )
x+y+z−1. (13)

Then, it is known [19] that the following Bell-like inequalities
hold, respectively, for fully separable states, 2-producible [76]
tripartite quantum states (i.e., quantum states that can be
generated using only two-body entanglement), and general
tripartite quantum states:

SMermin ≤
L
2, SMermin ≤

2−prod.
2

�
2

√
, SMermin ≤

Q
4. (14)

2.1.2.3 State fidelity
The strongest form of device certification one can hope for

within a DI paradigm is called self-testing [79], which was first
proposed in [10]. The key observation behind this feat is that the
quantum strategy compatible with certain extremal quantum
correlations �PQ is essentially unique. Hence, with the observation
of �PQ in a Bell test, we can conclude unambiguously that some
degree of freedom (DOF) of the measured system must match a
specific target state |ψ〉. Often, one can also self-test the underlying
measurements alongside the state (see, however, [80, 81] for some
examples of exceptions).

For instance, it is long known [82–85] that the maximal CHSH
Bell-inequality violation of S CHSH � 2

�
2

√
can only be obtained (up

to local isometry) by measuring the following observables on a
shared maximally entangled state (MES):

|ψMES〉 � 1�
2

√ |00〉 + |11〉( ), (15a)
A0 � σz, A1 � σx, (15b)

By � 1�
2

√ σz + −1( )yσx[ ], (15c)

where the respective POVM elements (with x, y � 0, 1) are

M A( )
a|x � 1 + −1( )aAx

2
, M B( )

b|y � 1 + −1( )bBy

2
. (16)

Moreover, to obtain the maximal CHSH Bell-inequality
violation for a partially entangled two-qubit state,

|ψ θ( )〉 � cos θ|00〉 + sin θ|11〉, θ ∈ 0,
π

4
( ], (17a)

it suffices [72] to consider Ax of Equation 15b but generalize By

to [86]:

By � cos μ σz + −1( )y sin μ σx, tan μ � sin 2θ( ), (17b)
thereby giving

S CHSH � 2
���������
1 + sin22θ

√
. (18)

Interestingly, the resulting correlation also self-tests [86, 87]
the corresponding quantum strategy of Equation 17a, b and
maximally violate the family of tilted CHSH Bell inequalities
for α � 2

������
cos22θ
1+sin22θ

√
:

S Tilted
CHSH α( ) � S CHSH + α ∑1

a,b�0
−1( )a P ab|0y( )≤L 2 + α, (19)

giving S Tilted
CHSH(α) �

������
8 + 2α2

√
. Note that in Equation 19, thanks to

the nonsignaling [35, 36] property of �P, the expression for S Tilted
CHSH(α)

is, in fact, independent of whether y � 0 or 1.
In practice, however, due to various imperfections, one can, at

best, attain a correlation close to the ideal correlation �PQ. In other
words, in a realistic experimental setting, one can only hope to lower
bound the similarity of the measured state ρ with respect to the
target state |ψ〉 via a fidelity measure. To this end, a powerful
numerical technique known as the SWAP method has been
introduced in [88] (see also [86]) for exactly this purpose. More
precisely, for any observed quantum correlation �P, the method
allows one to lower bound the fidelity:

F � 〈ψ|ρ SWAP|ψ〉 (20)
with the help of an SDP outer approximation of the quantum set Q
(e.g., due to [17, 66, 67]). Here, ρ SWAP is the “swapped” state:

ρ SWAP � trAB Φ ρAB ⊗ |00〉〈00|( )A′B′ Φ+[ ], (21)
which is extracted from the underlying quantum state ρ via some
local extraction map Φ, which is a function of the actual POVM
elements. Consequently,F is a function of the entries of the moment
matrix χ

ℓ
[ρ], as discussed below Equations 9a, b and c. For the

details of the method, we refer the readers to [86].

2.1.3 Some general remarks
At this point, it is worth noting that for all the three propertiesP

discussed above—negativity (and hence dimension), entanglement
depth, and reference-state fidelity—their DI certification can be
achieved via the characterization of some convex set CP in the
space of correlation vectors { �P}. More precisely, for negativity, by
turning the objective function of Equations 9a into the
constraint [17]

χ
ℓ
σ−[ ]tr≤N 0, (22)
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we obtain an SDP that characterizes the set of correlations attainable
by quantum states having a negativity upper-bound by N 0. Then,
Equation 10 can be understood as a separating hyperplane relevant
for witnessing a negativity larger than N 0.

On the other hand, if we drop the constraint of Equation 9b, but
imposes additional positive-partial-transposition constraints, then
we obtain an SDP characterization of the set CP having a bounded
amount of entanglement depth [19] (see constraints of Equations
44b, c and d below). In this case, the first two inequalities of Equation
14 serve as the corresponding witness for entanglement depth.
Finally, by demanding 〈ψ|ρ SWAP|ψ〉≤F 0 together with Equation
9c, we obtain an SDP characterization of the set CP associated with a
swapped state [86] with a |ψ〉-fidelity upper bounded by F 0. In fact,
SDP characterization can also be obtained for a number of other
properties, including genuine negativity [17], steering robustness
[22], entanglement robustness [23], and (measurement)
incompatibility robustness [22, 28].

2.2 Methodologies for hypothesis testing

Having understood how DI certification can be achieved from a
given correlation �P, we now proceed to discuss the more realistic
setting involving only a finite number of experimental trials. For
concreteness, the following presentation assumes an analysis based
on the data collected from N trials in a Bell test. Below, we explain
our approaches to the problem based on hypothesis testing. Our first
step is to formulate a null hypothesisH based on the desired property
to be certified. For example, to certify that the underlying state has a
negativity larger than N 0, we formulate the (converse) null
hypothesis:

Null Hypothesis 1. HN (ρ)≤N 0
: In every experimental trial, the

underlying state has a negativity less than or equal to N 0.
Since such a hypothesis involves a set of (rather than a single)

compatible distribution �P, it is called a composite hypothesis [89].
Then, we apply appropriate methods for this kind of

hypothesis testing on the collected data to determine an upper
bound p on the p-value associated with the hypothesis H. Since a
p-value quantifies the plausibility of observing the given data when
H holds, a small value of p, say less than 5%, provides a strong
indication thatH is falsified. It then follows that the desired feature
corresponding to the negation ofH is certified with a confidence γ
of at least 1 − p.

