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Compartmental models of disease spread have been well studied on networks
built according to the Configuration Model, i.e., where the degree distribution of
individual nodes is specified, but where connections are made randomly.
Dynamics of spread on such “first order” networks were shown to be
profoundly different compared to epidemics under the traditional mass action
assumption. Assortativity, i.e., the preferential mixing of nodes according to
degree, is a second order property that is thought to impact epidemic
trajectory. We first show how assortative mixing can come about from
individual preferences to connect with others of lower or higher degree, and
propose an algorithm for constructing such a network. We then investigate via
simulation how this network structure favors or inhibits diffusion processes, such
as the spread of an infectious disease.
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1 Introduction

Network architecture plays an essential role in the dynamics of diffusion processes.
Heterogeneity in degree distribution was shown to induce radically different behaviors of
processes compared to homogeneous networks, which are often assumed when modeling
epidemic spread (e.g., a fully connected network). For example, when the degree
distribution is power law with exponent less than 3, the epidemic threshold can be as
low as zero [1, 2] and references therein. While diffusion dynamics on first order
networks–by which we mean networks defined by degree distribution without higher
order structure–are well understood [3–5], less is known about the behavior of such
processes on second order networks. These are networks where both the degree (D)
distribution of vertices is known, as well as their neighbors’ degree distributions, i.e., the
joint degree distribution (DA,DB) for any two nodes A and B connected by an edge. There
have been some theoretical and numerical investigations of second order networks, for
example, the derivation of properties such as size of the giant component, see [6–8] and
others. There have also been mathematical solutions to the dynamic through time of
epidemic spread in the SIS case [9], though nothing similar seems to exist for the SIR
(susceptible-infected-removed) case.
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While the discoveries in the physics literature on networks
represent conceptual advances compared to the original
1927 paper of Kermack and McKendrick [10], which relied on
the homogeneity assumption, and on which much of the later
epidemiologic modeling is based, there are some important
shortcomings related to modeling a realistic SIR epidemic. The
literature has largely overlooked network construction aimed at
building realistic human populations, in which epidemics spread.
Classical network building algorithms, such as the configuration
model (CM), the Barabási and Albert, and Erdős-Rényi graphs
[11–13], are too limited as they cannot account for second order
properties. The network construction algorithm in [14] is based on
rewiring edges and can exactly replicate the edge matrix of a graph
(E), where Eij gives the number of edges between all vertices of
degrees i and j. A similar rewiring algorithm due to [15] has been
used more recently in [16] to show that network assortativity
significantly impacts epidemic spread in the presence of
vaccination. However, these algorithms assume either that the
edge matrix is known [14], or that the assortativity value of the
network is known [15]. In practice, neither of these things is usually
observable for the transmission network of an infectious disease, as
individuals are often unaware of transmission events, or even that
there is the potential for transmission (i.e., that an edge exists in the
social network). Matrix E can be postulated, however it is difficult to
justify the realism of any specific choice. Therefore, if we wish to
study epidemic dynamics on realistic networks, we need to take a
more constructivist approach, and build the network in ways that
mimic how individuals form connections.

The literature on mechanistic network construction algorithms
often comes from the fields of ecology and economic game theory.
To study animal mating behavior, [17] introduces an algorithm
where encounters based on selectivity have the potential to lead to
permanent bonds (or edges) in a bipartite graph. Sophisticated
network formation processes arise out of assumptions in game
theory, where players (vertices) are assumed to have a utility
function; based on other players’ decisions, each player forms
connections seeking to maximize his or her utility, possibly over
a number of time steps. For instance, [18] builds a bipartite network
where each node attaches to an existing node with probability based
on individual characteristics. They apply this to a network of
mentors and students from academia to show the existence of a
glass ceiling effect. [19] Investigate how a network of friendships is
made, based on agents making optimal decisions who to befriend,
subject to capacity constraints. In these situations, assortative
mixing arises as a byproduct of network construction. While the
mechanistic approaches described so far have a claim to realism,
they may be unnecessarily complex for studying SIR epidemics. We
do not need to know all the details and stages of network formation,
and thus, in this paper, we introduce a simplified network
construction algorithm, based on preference to connect. We take
the view that there are latent preferences that determine how
individuals form connections, which echoes existing literature in
both ecology and economics. To circumvent subject-specific
mechanisms, we do not seek to explain individual behavior or
preferences, instead assuming random sampling without
replacement, where the probability of selection is based on
strength of the preference. Our goal in the first part of this paper
is to create a rich family of graphs via a preference function which is

flexible enough to lead to a large variety of edge matrices in the
constructed networks.

