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We present particle-in-cell simulations with Monte Carlo collisions of fusion burn
waves in compressed deuterium–tritium and proton–boron plasmas. We study
the energy balance in the one-dimensional expansion of a hot-spot by simulating
Coulomb collisions, fusion reactions, and bremsstrahlung emission with a Monte
Carlo model and inverse bremsstrahlung absorption using a new PIC model. This
allows us to self-consistently capture the alpha particle heating and radiative
losses in the expanding hot-spot and surrounding cold fuel. After verifying our
model in a code-to-code comparison with both kinetic and fluid codes for the
case of a deuterium–tritium hot-spot, we simulate the expansion of a
proton–boron hot-spot initialized at 200 keV and 1,000 g/cm3. Our model
predicts that energy radiated by the hot-spot is recaptured by the surrounding
high-density opaque fuel reducing the expansion work done by the propagating
burn wave. As a result, we find the net fusion energy produced over the course of
$20$~ps is twice the initial hot-spot energy independent of whether radiation
physics is included.
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1 Introduction

Recent experiments at the National Ignition Facility (NIF) demonstrated fusion ignition
of an inertial confinement fusion target [1, 2]. The experiment used deuterium–tritium
(D–T) fuel because it has the largest fusion cross section at the lowest center-of-mass energy,
and therefore the lowest density and temperature requirements to reach ignition conditions.
There are, however, various challenges that come with using DT fuel: the radioactive isotope
tritium is not naturally abundant, is expensive to breed, and decays relatively quickly (half-
life of ~12 years). The D–T fusion reaction
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D + T → n + α + 17.589MeV (1)
produces a helium-4 ion (4He or α) and a high-energy neutron.
Unlike the charged α that is likely to thermalize with the
surrounding plasma, the fusion-produced neutron can escape the
target and damage reactor material. Potential reactors that use DT as
the primary fuel will require significant radiation shielding to protect
surrounding equipment and operators, as well as thermal
conversion systems to extract energy from the neutrons.

Alternative fusion fuels exist; however, their reactions have
smaller cross sections and need higher center-of-mass energies
and so require higher densities and temperatures to reach
ignition conditions. Figure 1 shows the fusion cross sections
[3–5] as a function of the center-of-mass energy for D–T,
deuterium–deuterium (D–D)

D + D → p + T + 4.03MeV,
n+3He + 3.27MeV,

{ (2)

deuterium–helium-3 (D–3He)

D+3He → p + α + 18.35MeV, (3)
and proton–boron-11 (p–11B),

p+11B → 3α + 8.68MeV. (4)

Of these reactions, p–11B is promising because the reactants are
naturally abundant and the reaction products are all charged
particles that can be directly captured by the surrounding plasma
or directly converted to electricity, thus significantly reducing
shielding requirements and improving plasma coupling. The peak
cross section, however, occurs at a temperature that is an order-of-
magnitude larger than the peak cross section for DT, so achieving a
thermonuclear p–11B burning plasma requires significantly higher
temperatures (in excess of 100 keV, whereas the temperatures
achieved in the recent NIF experiments were ~10 keV [2]).
Additionally, the higher temperatures and effective charge of the
plasma (due to boron’s higher atomic number, Z � 5) significantly

increases bremsstrahlung radiation in thermonuclear p–11B
plasmas. It is important to understand the balance of radiation
emission and absorption to determine whether and how much net
fusion energy gain is possible.

In order to improve the feasibility of p–11B fusion,
nonequilibrium conditions are being considered [6–10].
Mehlhorn et al. [11] discusses the need to increase the reactivity
of p–11B in order to achieve target gain in an inertial fusion power
plant and the possibility of initiating nonequilibrium thermonuclear
burn using ultrashort pulse lasers (USPL). For example, in fast
ignition [12–14] a target is spherically compressed to many times
solid density; then, a USPL strikes the target or a nearby foil,
generating a source of high-energy particles that in turn heat the
compressed fuel. This produces the high relative energies and
temperatures needed to achieve ignition. Another approach
proposes irradiating a solid target with high-powered lasers to
produce MeV protons that are injected into a background p–11B
plasma confined within a magnetic bottle [8, 15]. It is theorized that
sustained chain reactions and long confinement times will lead to
the production of net energy gain. There are many proposed
mechanisms for initiating or enhancing a fusion burn [16] that
encourage further development of numerical models to help
investigate.