Of course, one may also be interested to understand how quickly
statistical evidence (against a hypothesis H) can be gathered when
we increase the number of trials. To this end, we also consider the so-
called (asymptotic) confidence-gain rate [60], defined by

G(prot) ≔ − lim
Ntot→∞

log2p
(prot)
Ntot

Ntot
, (23)

where p(prot) is the p-value (upper bound) deduced from some
protocol (abbreviated as “prot”). From the definition, it is evident
that asymptotically and in the i.i.d. setting, a fewer number of trials
are required to achieve the same level of statistical confidence if the
corresponding G(prot) is higher. Next, let us elaborate the two
hypothesis-testing protocols considered in this work.

2.2.1 Martingale-based protocol
We shall start with the martingale-based protocol, pioneered by

Gill in [43, 61], for testing against LHV theories, and further
developed in [60, 90]. The protocol relies on the observation of
the (super)martingale structure in some random variables of
interest. To employ the martingale-based protocol, one has to fix
a Bell function I(υ) in advance. Ideally, I(υ) should be chosen such
that the Bell-like inequality

〈I υ( )〉 ≔〈βabxy
Pxy

〉 � ∑
a,b,x,y

βabxyP ab|xy( )≤H BH �β( ) (24)

may be violated by some quantum correlation �P � �PQ (cf. Equation
6) to be prepared in an experiment.

Let υj � (aj, bj, xj, yj) be the value realized for the random
variables of the measurement outcomes and settings at the j-th
experimental trial and I(υj), the corresponding value of Bell
function for that trial. Moreover, let v � {υ1, . . . , υi, . . . , υN}.
Then, from the observed average value of I(υ) over N trials,
i.e., Î(v) � ∑N

j�1
I(υj)
N , the following p-value upper bound is known

[90] to hold whenever Î≥BH:

p(mart) ≤
b+ − BH
b+ − Î

( ) b+−Î
b+−b− BH − b−

Î − b−
( ) Î−b−

b+−b−⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
N

, (25)

where, for simplicity, we have suppressed the dependency of BH on �β
(and Î on v), whereas the minimum and maximum values of I(υ)
over all possible values of υ � (a, b, x, y) are

b− ≔ inf
υ

I υ( )<BH ≤ Î< b+ ≔ sup
υ

I υ( ). (26)

It is worth noting that the martingale-based p-value upper bound of
Equation 25 improves over the upper bound given in [48, 60, 61]. In
Figure 1, we provide a pseudocode to explain the steps involved in
applying the martingale-based protocol for DI certification.

Let IQ be the expectation value of I(υ) when we replace �P by some
�PQ capable of violating the Bell-like inequality in Equation 24. Then, in
the i.i.d. setting, where the experimental data follow the distributions
given by �PQ, the corresponding asymptotic confidence-gain rate can be
deduced from Equation 23 and Equation 25 as

G(mart) � b+ − IQ
b+ − b−

log2
b+ − IQ
b+ − BH

+ IQ − b−
b+ − b−

log2
IQ − b−
BH − b−

. (27)

2.2.2 The prediction-based ratio (PBR) protocol
The other hypothesis-testing protocol that we consider in this

work is based on the so-called PBR protocol proposed in [60] (see
also [90]). In contrast with a martingale-based protocol, the PBR
protocol does not need to presuppose any Bell-like inequality for
determining a p-value bound. Instead, for the data v collected in N
trials, one may start by using the first Nest <N trials from i �
1, 2, . . . , Nest to estimate the relative frequency

f ab|xy( ) � Nest a, b, x, y( )
Nest x, y( ) , (28)

where Nest(x,y) � ∑a,bNest(a, b, x, y) and Nest(a, b, x, y) counts
among these Nest trials the total number of times the specific
combination of measurement settings and outcomes (x,y, a, b) occurs.
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The key idea of the PBR protocol is to use this relative frequency
�f � {f(ab|xy)} to obtain an optimized Bell-like inequality3 and
apply that to vi from i � {Nest + 1, Nest + 2, . . . , Nest +Ntest}. To
this end, we minimize the Kullback–Leibler (KL) divergence [91]
from a regularized relative frequency �freg (explained below) to the
set SH of correlations compatible with H:

DKL
�freg‖SH( ) ≔ inf

�P∈SH
∑

a,b,x,y

Pxyfreg ab|xy( )logfreg ab|xy( )
P ab|xy( ) . (29)

An important point to note now is that if the composite null
hypothesis SH is associated with a convex set that admits an SDP
characterization (as discussed in Section 2.1.3) like the kind proposed
in [17, 22, 66, 67, 68]; then, Equation 29 is a conic program (see [37])
and thus efficiently solvable using a solver like MOSEK [93].

The unique [37] minimizer �P+ ∈ SH can then be used to define
the non-negative prediction-based ratio (PBR),

R a, b, x, y( ) ≔ freg ab|xy( )
P+ ab|xy( ) , (30)

which gives the optimized Bell-like inequality 〈R(υ)〉≤H 1. Next, we
compute the test statistic as

t v( ) � Π
j
R aj, bj, xj, yj( ), (31)

where the product is only carried out over the remainingNtest trials.
Using arguments completely analogous to those given in [60] for
H � L, it can then be shown that the following upper bound on the
p-value holds:

p(pbr) ≤min
1

t v( ), 1{ }. (32)

Several remarks are now in order. First, if none of the entries in �f
vanishes, one could also use �f directly in the optimization problem
of Equation 29. However, for a small Nest, a vanishing entry in �f is
almost bound to happen, we thus follow [60] and mix �f with the
uniform distribution �P1 to obtain

�f → �f′ ≔ Nest

Nest + 1
�f + 1

Nest + 1
�P1. (33)

Next, notice that �f′ typically cannot be cast in the form of
Equation 6. Consequently, we observe empirically that R obtained
by solving Equation 29 with �f′ in place of �freg gives evidently
suboptimal performance (see, e.g., Supplementary Figures S1, S4 and
S6). As such, we shall first regularize [37] �f′ to some outer
approximation of the quantum set Qℓ by solving Equation 29
with SH replaced by Qℓ . In our work, Qℓ is the level-ℓ outer
approximation of the quantum set Q introduced in [17].
However, one may also consider other approximations [22, 66].
Since all these outer approximations admit SDP characterization,
this regularization process is a conic program (see [37]). The
resulting minimizer, which we call the regularized relative
frequency, �freg is then fed into Equation 29 to obtain the
desired PBR.