Once we have a process for generating networks with different
assortativity profiles, in the second part of the paper we investigate
epidemic spread over the constructed networks. As benchmark, we
compare the epidemic curves against spread over configuration
model (CM) network [11], which has been studied extensively
and is neutral in terms of assortativity. One particular point we
will be paying attention to is whether the epidemic spread is
predictable in terms of quantities one might hope to observe in
reality. For infectious diseases, it is unlikely that one would be able to
measure either individual degrees or the matrix E in a human
population. However, the cumulative fraction of infected
individuals through time is much more easily available, for
instance, via a serological survey administered to the general
population (see, e.g., [20]). In first order networks, it was shown
that the SIR dynamics of spread are predictable in terms of the
fraction of remaining susceptibles St [21]. A natural question is
whether the same is possible for second-order models. We seek
evidence from numerical results, by simulating epidemics over
various second-order networks. This study is intended to be
hypothesis-generating and guide follow-up theoretical
investigations of promising simulation results.

Our main contributions are:

• Proposing a stochastic algorithm to construct networks based
on preference to connect. And creating a rich family of
networks based on a flexible preference formulation.

• Showing how to derive the marginal degree preference based
on a general preference function that can be based on any
number of exogenous features.

• We investigate the shapes of the epidemic curves, and total
epidemic sizes by transmissibility. In particular, our epidemic
simulation results support the hypothesis that the effective
reproductive number is predictable as a univariate function of
the susceptible fraction St.

2 Materials and methods

2.1 Setup and notation

Assume we have an undirected graph G with vertex set V.
Define the edge matrix E, of size M × M, with entries Eij

representing the total number of edges linking vertices
(or nodes) of degrees i and j (in any direction). Here, M is the
maximum degree in the network. Define also matrix e � E + diag(E)

‖E‖ + tr(E)
to be a normalized version of E, where ‖E‖ denotes the sum of
elements of E, and diag(E) is the matrix having the diagonal
elements of E along its diagonal and zero otherwise. Note that
entries of e satisfy the following conditions:

∑
i,j

eij � 1,∑
i

eij � jqjN

E‖ ‖ + tr E( ),∑j eij � iqiN

E‖ ‖ + tr E( ), (1)

where qi � P(D � i), i � 1, . . . ,M is the vertices’ degree
distribution. The ratios in the last two equations are between the
number of stubs touching nodes of degree j (or i), and twice the total
number of stubs in G in the denominator. These conditions are very
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similar to those in [2], except for the first one, which avoids a
potential confusion related to the double counting of edges1.

We further introduce a preference metric that determines the
likelihood that two vertices (individuals) will form an edge, if given the
option to connect. Define a preference function fkl to be the (scaled)
probability that vertices k and l form an edge, if given the opportunity.
The opportunistic condition is determined by the network
construction algorithm, as not every vertex will have a chance to
form a connection with every other vertex. Our concept of preference
to connect is somewhat similar to the dyadic reciprocity metric in
[22], which seeks to capture individuals’ “communicative propensity,”
though we do not base preference specifically on communication.f is
also different from the utility functions employed in the economic
behavior literature on network formation (see, e.g., [19]).

In the simplest case, preference to connect depends on the
individuals’ degrees, referred to as degree correlation [2]. We
propose the following form of the preference function fkl between
two individuals k and l that is only dependent on their degrees

fkl � f Dk,Dl( )∝min Dk,Dl( )γmmax Dk,Dl( )γM . (2)

Note that function f is symmetric in degree, and can be
normalized to represent a properly defined bivariate probability
mass function (pmf). Thus, if Pij is the probability of selecting a
particular degree pair (i, j), set

Pij �
fij

∑u≤ vfuv
, i � j

fij

2∑u≤ vfuv
, i ≠ j

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
, i, j � 1, . . . ,M. (3)

If we store this pmf in a matrix P of sizeM × M, then the sum of
elements of P is 1. Note that direction is necessary as a mathematical
formalism to define a bivariate distribution, however our network
construction methodology will be agnostic to direction of edges, and
for the rest of the paper all networks will be undirected. To keep the
notation organized, we will use i and j to index degree pairs (from
1, . . . ,M) and k and l when we want to index vertex pairs (running
from 1, . . . , N).