Another important feature of the PBR protocol is that the
optimized inequality characterized by �R � {R(a, b, x, y)} can be
updated as more data are incorporated into the analysis. In
principle, one can update �R as frequently as one desires.
However, this is neither necessary nor efficient. As such, we work
with blocks of Nblk trials. The first block of data is used exclusively
for producing the first regularized relative frequency, the first PBR
�R1, and by applying to the second block of v, we obtain the first
test statistic:

t1 � ΠN 1( )
est +N 1( )

test

i�N 1( )
est +1

R1 ai, bi, xi, yi( ), (34)

where N(k)
test � Nblk for all k (if Ntot is divisible by Nblk). In the next

iteration, we determine the PBR �R2 by solving Equation 29 using v
from the first two blocks and apply this updated PBR to the third
block of v to get, for k � 2,

tk � tk−1 × ΠN k( )
est +N k( )

test

i�N k( )
est +1

Rk ai, bi, xi, yi( ), (35)

where N(k)
est � kNblk. These steps may then be repeated iteratively

until all the data v have been consumed in one way or another in the
computation of tk for k � 3, . . . , Ntot

Nblk
− 1. For a schematic illustration

of this procedure, see Figure 2. Importantly, once the test statistic tk
for each iteration is determined, we can obtain the corresponding
p-value bound using Equation 32. For the readers’ convenience, we
also provide in Figure 3 a pseudocode to explain the steps involved in
applying the PBR protocol for DI certification.

Finally, note that for an ideal Bell test giving the correlation �PQ
and a composite hypothesis associated withH, the PBR protocol has
the asymptotic confidence-gain rate

G(pbr) � DKL
�PQ‖SH( ), (36)

which may be obtained by solving Equation 29 with �freg replaced by
�PQ. The proof is again completely analogous to that given forH � L
in [60] and is thus omitted.

3 Results

3.1 Device-independent certification with a
confidence interval

We are now ready to present our simulations results involving a
finite number of trials. Throughout this section, the results presented

FIGURE 1
Pseudocode associated with the martingale-based protocol for
DI certification. If the p-value bound p< 1 − γ, we reject the null
hypothesis H¬P and hence certify the desired property P with
confidence γ.

3 Here, the inequality is optimized in the sense that it provides the largest

possible asymptotic confidence-gain rate, cf. Equation 23.
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for finite trials consist of an average over 30 complete Bell tests, each
involving Ntot � 105 trials, with the trials partitioned into blocks of
size Nblk � 500. Moreover, we always consider a uniform
distribution for (possibly a restricted set of) measurement
settings. In each Bell test, we then simulate the raw data v �
{υi � (ai, bi, xi, yi)}Ntot

i�1 using the function sample_hist from the
Lightspeed MATLAB toolbox [93]. For the certification with finite
data, we set a confidence level of γ � 0.99. We also present some
related confidence-gain rates in the respective subsections.

3.1.1 Negativity and dimension certification
3.1.1.1 Negativity certification

Our first example consists of a Bell test based on the quantum
strategy presented in Equations 15a, b, c, which leads to a CHSH Bell
value of S CHSH � 2

�
2

√
. Using Equation 10, we know that the

resulting quantum correlation �PCHSH gives a tight negativity
lower bound of 1

2 for a Bell state. From the numerically simulated
data, we then perform composite hypothesis testing for Null
Hypothesis 1 with N 0 ∈ {0, 0.01, . . . , 0.50}.

Specifically, for the martingale-based protocol, we use Equation
25 with the CHSH Bell expression of Equation 4. In this case, b± �
± 4 for the chosen Pxy, while it follows from Equations 4, 10 and
24 that

∑
a,b,x,y

−1( )xy+a+b 4 P abxy( ) ≤
N ≤N 0

2 + 4N 0

�
2

√ − 1( ). (37)

On the other hand, for the PBR protocol, the optimizing distribution
P(k)
+ (a, b|x, y) for the k-iteration can be obtained by solving (cf.

Equation 29)

argmin
�P

− ∑
a,b,x,y

Pxyf
k( )

reg ab|xy( )logP ab|xy( ), (38a)

s.t. χ
ℓ
ρ[ ] � χ

ℓ
σ+[ ] − χ

ℓ
σ−[ ] ⪰ 0, χ

ℓ
σ±[ ]T �A ⪰ 0, (38b)

χ
ℓ
ρ[ ]tr � 1, χ

ℓ
σ−[ ]tr≤N 0, (38c)

where argmin �P seeks for the argument minimizing the expression in
Equation 38a, �f

(k)
reg is the regularized frequency obtained for the

same iteration, and each P(ab|xy) also appears as an optimization
variable in the moment matrix χ

ℓ
[ρ]. Then, the PBR used in the

computation of tk can be evaluated by replacing freg(ab|xy) and
P+(ab|xy) in Equation 30, respectively, by f(k)

reg(ab|xy) and
P(k)
+ (ab|xy).
Figure 4 shows the average amount of certifiable negativity from

these twomethods as a function of the number of trialsN employed.
From the figure, it is clear that for certifying the underlying
negativity using the data arising from �PCHSH, the performance of
the two protocols is similar. In fact, even though the martingale-
based protocol appears to have a slight advantage over the PBR
protocol for this certification task for smallN’s, our computations of
the asymptotic gain-rates G(pbr) and G(mart) show that they, in fact,
agree (for all these values of N 0 that we have considered), up to a
numerical precision of 10−7. In addition, in both cases, we see that
with approximately 5 × 103 and 2 × 104 trials, we can already
certify, respectively, more than 80% and 90% of the underlying
negativity with a confidence γ≥ 0.99. In Supplementary Section 1.1,
we provide some additional plots showing how the p-value bound
changes with N for several values of N 0.