The form Eq. 2 entertains a few special cases that may be realistic
in various situations:

• Case 1. Similarity. Setting γm � −γM, and γm > 0, the
probability of connecting becomes proportional to
(Dmin/Dmax)γm , where we have denoted by Dmin, Dmax the

minimum andmaximum betweenDk,l, respectively. This ratio
is highest when the degrees of i and j are close (i.e., their ratio
is close to 1), and low when they are very different. So, in this
case, similarity is preferred when matching.

• Case 2. Dissimilarity. Same setting γm � −γM, but with γm < 0
makes the probability (Dmax/Dmin)|γm|. In this case a large
difference between two degrees is preferred for attachments.

• Case 3. Co-operation. When setting γm � γM the probability to
form a bondwill be proportional to (DminDmax)γm , meaning the
preference to connect will depend only on their degree product,
regardless of how much each node contributes to that product.
This is a case of complementarity or co-operation, where
similarity is irrelevant.

In a broader context, individuals’ preference to form
connections depends on other characteristics besides (or in
addition to) their number of edges (degree). In human
populations, demographic covariates such as income, age, and
gender, may all be relevant. Suppose that individuals k and l
each have a vector of traits xk � (Dk, θk) and xl � (Dl, θl),
respectively, where θ contains salient features of each individual.
We postulate an assortative preference function of the form

f xk, xl( )∝∏
p
min xk,p, xl,p( )γ0,pmax xk,p, xl,p( )γ1,p , (4)

where xk,p refers to the p-th component of vector xk. This allows for
the preference xk to depend on individual characteristics in a
number of dimensions.

2.2 Network building algorithm 1:
preference determined by degree

Starting from a preference function f as given in Eq. 2, compute
matrix P from Eq. 3. The steps to build the network are as follows.

Step 1. Create a list of N vertex IDs (e.g., number each vertex with
a label in 1, .., N), and assign a degree to each ID independently,
according to the degree distribution qi � P(D � i).
Step 2. Create another list L containing all vertices from Step 1,
and add duplicates such that each ID appears the same number of
times as their assigned degree.

LOOP While there are still unpaired ID copies:

Step 3. Select a pair of degreeswith probabilities given inmatrixP. For
this, generate a random uniform variate u, and select the pair (i*, j*)
to be the highest integers such that

∑
i < i*; j� 1..M Pij +∑

i� i*,j ≤ j*
Pij ≤ u. In words, this means

compute the running sum of matrix E by row, starting from
position (1, 1) and select the cell where the sum is just below u.
Step 4. Randomly pick a vertex with degree i*, and another vertex
with degree j*, from the set of unpaired vertices (list L). If no edge
exists between the two vertices, pair them and delete one copy of
their IDs from list L.
Step 5. If all vertices with initial degrees i* or j* have been paired,
update matrix P by setting the depleted rows or columns equal to

1 In Newman’s original definition, eij is the fraction of edges connecting one

vertex of type i to another of type j. On directed graphs, edges counted in

eij are different from those counted in eji, and the condition ∑i,jeij � 1 is

clearly satisfied. However, in undirected graphs eij � eji, and edges linking i

to j vertices are counted twice in the sum ∑i,j�1..Meij . So this literal

interpretation of eij is problematic. The way Newman seems to think

about this is to replace each edge in an undirected network by two

directed edges going in opposite directions. In that case we end up

with twice the number of edges, and the network consistency

relationships in [14], ∑i,jeij � 1 checks out. Our adjustment to e makes

double counting explicit, so there is no inconsistency.
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0. Reweigh the matrix by the sum of its new elements so that it
sums to 1. This step is for efficiency.
END LOOP
Step 6. Return the linked list of paired IDs determined in Step 4.
Optionally, compute the edge matrix E of the network given by
the linked list.

This algorithm can be viewed as a second-order extension to the
configuration model algorithm, where nodes are now matched
randomly from list L according to matrix P. The resulting edge
matrix E can be characterized probabilistically as the outcome of
sampling elements (edges) one by one, without replacement, from
anM × M table with fixed marginsNqi. No closed form solution to
this is known, and the problem is not trivial [23].

While this building procedure assumes a preference function
fij between degrees i and j, in general it is possible (and likely) that
individuals have matching preferences based on other covariates
than their degrees. The algorithm above can be modified to
accommodate matching via a general preference function
fkl � f(xk , xl), defined between any two nodes, for k, l � 1, .., N.
In this case, matching preference is based on both the nodes’
degrees (Dk, Dl), as well as their other covariates in (xk , xl). A
matrix P of dimensions N × N can be defined for all vertex pairs,
and used in a similar way as above to select edges at random. Step
3 will choose IDs (as opposed to degrees) k*, l*, via matrix P, and
these IDs will be paired in Step 4.

2.3 Obtaining the marginal degree
preference function from a multivariate
distribution

Using a preference function f(xk , xl) defined between vertices
can encode higher order structure and offers the most flexibility in
network building. In particular, it is more flexible than the algorithm
in [14], which is based on vertex membership into a number of
“types,” because in our case, xk is multivariate, and hence vertices can
be classified into a number of different dimensions. However, the
approach is computationally costly as it involves working with an
N × N matrix. If we only care about first and second order network
properties, then we can reduce the dimensionality of the problem by
deriving the joint degree distribution (Dk,Dl) from the multivariate
preference function f(xk , xl). Recall that a preference function
f(xk , xl) is P(edge forms between k& l | xk , xl), where we do not
explicitly write the “given the opportunity” condition, however this
is understood throughout the paper, when we talk about preference
functions. Using the rules of conditional probability, we can derive the
implied preference based only on the first component of vector
x � (D, θ), namely, the degree, in the following way.

P edge forms between k, l
∣∣∣∣Dk,Dl( )

� ∫P edge forms between k, l{ } ∩ θk, θl Dk,Dl|( )dθkdθl
� ∫P edge forms between k, l θk, θl , Dk,|(

Dl)P θk, θl|Dk,Dl( )dθkdθl
� ∫f xk, xl( )P θk|Dk( )P θl|Dl( )dθkdθl (5)

If we call this marginal preference function fi,j, for any pair of
degrees i, j � 1, ..,M, we can write the last step as an expectation:

fi,j � Eθk ,θl f Dk, θk( ); Dl, θl( )( )∣∣∣∣Dk � i, Dl � j[ ]. (6)

This says what we would expect intuitively, i.e., that fi,j can
be computed as the average preference (averaged over all the
other variables θ) to form a connection between nodes with
degrees i and j. Thus, as long as we can specify the multivariate
distribution x, we can use this approach to reduce the problem to
degrees alone.

2.4 Network building algorithm 2:
via copulas

As the margins of matrix e are fixed by the vertex degree
distribution, second-order properties amount to specifying the
dependence structure between the ranks of two nodes’ degrees. One
way of doing this is through copulas. A copula is essentially a bivariate
distribution function whose margins are both uniform on [0,1]. Sklar’s
theorem for copulas says that for any two (marginal) distribution
functions FX, FY, and for any copula C, function FXY defined by

FXY x, y( ) � C FX x( ), FY y( )( ) (7)
is a valid bivariate distribution function having marginal FX and
FY [24, 25]. The reason for considering copulas is that there is an
already rich literature on various families of copulas C. These can
be useful both in network construction, as well as provide a
tractable model of the dependence structure in a network via a
reduced number of parameters. For example, some well-known
copulas, such as the Gaussian, Frank, Clayton, and Gumbel, are
single parameter copulas. This means that a network can be
specified with as little as two parameters (one for the margins,
and one for the dependence).

The algorithm to build the network has the same steps outside
the loop as before. The steps inside the loop change as follows.