These results clearly suggest that the CHSH Bell function of
Equation 4 is optimal for certifying the underlying negativity of
|ψMES〉 using the martingale-based protocol. Indeed, a separate
computation of Equation 29 and Equation 30 using �PCHSH in
place of �freg show that, within a precision of 10−4, the optimized
Bell-like inequality forN 0 � 0, 0.05, . . . , 1 is equivalent to Equation
10. How would things change if we perform DI negativity
certification using the data generated from the partially entangled
state |ψ(θ)〉, Equation 17a? To this end, consider the quantum
strategy of Equations 17a, b, whose resulting correlation �Pθ gives the
maximal Bell CHSH violation for |ψ(θ)〉, as well as the maximal
violation of the tilted CHSH Bell inequality of Equation 19. Then,
instead of repeating the same analysis, we show in Figure 5 the
confidence-gain rates due to both protocols for certifying several
given fractions of the underlying negativity. From the plots shown, it
is evident that asymptotically, the martingale-based protocol
employing the CHSH Bell function is far from optimal for
certifying the underlying negativity of |ψ(θ)〉. Indeed, the PBR
protocol could identify some other Bell-like inequality that gives

FIGURE 2
Instruction for the PBR method.

FIGURE 3
Pseudocode associated with the PBR protocol for DI
certification. If the p-value bound p< 1 − γ, we reject the null
hypothesis H¬P and hence certify the desired property P with
confidence γ.
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a much better confidence-gain rate, especially for the correlations
arising from |ψ(θ)〉 that is weakly entangled (small θ). To a large
extent, this can be understood by noting that the negativity lower
bound of Equation 10 due to its CHSH Bell violation is generally far
from tight for these states; see Supplementary Figure S3.

3.1.1.2 Dimension certification via negativity certification
As mentioned in Section 2.1.2.1, the correlation �PCHSH is

insufficient to demonstrate any nontrivial dimension bound. Let
us consider, instead, a correlation �PCGLMP derived by locally
measuring the partially entangled two-qutrit state:

|Ψ〉 � 1�����
2 + ζ2

√ |00〉 + ζ |11〉 + |22〉( ), ζ � 1
2

��
11

√ − �
3

√( ), (39a)

with the local measurements

M A( )
a|x � |a〉A,x〈a|, M B( )

b|y � |b〉B,y〈b|,

|a〉A,x � ∑2
j�0

ωj φAx +a( )�
3

√ |j〉, |b〉B,y � ∑2
j�0

ω
j φBy−b( )�

3
√ |j〉,

(39b)

where φA
x � x

2, φ
B
y � (−1)y14, and {|j〉} is the set of computational basis

states. It is known [67, 71] that this strategy gives the maximal CGLMP
Bell-inequality violation of S CGLMP3 � 1 +

��
11
3

√
� 2.91485. Moreover,

the negativity of |Ψ〉 can be easily evaluated to yield � 0.98358.

Next, we use the data numerically simulated from �PCGLMP to
perform hypothesis testing for Null Hypothesis 1 but now with
N 0 ∈ N0 � {0.5, 0.51, . . . , 0.98}. For the PBR protocol, the
computation proceeds in exactly the same way as described
above (see the paragraph containing Equation 38). However, for
the martingale-based protocol, since we do not have an explicit
expression like that shown in Equation 37 for the CGLMP Bell
expression, we compute an upper bound on BH for each given value
of N 0 ∈ N0 according to

max ∑
a,b,x,y

βabxyP ab|xy( ), (40a)

s.t. χ
ℓ
ρ[ ] � χ

ℓ
σ+[ ] − χ

ℓ
σ−[ ], χ

ℓ
σ±[ ]T �A ⪰ 0, (40b)

χ
ℓ
ρ[ ] ⪰ 0, χ

ℓ
ρ[ ]tr � 1, χ

ℓ
σ−[ ]tr≤N 0, (40c)

where the CGLMP Bell coefficients βabxy are defined in Equation 11.
Meanwhile, since Pxy � 1

4 and βabxy ∈ {−1, 0, 1}, we again have b± �
± 4 for ICGLMP3.

Figure 6 shows that with approximately 6 × 104 trials, we can
already certify a negativity lower bound of 0.9. On the other hand, if
we want to certify that we need at least a two-qutrit state to produce
the observed data (arising from �PCGLMP), it suffices to certify that the
underlying negativity is strictly larger than 0.50, which happens
already with approximately 1,500 trials. Could other two-qutrit
states provide a more favorable correlation in this regard? To
gain insight into the problem, we consider the following one-
parameter family of two-qutrit states

|Ψ ~ζ( )〉 � 1�����
2 + ~ζ

2
√ |00〉 + ~ζ |11〉 + |22〉( ) (41)

FIGURE 4
Negativity certifiable from the data observed in a Bell test
generating �PCHSH, which arises by locally measuring the Bell state
|ψMES〉 of Equation 15a with the observables given in Equations 15b, c.
For the martingale-based protocol and any given N 0 among
N0 � {0,0.01, . . . ,0.49}, we use Equation 37 in Equation 25 to upper-
bound p(mart) after every block of Nblk � 500 trials, thereby generating
200 × 50 upper bounds on p(mart) for a complete Bell test. For the PBR
protocol and a givenN 0 fromN0, we solve Equation 38 by considering
the same block size and the level-3 outer approximation of Q
introduced in [17]. Then, we obtain 199 × 50 upper bounds on p(pbr)

from Equations 32, 34 and 35. To determine the lower bound on the
underlying N (ρ) with the desired confidence of γ≥ 99%, we look for
the largest N 0 in N0 such that HN (ρ)≤N 0

is rejected with a p-value
bound being less than or equal to 0.01. Each data point shown in the
plot is an average over 30 such lower bounds, and the error bar
(standard deviation) gives an indication of the spread of the certifiable
negativity. To avoid cluttering the plots, in each line, we show only a
small number of markers.