LOOP While there are still unpaired ID copies:

Step 3. Generate a pair of uniform variates (u, v) from copula
model C. Set i* and j* to be F−1

D (u) and F−1
D (v), rounded to the

nearest integer. FD is the cdf of a continuous power law (with
density proportional to x−λ) with support on the interval
[0.5,M + 0.5] (see Supplementary Appendix SA for a closed
form solution for F−1

D ). If either degree class i* or j* is
unavailable, repeat this step.
Step 4. Randomly pick a vertex with degree i*, and another vertex
with degree j* from the set of unpaired vertices (list L). If no edge
exists between the two vertices, pair them and delete one copy of
their IDs from list L.
Step 5. If any of degree classes i* or j* are empty (i.e., have zero
copies), flag them as unavailable.
END LOOP

The advantage inherent in the copula construction algorithm is
that there is no mismatch between the fraction of edges of a certain
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degree pair in the theoretical model, and the fraction of edges in the
same pair present in the final network. The two can be matched
exactly–up to randomness in the algorithm. This is due to the fact
that a copula is consistent with any marginal distribution, unlike
construction via a preference function, which is, in general,
inconsistent with the marginal degree distribution of vertices. A
(relatively small) price to pay is that only a subset of the nominal
copula is used, i.e., roughly speaking we are using only points
C(∑ip

i�1qi,∑jp

j�1qj) where i*, j* � 1..M. When qi is from a power
law, the resolution of this grid will be very coarse in the lower left
corner of the unit square [0, 1]2, and very dense in the upper right.
While not a problem in itself, one should keep this in mind when
selecting a copula model to use.

2.5 Algorithm extensions

The current algorithm can be expanded in a few directions
for increased realism. One fairly obvious extension is to allow
for asymmetric preferences, i.e., fkl ≠ flk, along with a directed
graph. This will likely be a more realistic framework to model,
e.g., friendship networks, where non-reciprocity is observed
[19]. However, even staying in the current space of symmetric
preferences, one can obtain more realistic networks by changing
Step 3 in the algorithm. Currently, priority in forming
connections is distributed in proportion to preference, giving
more opportunity to connect to those more likely to form
bonds. While this is a compelling assumption, it need not be
true in general. Certain covariates in the pair (xk , xl) may
determine who has priority to form bonds. For instance,
students in a school who belong to the same homeroom have
extra opportunities to connect, even if preference to connect is
not higher compared to the average preference across the
school. Similarly, people living in the same city have an
opportunity to connect, which may not be available to those
living in different cities. In general, we may have a model for
opportunity to connect that is independent of preference level.
However, in this subsection we consider a case where
opportunity to connect is based on desirability, computed as
aggregate preference.

One potential mechanism for determining priority in
matching is how desirable, or sought-after, a vertex, or a class
of vertices, is. Assuming homogeneity of vertices in each degree
class, we use the following process to rank desirability. Before any
connection is established, we allow each individual (vertex) to
send messages to other individuals, such that the expected
number of messages received by an individual with degree i
from one with degree j is proportional to fij. Messages are
sent independently, according to the preference distribution of
each sender’s degree. We then define a desirability index (up to a
scaling factor) for each class to be the expected number of
messages received by an individual in that class. The intuition
is that each message received is an opportunity to connect, and
that the more messages someone has received, the more choice
they have, and the more likely they are to get their preferences
met. To compute the index, notice that the expected number of
messages received by an i degree individual from all individuals of
degree j will be fijqjN/(qiN). The total number of messages

received by an individual of degree i (the desirability index of
class i) will then be

DIi �
∑jNqjfij

Nqi
� ∑jqjfij

qi
. (8)

Notice that desirability is heavily influenced by rarity of
certain degrees: if fij ≡ constant, then DIi ∝ 1/qi, so that the
more rare a class, the higher priority it will have. Next, we
can rank classes in order of decreasing desirability, and rewrite
Step 3 as:

Step 3. Select a pair of degrees (i*, j*), where i* maximizes DIi
among remaining unmatched vertices. For this, generate a
random uniform variate u, and select the pair j* to be the
highest integers such that ∑i�i*,j≤ j*Pij ≤ u.

The other steps remain the same as before. This version of the
algorithm effectively blocks classes with low priority from choosing,
and they will end up pairing with whoever is left, after the higher
priority classes are all connected. This will produce a different
network and edge matrix compared to the implementation in
Section 2.2, although a full investigation of this difference is
beyond the scope of the present paper.

2.6 Metrics

For our networks we compute the assortativity coefficient,
defined by [14] to be the Pearson correlation coefficient between
the excess degree of two nodes connected by an edge. This is
given by

r � 1
σ2q

∑
i,j
ij eij − qiqj( ), (9)

where σ2q � ∑jj
2qj − (∑jjqj)2 is the variance of distribution qj.

We further introduce ametric to determine the distance between
individual preferences and where the network ends up. Define the
normalized preference matrix P as in Eq. 3. If P matches e, then all
preferences have been fully met. If not, then define the preference
matching fraction

PMF � min e,P( )‖ ‖, (10)
where min is understood as element-wise, returning a matrix of the
same size as e. PMF will vary between 0 and 1.

2.7 Epidemic spread

Assume that infection lasts for one time unit, after which the
infected individual is removed, as in the standard SIR
compartmental framework. We initially infect a small number of
random vertices in the network. At each time point, infection may
pass with probability α through any edge connecting one susceptible
to one infected individual. Individuals who get infected at time t
become infectious at the next time step. We keep a record of It and
St, which are the fractions (out of N) of infectious and susceptlible
vertices at time t. We do not specifically model the removed
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compartment, but its relative size is just 1 − St − It. We further
compute the effective reproductive number Rt, as It/It−1. This
quantity is important in epidemiology, and will depend
meaningfully on the network structure. If the network is built
according to the Configuration Model, i.e., without higher order
structure, it can be shown that Rt � αh(St), for some function h
which depends on the degree distribution [3, 21]. This one-to-one
dependence on St has profound implications in epidemiology,
because: (i) St is fairly easy to estimate in a population (as
mentioned before), whereas the transmission network is generally
unobservable; and (ii) function h can be estimated empirically
only from data on It [21]. Thus, a natural second question to
ask is whether a similar relationship holds forRt in a network with
assortativity. If it does, then we can summarize the state of
the epidemic through time using St. In this paper, we will
look for evidence of such a relationship from simulation studies.
A mathematical solution will then be the subject of a follow-
up paper.

3 Numerical experiments

3.1 Network generation

(a) Preference function based on degree alone. We simulate
networks with N � 100, 000 vertices starting from the
preference function in Eq. 2 for a variety of γm, γM values.
The vertices’ degree distribution is power law with parameter
λ � 2.5. More specifically, degrees are chosen based on a
frequency table so that the number of vertices with degree
k is Nqk, rounded to the nearest integer. Figure 1 shows the
preference function and edge matrix of the final constructed
graph (both divided by the theoretical CM edge density) for
two illustrative cases: a network with positive assortativity
coefficient (r � 0.81), built using parameter values
(γm, γM) � (1, 1), and one with negative assortativity
(r � −0.17), built from (γm, γM) � (−3, 3). Notice the ridge
along the main diagonal of the assortative network, and the

FIGURE 1
Networks built according to a preference function. Assortative networkwith (γm , γM) � (1, 1): normalized ratio between preference function and CM
edge density (A), normalized ratio between the empirical and CM edge densities (B). Disassortative network with (γm , γM) � (−3,3): normalized ratio
between preference function and CM edge density (C), normalized ratio between the empirical and CM edge densities (D).
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opposite effect–a concavity along the same diagonal for the
disassortative network. Details about visualizing the graphs
are given in the Supplementary Appendix SA. The
assortativity coefficient and preference matching fractions
for the constructed graphs are given in Table 1. The PMF is
generally low, due to the discrepancy between the preference
function and the supply of vertices of the right degree to fill
preferences.

(b) Covariate–induced preferences. As an application to
illustrate the use of Eq. 6, we build a network for a case
when preference to connect is based on income (Y), and
not explicitly dependent on degree. Assume a Pareto
distribution for income, with minimum xm and index τ;
and a power law distribution for degree (D), with
parameter λ, truncated at an upper limit M. Without
loss of generality, take xm � 1. Assume further that Y
and D have a rank correlation coefficient ρ. We model
preference as a function of income as
f(D1, Y1;D2, Y2)∝Yδ1

1 Y
δ2
2 , thus independent of degree.

This form is based on the Cobb-Douglas production
function with individual-specific parameters δk for each
node, which has been used to model the utility of
cooperation between economic agents [26]. It makes

sense to assume that agents’ preference to connect is
proportional to the economic benefit they can derive
from a prospective connection. Agents are constrained
in the number of connections they can form by their
degree, which could be interpreted either as a person’s
time availability to communicate, or a firm’s size, which
limits how many accounts they can service with clients or
suppliers. We have derived a closed form solution for the
marginal degree preference function fi,j in the
Supplementary Appendix SA, which we use to construct
the network. In the numerical experiments we take
the parameter to be τ � 1.16 for the income Pareto
index2, δk � 0.5 for all individual nodes, and ρ � 0.6.
This leads to a network with extremely high preference
for connections involving high degree nodes, as shown
in Figure 2.