FIGURE 5
Asymptotic confidence-gain rate G(prot) based on the family of
quantum correlations �Pθ derived from Equation 17a, b, where θ � kπ

180
rad, k � {1, 2, . . . ,45}, parametrizes the two-qubit entangled state
|ψ(θ)〉 � cos θ|00〉 + sin θ|11〉. Here, we again consider Null
Hypothesis 1, with N 0 � {0.8N ψ(θ) ,0.85N ψ(θ) ,0.9N ψ(θ) ,0.95N ψ(θ)}
and N ψ(θ) being the negativity of ψ(θ); see Supplementary Figure S3.
The gain rate for the martingale-based protocol is computed from
Equation 27 using the CHSH Bell-like inequality of Equation 37,
whereas that for the PBR protocol is evaluated from Equation 36 using
the correlation derived from Equation 17a, b.
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and numerically maximize their CGLMP Bell-inequality violation
using the heuristic algorithm given in [94]. We denote the
corresponding correlation by �P~ζ , compute the corresponding
asymptotic confidence-gain rate for both protocols, and plot the
results in Figure 7.

Interestingly, even though Figure 6 suggests that the CGLMP
Bell function is very effective in providing a good p-value bound
against Null Hypothesis 1, Figure 7 clearly shows that,
asymptotically, it is not optimal. The results shown in Figure 7
further suggest that among the family of two-qutrit states given in
Equation 41, the qutrit signature of |Ψ(ζ)〉, cf. Equation 39a, could
even be the most prominent, when it comes to its DI certification
using these hypothesis-testing techniques.

3.1.2 Entanglement depth certification
Next, we consider the tripartite correlation �PGHZ that results

from locally measuring the ± 1-eigenvalue observables

A0 � B0 � C0 � σy, A1 � B1 � C1 � −σx (42a)

on the Greenberger–Horne–Zeilinger (GHZ) state [95, 96]:

|GHZ〉 � 1�
2

√ |000〉 + |111〉( ). (42b)

It is easy to verify that �PGHZ leads to a violation of the Mermin
Bell inequality, as shown in Equations 12 and 14, giving the algebraic
maximum of SMermin � 4. For our simulations, we assume a uniform
distribution Pxyz � 1

4 over all measurement settings x, y, z ∈ {0, 1}
that satisfy mod(x + y + z, 2) � 1. Then, we test the data against the
following composite hypotheses:

Null Hypothesis 2. HSep: In every experimental trial, the
underlying state is separable (having an entanglement depth of 1).

Null Hypothesis 3. H2−prod: In every experimental trial, the
underlying state is 2-producible, i.e., having an entanglement
depth of 2 or less.

For the martingale-based method, we use Equation 25 with the
Mermin Bell expression of Equation 12 and the bounds given in
Equation 14, i.e., BH � 2 for Null Hypothesis 2 and BH � 2

�
2

√
for

Null Hypothesis 3. Since βabcxyz ∈ {−1, 0, 1}, we again have b± � ± 4.
Note that separable states can only generate Bell-local correlations
[5], cf. Equation 2. Thus, for the PBR protocol with Null Hypothesis
2, the optimizing distribution P(k)

+ (abc|xyz) for the k-iteration can
be obtained by solving (cf. Equation 29)

argmin
�P

− ∑
a,b,c,x,y,z

Pxyzf
k( )

reg abc|xyz( )logP abc|xyz( ), (43a)

s.t. �P � ∑
i

qi �Di, qi ≥ 0, ∑
i

qi � 1, (43b)

where �Di is the i-th (local deterministic) extreme points of the set of
tripartite Bell-local distributions.

On the other hand, notice that 2-producibility [76] is equivalent
to biseparability [14] in the tripartite scenario. Hence, for Null
Hypothesis 3, we obtain the corresponding optimizing distribution
by solving

argmin
�P

− ∑
a,b,c,x,y,z

Pxyzf
k( )

reg abc|xyz( )logP abc|xyz( ), (44a)

s.t. χ
ℓ
ρ[ ] � χ

ℓ
ρ1[ ] + χ

ℓ
ρ2[ ] + χ

ℓ
ρ3[ ], χ

ℓ
ρ[ ] ⪰ 0, (44b)

χ
ℓ
ρ[ ]tr � 1, χ

ℓ
ρi[ ] ⪰ 0, ∀ i ∈ 1, 2, 3{ }, (44c)

χ
ℓ
ρ1[ ]T �A ⪰ 0, χ

ℓ
ρ2[ ]T �B ⪰ 0, χ

ℓ
ρ3[ ]T �C ⪰ 0, (44d)

where ρi with i � {1, 2, 3} are meant to represent, respectively, the
constituent of ρ that is separable with respect to A|BC, B|AC, and

FIGURE 6
Negativity certifiable from the data observed in a Bell test
generating �PCGLMP, which arises by locally measuring the partially
entangled state of Equation 39a. For details on how the plot is
generated, see the caption of Figure 4, but bearing in mind that
for the martingale-based protocol, we now use in Equation 25 the BH
determined from Equation 40.

FIGURE 7
Asymptotic confidence-gain rate G(prot) based on the quantum
correlation �P~ζ derived from maximizing the CGLMP Bell inequality
violation of |Ψ(~ζ)〉, as shown in Equation 41. Here, we consider ~ζ �
{0,0.02, . . . , 1} andNull Hypothesis 1, withN 0 � 0.5. The gain rate
for the martingale-based protocol is computed from Equation 27
using the CGLMP Bell function and the bound BH determined in
Equation 40 whereas that for the PBR protocol is evaluated from
Equation 36 and setting �PQ to �P~ζ . The dashed blue line corresponds to
the value ~ζ � ζ , cf. Equation 39a.
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C|AB bipartitions. In evaluating Equations 44a, b, c, d, we use level
ℓ � 1 of the hierarchy introduced in [17]. For both hypotheses, we
then evaluate