(c) Construction via copula algorithm.We construct a network using
the Gumbel copula with parameter θ � 2 as an illustration. This is
a member of the Archimedean class of copulas, having formula

TABLE 1 SIR epidemic summaries for each network type. Average values are based on 200 replicated epidemics, with standard deviation shown in brackets.
Only epidemics that took off were included. tpeak refers to the time of maximum incidence, and Tmax is the maximum length of the epidemic. Size of the
giant component is given below the network name.

Network PMF Assort. coeff. Ctpeak Itpeak Total infected max (Rt) Tmax % epidemics took off

original CM
56,844

– −0.002 0.038 1,059.4 6,902.4 4.57 26.1 67

(0.006) (137.3) (626.0) (2.34) (3.4)

(γm, γM)
(0, 0)
31,082

0.169 0.651 0.029 1,304.8 5,488.9 6.97 19.9 69

(0.004) (40.4) (100.4) (2.38) (2.2)

(1, 1)
26,262

0.085 0.809 0.023 832.8 4,578.4 5.41 23.2 46.5

(0.003) (25.1) (105.3) (1.32) (2.9)

(−1, 1)
43,475

0.184 0.211 0.044 2,052.0 7,722.5 5.55 18.9 67.5

(0.006) (76.5) (133.2) (2.07) (2.1)

(−2, 2)
61,697

0.152 −0.113 0.002 44.6 262.8 6.56 13.8 46

(0.002) (28.9) (297.1) (4.53) (6.9)

(−3, 3)
36,558

0.120 −0.170 0.001 46.9 95.4 8.78 6.8 8

(0.000) (9.9) (20.6) (8.76) (1.9)

(1,−1)
26,383

0.157 0.801 0.022 826.9 4,594.3 5.39 23.3 52

(0.003) (28.5) (104.5) (1.28) (2.9)

(3,−3)
24,189

0.148 0.875 0.014 590.3 3,962.2 4.66 28.4 43.5

(0.003) (69.1) (106.6) (2.99) (4.2)

Gumbel copula
27,440

– 0.877 0.024 846.9 4,660.5 4.94 22.3 41

(0.003) (28.5) (110.6) (1.20) (3.0)

Covariate: Income
28,381

0.112 0.746 0.026 1,077.2 5,031.3 6.21 20.9 46

(0.004) (33.2) (100.0) (1.58) (2.5)

2 This corresponds to the 80–20 rule [27].
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C(u, v) � exp [− (log u)θ + (log v)θ{ }1/θ]. Members of this
particular family range from independence (θ � 1) to
clustering along the diagonal of the unit square (as
θ → ∞) [28]. Moreover, the Gumbel copula is an
example of asymmetric copula that allows one to
control upper tail dependence, while keeping the
coefficient of lower tail dependence at zero. This makes
it useful for modeling co-dependence in the upper tail of
the degree distribution only. Generation of random
variates from the copula in Step 3 of the algorithm is
done via R package “copula.” All other settings are as in
(a). Notice that the degree scatterplot in Figure 2 retains
the general appearance of the spread pattern in the original
Gumbel copula (see, e.g., Figure 8.4 in [28]).

3.2 SIR epidemic results

We run 200 epidemics on each of the generated networks, with
transmissibility set at α � 0.25, and visualize the resulting It andRt

by plotting against the cumulative fraction infected, Ct � 1 − St.
Supplementary Figure S2 illustrates that plotting It versusCt leads to
less variability in the process as opposed to plotting vs. time. This is
because epidemics are driven by stochasticity in the beginning,
i.e., whether they take off and when; however this all happens
when Ct ≈ 0, so it will not show in a plot against Ct. Showing
Rt versus Ct can further reduce variability in the system since, at
least in the CM network, It depends on It−1 andCt (viaRt), whereas
Rt only depends on Ct. Notice from Supplementary Figure S2 that
allRt curves tend to be noisy at the beginning and end–due to small

FIGURE 2
Covariate-induced network (income correlated with degree, ρ � 0.6): normalized ratio between preference function and CM edge density (A),
normalized ratio between the empirical and CM edge densities (B). Network built via Gumbel copula (θ � 2): scatter plot of degrees (C), ratio between the
empirical and CM edge densities (D).
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numbers of infected and hence the role of stochasticity –, but follow
a fairly precise trajectory in the middle, where spread is
deterministic.