R a, b, c, x, y, z( ) � f k( )
reg abc|xyz( )
P+ abc|xyz( ) (45)

for the computation of the test statistic tk.
For �PGHZ and Null Hypothesis 2, the confidence-gain rate G(pbr)

is already known (see Table I of [89]) to be approximately 0.415037;
our computation reproduces this and further shows that for Null
Hypothesis 3, the confidence-gain rate is approximately 0.228446.
Moreover, to six decimal places, G(pbr) and G(mart) agree for both
hypotheses. What about finite data? Based on the average results
from 30 simulations, we find that the p-value bounds or, more
precisely, P � −log2p(prot)can be very well-fitted into the following
straight lines:

P
(pbr)
HSep

� 0.414958 N − 204.978, N ∈ 103, 105[ ], (46)
P(mart)

HSep
� 0.415037 N, N ∈ 0, 105[ ] (47)

for the separable hypothesis HSep in Null Hypothesis 2, and

P
(pbr)
H2−prod. � 0.22838 N − 115.22, N ∈ 103, 105[ ], (48)

P
(mart)
H2−prod. � 0.228447 N, N ∈ 0, 105[ ] (49)

for the 2-producible hypothesisH2−prod. in Null Hypothesis 3. In all
these fits, the coefficient of determination R2 is 1 even if we keep up
to 7 significant digits. Consequently, based on this interpolation,
even if we only run the Bell test using the strategy of Equation 42a, b
for 100 trials, there is already sufficient data to certify genuine
tripartite-entanglement with a confidence of at least 1 − 10−6.

3.1.3 Fidelity certification
Our last examples concern the DI certification of a lower bound

on the fidelity of the swapped state ρ SWAP with respect to the target
state |ψ(θ)〉 of Equation 17a. To this end, we use the same set of data
generated for the analysis in Section 3.1.1.1 and consider the
following null hypothesis:

Null Hypothesis 4.HF θ(ρ SWAP)≤F 0: In every experimental trial, the
swapped state ρ SWAP extractable from the underlying state ρ has a
|ψ(θ)〉-fidelity upper bounded by F 0, i.e.,

F θ ρ SWAP( ) ≔〈ψ θ( )|ρ SWAP|ψ θ( )〉≤F 0. (50)

Then, for any given θ and F 0 ≥ cos θ, to apply the PBR protocol,
we solve the optimizing distribution P(k)

+ (ab|xy) for the k-iteration
(cf. Equation 29) by

argmin
�P

− ∑
a,b,x,y

Pxyf
k( )
reg ab|xy( )logP ab|xy( ), (51a)

s.t. χ
ℓ
ρ[ ] ⪰ 0, χ

ℓ
ρ[ ]tr � 1, F θ ρ SWAP( )≤F 0, (51b)

where the left-hand side of the last inequality in Equation 51b
consists of some specific linear combination of entries of χ

ℓ
[ρ]; see

[86] for details. Then, as with negativity certification, we can
evaluate the PBR used in the computation of tk by replacing
freg(ab|xy) and P+(ab|xy), respectively, by f(k)

reg(ab|xy) and

P(k)
+ (ab|xy) in Equation 30. As for the martingale-based

protocol, we first solve

max ∑
a,b,x,y

βabxyP ab|xy( ), (52a)

s.t. χ
ℓ
ρ[ ] ⪰ 0, χ

ℓ
ρ[ ]tr � 1, F θ ρ SWAP( )≤F 0 (52b)

to determine BH for Null Hypothesis 4 and then apply Equation 25
to determine the corresponding p-value upper bound.

Let us start with the self-testing of a Bell state, corresponding to
θ � π

4 in Equation 17a. In this case, we use the CHSH Bell function
specified in Equation 4 and consider F 0 ∈ F0 � {0.5, 0.51, . . . , 0.99}.
For both protocols, by systematically evaluating the p-value bounds
from the data for each of these F 0’s, we determine a lower bound on
F θ�π

4
(ρ SWAP) with the desired confidence of at least 99%. The results

obtained from both hypothesis-testing protocols are shown in Figure 8.
Interestingly, our results show that the martingale-based

protocol with the CHSH Bell function of Equation 4 again
performs very well for the self-testing of a Bell state with finite
statistics, even though our computation of the corresponding
asymptotic confidence-gain rate for F 0 � 0.5 clearly shows that it
is suboptimal even for the Bell state; see Figure 9. What about other
partially entangled states? To answer this question, we evaluate the
confidence-gain rate derived from both protocols for F 0 � cos2 θ,
with θ � {0°, 1°, 2°, . . . , 45°}. Note that a fidelity of cos2 θ is always
achievable even if Alice and Bob do not share any entanglement;
they merely have to prepare |00〉 using local operations and classical
communication before the Bell test. This time around, for the
martingale-based protocol, we switch to the Bell function of the
tilted CHSH Bell inequality of Equation 19, which is known to
facilitate the self-testing of all entangled |ψ(θ)〉. The corresponding
results are shown in Figure 9.

3.1.4 Properties certification via Bell-value
certification

The advantage of a fidelity certification based on the SWAP
method [86, 88] is that the technique is applicable to a general Bell
scenario. However, in the simplest CHSH Bell scenario, it is known
that a much tighter lower bound on the Bell-state fidelity can be
obtained by considering a more general extraction map. Specifically,
Kaniewski showed in [97] that

max
ΛA,ΛB

min
ρAB

F ΛA ⊗ ΛB( ) ρAB( ), |ψMES〉〈ψMES|][ )≥ 1
2
+ 1
2
S CHSH − β*
2

�
2

√ − β*
,

(53)
where ΛA, ΛB are local extraction maps acting, respectively, on
Alice’s and Bob’s subsystem, while β* ≔ 16+14 �

2
√

17 ≈ 2.1058 is the
threshold CHSH value, for which the fidelity bound becomes trivial.

To take the advantage of Equation 53, we can first perform
hypothesis testing based on the following null hypothesis.

Null Hypothesis 5. HS CHSH(ρ)≤S0: In every experimental trial, the
underlying state and measurements yield a CHSH value S CHSH less
than or equal to S0.

Specifically, using the same set of data generated for the analysis
in Sections 3.1.1.1 and 3.1.3, we perform composite hypothesis
testing for Null Hypothesis 5 with
S0 ∈ {2, 2 + ΔS, 2 + 2ΔS, . . . , 2 �

2
√ − ΔS}, where ΔS � 2( �

2
√ −1)
50 .
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In particular, for the martingale-based protocol, we can simply
use Equation 25 with b± � ± 4 and BH � S0. Could one also employ
the PBR protocol, which does not usually presuppose any Bell-like
inequality, for the current hypothesis testing? This is indeed
possible. To this end, one may solve the optimizing distribution
P(k)
+ (ab|xy) for the k-iteration (cf. Equation 29) of the PBR

protocol by

argmin
�P

− ∑
a,b,x,y

Pxyf
k( )
reg ab|xy( )logP ab|xy( ), (54a)

s.t. ∑
a,b,x,y

−1( )xy+a+b P ab|xy( )≤S0, (54b)

with or without imposing the SDP constraints of Equation 9c. The
results obtained from these tests are shown in Figure 10.

Using each lower bound on S CHSH certified from the data,
Equation 53 immediately translates to a lower bound on the Bell-
state fidelity with the desired confidence. For a direct comparison
with the efficacy of the SWAP-based approach adopted in Section
3.1.3, we plot in Figure 11 the Bell-state fidelity certifiable using the
two approaches. As expected, the tighter Bell-state fidelity lower
bound provided by Equation 53 also facilitates a considerably
tighter lower bound when one has access to only a finite
amount of data.

It is also worth noting that in computing these PBR bounds, the
computation may be further simplified by regularizing the relative
frequency �freg using only the nonsignaling constraint of Equation 7,
instead of the quantum approximation using Equation 9c. For the
lower bounds on S CHSH presented in Figure 10, this further

simplification was found to give, unsurprisingly, a worse lower
bound but with a deviation bounded by 8 × 10−3. Of course, the
lower bounds on S CHSH can also be used to bound other desired
properties. For example, Figure 4 can equivalently be obtained by
combining Equation 10 with the results shown in Figure 10.

4 Discussion

Tomography and witnesses are two commonly employed
toolkits for certifying the desirable properties of quantum devices
[98]. In recent years, the device-independent paradigm has offered
an appealing alternative to these conventional means as it involves
only a minimal set of assumptions. Nonetheless, many DI
certification schemes, e.g., [16–19, 21–27, 29, 30], implicitly
assumes that the underlying quantum correlation �PQ (or the
actual Bell-inequality violation due to �PQ) is known. In practice,
this is unrealistic for two reasons: 1) we always have access to only a
finite amount of experimental data, and 2) actual experimental trials
are typically not independent and identically distributed (i.i.d.).

To this end, very specialized tools have been developed for the
task of randomness generation, quantum key distributions, and the
self-testing [86, 99, 100] of quantum states. Among them, the
possibility of using hypothesis testing (based on the PBR protocol
[60]) for self-testing with finite data was first discussed in [86] (see
also [99] for a different approach). Meanwhile, it is long known [43,
61, 90] that hypothesis testing in a Bell test can also be carried out
using a martingale-based protocol. Here, we demonstrate the
viability and versatility of such hypothesis-testing-based
approaches for the general problem of DI certification.

Central to our finding is the observation that many desirable
quantum properties P that one wishes to certify can be

FIGURE 8
Certifiable fidelity F θ�π

4
(ρ SWAP) from the data observed in a Bell

test generating �PCHSH, which arises by locally measuring the Bell state
|ψMES〉, cf. Equations 15a, b, c. For the martingale-based protocol and
any given F0 among F0 � {0.5,0.51, . . . ,0.99}, we use BH
determined from Equations 52a, b in Equation 25 to upper-bound
p(mart) after every block of Nblk � 500 trials, thereby generating
200 × 50 upper bounds on p(mart) for a complete Bell test. For the PBR
protocol and a given F0 from F0, we solve Equations 51a, b by
considering the same block size and the level-2 outer approximation
of Q introduced in [17]. Then, we obtain 199 × 50 upper bounds on
p(pbr) from Equations 32, 34 and 35. To determine the lower bound on
the underlyingF θ�π

4
(ρ SWAP)with the desired confidence of γ≥ 99%, we

look for the largest F0 in F0 such that HF θ(ρ SWAP)≤F0 is rejected with a
p-value upper bound less than or equal to 0.01.

FIGURE 9
Asymptotic confidence-gain rate G(prot) based on the family of
quantum correlations �Pθ derived from Equations 17a, b, where θ � kπ

180
rad, k � {1, 2, . . . ,45}. Here, we consider Null Hypothesis 4, with
F θ(ρ SWAP) � cos2 θ, the trivial fidelity achievable without shared
entanglement. The gain rate for the martingale-based protocol is
computed from Equation 27 using the CHSH Bell function of Equation
4 (dashed line, black) and the tilted CHSH Bell function of Equation 19
(dashed-dotted line, blue), whereas that for the PBR protocol is
evaluated from Equation 36.
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characterized by (the complement of) some convex set CP in the
space of correlation vectors { �P}. In other words, if a given �PQ lies
outside CP , a Bell-like inequality can be provided to witness this
fact. This separating hyperplane then provides the basis for our
martingale-based protocol for DI certification. On the other hand,
if CP itself admits a semidefinite programming characterization
like the kind proposed in [17, 22, 66–68], then the problem of
minimizing the statistical distance to CP can be cast as a conic
program, which can readily be solved using existing solvers, such
as MOSEK [92]. In turn, the PBR protocol provides an optimized
Bell-like inequality that facilitates the corresponding
hypothesis testing.

In this paper, we explain in detail how the two aforementioned
hypothesis-testing protocols can be adapted for the DI certification
of desirable properties. Specifically, we illustrate how we can use
them to perform the DI certification of the underlying negativity
[64], local Hilbert space dimension [15], entanglement depth [76];
[77], and fidelity to some target two-qubit entangled pure state
|ψ(θ)〉. In each of these examples, we further demonstrate how the
certifiable property (with a confidence of 99%) varies with the
number of experimental trials involved; see Figures 4, 6, 8. Even
though we have focused on certifying desirable properties of
quantum states, as explained above, the protocols can also be
applied to certify desirable properties of the measurement
devices, such as their measurement incompatibility [22, 23, 26,
28] or their similarity to some target measurements [86] or
instruments [27], etc. Note, however, that the usefulness of our
protocols relies on the possibility of certifying the desired property

from a Bell inequality-violating correlation. To this end, we remind
that determining the complete list of quantum properties certifiable
in a device-independent manner remains, to our knowledge, an
open problem.