Figure 3 shows two networks that exhibit qualitatively
different epidemic curves. The network with a flat preference
function, (γm, γM) � (0, 0) has the highest Rt values among all
networks where epidemics take off (more on this below). This
drives an explosive growth in infections at the beginning, after
which Rt decays somewhat exponentially, compared to the CM
where the decay in Rt looks linear. The network with (γm, γM) �
(3,−3) is the network with the highest positive assortativity of all
networks built via a preference function. What is interesting

about the associated epidemics is both the shape of Rt

(exponential, then linear), as well as how long the stochastic
phase lasts: Rt does not become “deterministic” until about
halfway through the epidemic.

We record summary statistics from all epidemic experiments in
Table 1. In particular, we are interested in the total number of
infections, and in the epidemic curve profile, i.e., how long does the
epidemic last, the size of the peak, and rate of growth at the
beginning (typically indicated by max (Rt), as the effective
reproductive number tends to be highest at the beginning of the
epidemic). These statistics exclude epidemics that die out in the
initial stages. From these summaries we observe that the CM

FIGURE 3
Examples of epidemics over two networks, one having (γm, γM) � (0,0) (A,B), and another (γm , γM) � (3,−3) (C,D). Transmissibility is α � 0.25;
showing 100 realizations.
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network is fairly good at spreading epidemics; most of the other
networks result in smaller epidemics, and only two sustain a higher
number of infections (by about 10%). The CM network also
maintains an epidemic active for the longest time, except for the
(3,−3) network. The performance of the latter is surprising, given

that it has one of the smallest epidemic sizes, as well as the smallest
giant component.

We also investigate how the total size of an epidemic is affected
by changes in transmissibility α. Figure 4 shows this monotonic
relationship for three networks: the CM network, one assortative,

FIGURE 4
Epidemic sizes as a function of α for three networks: assortative ((γm , γM) � (3,−3), yellow), disassortative ((γm , γM) � (−2,2), blue), and neutral (CM
network, grey). Sizes are given as counts of total infections (A), and as fractions of the giant components of the respective graphs (B).
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and one disassortative. The curve for the disassortative network
displays a kink around α � 0.3. Below this value epidemics are
limited in size, but above it, the linear trend takes over until the
entire giant component is infected at α � 1.

4 Discussion

In this paper we introduced an algorithm to construct a network,
based on the idea of preference to form an edge, given as a
parametric function. The main advantage of preference functions
is that they allow for a basic underlying mechanism for how the
network is built, without being overly subject-specific, such as game-
theoretic or ecological networks. This allows for some claim of
plausibility or realism when building a network. This algorithm
does not intend to replace existing rewiring algorithms, which are
efficient when a matrix e is available, but rather it intends to offer a
mechanistic explanation for the genesis of networks, when e is not
known a priori. More generally, we have shown how a preference for
degree can be extracted from a multivariate distribution of features
which includes degree, and a general preference function (which
may or may not depend on degree). By contrast, copulas are
convenient and tractable models of joint dependence, but do not
explain how a dependence structure emerges.

We have also investigated the spread of SIR epidemics on these
networks, in an attempt to generate hypotheses for future work. The
following conclusions and questions emerged:

• The second order structure of the graph (given in matrix e) has
profound implications for the spread of disease. It can either
help to prevent spread, to the point of effectively stopping an
epidemic from reaching any meaningful size, on the lower
range of α values.

• The effective reproductive numberRt seems to be predictable
as a function of St in most cases, leading to the hypothesis that
St provides a good description of the current state of the
epidemic in time. In other words, knowing St and the average
functional dependence of Rt on St enables prediction of the
future epidemic trajectory without knowing the exact
structure of the graph, or the past infection history (which
vertices were infected and when).

• While the assortativity coefficient is meaningfully related to
diffusion spread, it does not correlate with size of epidemics in
a monotonic fashion. The question emerges of whether there is
another graph summary that is more directly related to
epidemic spread.
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