In the i.i.d. setting, the PBR protocol is known to be
asymptotically optimal (in terms of its confidence-gain rate).
However, we see from Figures 4, 6, 8 that for a relatively small
number of trials and with the right choice of the Bell function, the
martingale-based protocol performs equally well, if not better. A
similar observation was also noted in [101] where the authors
therein compare the PBR method with the Chernoff–Hoeffding
bound in determining the success probability of Bernoulli trials. In
our case, this is not surprising as the PBR method does not
presuppose a Bell-like inequality but rather sacrifices some of the
data to determine one. Indeed, if we equip the PBR protocol with the
optimized Bell-like inequality right from the beginning, its
performance is, as expected, no worse than the martingale-based
protocol; see Supplementary Figures S1, S2, S4-S7 for some
explicit examples.

Meanwhile, we also see from Figures 5, 7, 9 that for several cases
that we have investigated, one’s intuitive choice of the Bell function
for the martingale-based method can lead to a relatively poor
confidence-gain rate and hence impairs its efficiency to produce
a good p-value bound; see Supplementary Figures S5 and S7. For
example, even though the titled CHSH Bell inequality of Equation 19
is known to self-test all entangled two-qubit pure states |ψ(θ)〉, this
choice of the Bell function in the martingale-based method leads to a
worse performance (for bounding the target-state fidelity) compared
with using the CHSH Bell function, which, in turn, gives a
suboptimal performance compared with that derived from the
PBR protocol; see Figure 9. At this point, it is worth reiterating
that both protocols do not require the assumption that the
experimental trials are i.i.d., even though we have only given, for
simplicity, examples with i.i.d. trials.

Several research directions naturally follow from the present
work. First, there are the scalability questions: 1) how do the number
of measurement bases and 2) the number of samples scale with the

FIGURE 10
Certifiable Bell-CHSH violation S CHSH from the data observed in
a Bell test generating �PCHSH, which arises by locally measuring the Bell
state |ψMES〉, cf. Equation 15a, b, c. For the martingale-based protocol
and any given S0 among S0 � {2 + kΔS}49k�0, we use Equation 54b
in Equation 25 to upper-bound p(mart) after every block of Nblk � 500
trials, thereby generating 200 × 50 upper bounds on p(mart) for a
complete Bell test. For the PBR protocol and a given S0 from S0, we
solve Equations 54a, b by considering the same block size. Then, we
obtain 199 × 50 upper bounds on p(pbr) from Equations 32, 34 and 35.
To determine the lower bound on the underlying S CHSH with the
desired confidence of γ≥99 %, we look for the largest S0 in S0 such
that HSCHSH ≤S0 is rejected with a p-value bound being less than or
equal to 0.01. A separate calculation shows that if we impose Equation
9c in addition to Equation 54b, one may find a visually
indistinguishable difference (< 5 × 10−4) in the certifiable S CHSH.

FIGURE 11
Comparison of the Bell-state fidelity certifiable via the SWAP-
based approach presented in Section 3.1.3 and that using Equations
54a, b and S CHSH-value certification.
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complexity (say, dimension) of the measured system? The former is
again closely related to the general viability of the device-
independent certification approach, where our understanding is
far from complete. As for the latter, we remark that it is indeed
one of the goals of the present work to shed light on the sample
complexity of our hypothesis-testing-based approaches. In some
cases, such as the certification from the GHZ correlation, we see that
hundreds of trials suffice, but in some others, several tens of
thousands may be required to give a satisfactory level of
certification. Still, some general understanding of how the sample
size scales with the properties to be certified and the confidence level
will be surely welcome.

Second, for experimental trials expected to deviate significantly
from being i.i.d., one should choose a much smaller block size Nblk

than the size adopted in our analysis using the PBR protocol.
Intuitively, we should choose Nblk so that the trials do not differ
significantly within each block of data. In fact, for testing against
LHV theories, some guidelines have been provided in [60] on how
we should chooseNblk. A similar analysis for other DI certifications
is clearly desirable. Next, even though our hypothesis-testing-based
approaches enable rigorous DI certification with a confidence
interval, by virtue of the techniques involved, one can only make
a relatively weak certification; out of the many experimental trials,
we can be sure that at least one consists of a setup that exhibits the
desired property (say, with 99% confidence). This is evidently far
from satisfactory. A preferable certification scheme should allow one
to comment on the general or average behavior of all the measured
samples, as has been achieved in [100, 102] for self-testing.

Given that self-testing with a high fidelity is technically
challenging, it is still of interest to devise a general recipe for
certifying the average behavior of other more specific properties
(such as entanglement and steerability), which may already be
sufficient for the specific information processing task at hand.
However, note that the rejection of a null hypothesis on the
average behavior (e.g., average negativity N (ρ)≤N 0) necessarily
entails the rejection of the corresponding null hypothesis for all trials
(e.g.,N (ρ)≤N 0 in every trial). Thus, wemay expect a tradeoff when
switching from the current kind of hypothesis testing to that for an
average behavior.

In addition, it is worth noting that if the i.i.d. assumption is
somehow granted, then our protocols also certify the quality of the
setup for every single runs, including those that have not been
measured. In this case, once a sufficiently small p-value bound is
obtained, one can stop measuring the rest of the systems and use
them, instead, for the information processing tasks of interest. Of
course, since the i.i.d. assumption is generally not warranted, a
protocol that achieves certification for some fraction of the copies
while leaving the rest useful for subsequent tasks will be desirable.
This has been considered for one-shot distillable entanglement in
[20] and the self-testing fidelity in [102]. Again, a general treatment
will be more than welcome (see, e.g., [103]).
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