We present numerical simulations of burning p–11B plasma
using the code TRIFORCE, a multiphysics code being developed to help
investigate novel fusion reactor concepts [17, 18]. Part of the
TRIFORCE simulation framework is a particle-in-cell code with
Monte Carlo collisions (PIC-MCC) [19, 20] that models the
kinetic physics present in some reactor concepts, such as the
evolution of nonthermal distributions, beam–target fusion
reactions, and complex particle orbits (particularly in the vicinity
of magnetic nulls). In this paper, we use the PIC-MCC model to
simulate the 1D planar propagation of high-density fusing plasmas
into cold fuel. First, we verify our results against the extensively
benchmarked PIC-MCC code LSP [21, 22] and radiation-
hydrodynamics code HYDRA [23–25] for the case of a DT hot
spot; then, we consider the expansion of a p–11B fusion burn

FIGURE 1
Fusion cross sections as a function of the center-of-mass energy from Bosch and Hale [3], the International Atomic Energy Agency Evaluated
Nuclear Data File [4], and Tentori and Belloni [5].
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wave. Coulomb collisions, fusion reactions, and bremsstrahlung
emission are simulated using the binary Monte Carlo collision
method [20, 26–30], and a new PIC model is introduced to
simulate inverse bremsstrahlung absorption (IBA). We recently
verified the kinetic model in TRIFORCE for Coulomb collisions and
fusion reactions [18]. Here, we discuss the implementation and
verification of a bremsstrahlung model based on the work of
Martinez et al. [28] and IBA model based on the expected power
deposited by the radiation into the plasma [31]. Since radiation
increases rapidly with density, temperature and atomic number, it is
particularly important to include when considering high-density,
high-temperature boron plasmas. Future improvements to the
accuracy of the kinetic model include introducing Compton
scattering [32] and degeneracy effects [33, 34] to the binary
scattering framework.

The paper is organized as follows: in Section 2, we describe the
numerical methods and present verification tests of the
bremsstrahlung emission and IBA models; in Section 3, we
present simulations of fusion burn waves in compressed DT and
p–11B plasmas; and in Section 4, we discuss our numerical results
and the limitations of the current model, and share plans for
future work.

2 Methods

The PIC-MCC method numerically integrates the
Boltzmann equation

∂fα

∂t
+ v · ∇fα + F

mα
· ∇vfα � ∑

β

fα, fβ[ ]
coll
, (5)

where fα(x, v, t) is the distribution function, t is time, x is space, v is
velocity, mα is the mass of the α-particle species, F represents the
forces acting on the particles, ∇v is the gradient operator in velocity
space, and the right-hand-side of the equation is the collision
operator. The Boltzmann equation describes the evolution of the
distribution function in phase space and how each particle responds
to external forces (i.e., collective electromagnetic forces or gravity)
and interactions with other particles (i.e., through elastic and
inelastic collisions). It can be numerically integrated by first
discretizing the smooth distribution function onto a discrete set
of Nα simulation particles (macroparticles), each with weight wi,
position xi and velocity vi, such that

fα x, v, t( ) ≈ ∑Nα

i�1
wiδ x − xi t( )[ ]δ v − vi t( )[ ], (6)

and then successively integrating particle information in time in
response to the sum of the acting forces.

In this study, we consider a simplified model where the only
forces that particles experience are due to binary particle
interactions. This approximation is appropriate for the high-
density, highly-collisional systems we consider in this report, but
can lead to erroneous charge separation that will be addressed in
future studies by considering electromagnetic effects. We use the
binary Monte Carlo collision model [20, 26–30] to simulate
Coulomb collisions, fusion reactions, and bremsstrahlung
radiation. The method works by randomly pairing particles

within a computational cell of the simulation domain and
sampling the probability of the collision or reaction to occur.
This approach allows evaluation of relativistic binary interactions
between arbitrarily weighted particles. Reference [18] describes and
verifies the method for several scattering channels implemented in
TRIFORCE using the binary collision method, including Coulomb
collisions and fusion reactions. In Sections 2.1, 2.2, we describe
how the bremsstrahlung emission is implemented within the binary
scattering framework and we introduce a new model for simulating
radiation absorption.

2.1 Model description

2.1.1 Bremsstrahlung emission
Bremsstrahlung emission was incorporated into TRIFORCE using

a method similar to the binary collision algorithm presented by
Martinez et al. [28]. We implement the same kinematics and cross
sections as Martinez et al., but handle arbitrary particle weighting in
a different manner: Martinez et al. randomly pairs particles within a
computational cell and accounts for arbitrary numerical weights
when computing the reaction probability by following the methods
of Nanbu and Yonemura [26] and Pérez et al. [27], while our
implementation follows the corrected binary method developed by
Higginson et al. [30].

The probability P for bremsstrahlung emission to occur between
a random pair of electron and ion macroparticles in a time step Δt is
computed and sampled with a uniform random number U ∈ [0; 1].
Because emission cross sections are reported in the ion rest frame,
the probability that an electron–ion collision leads to the emission of
a photon is computed in the ion rest frame (denoted with primed
quantities):

P � neffσBvrelΔt � neffσ′ve′γe′Δt
γeγi

(7)

where σB is the bremsstrahlung cross section and vrel � |ve − vi| is
the relative electron–ion velocity. The Lorentz transformation of the
electron into the ion rest frame is

ve′ � ve + γi − 1

β2i
βe · βi( ) − γi[ ]cβe, (8)

γe′ � γeγi 1 − βe · βi( ), (9)
where γi and γe are the ion and electron Lorentz factors, βi � vi/c
and βe � ve/c are the normalized ion and electron velocities, and c is
the speed of light. The pairwise effective number density is

neff � Neiwmax/V, (10)
where the number of possible partners Nei is the maximum of the
number of electrons Ne and ions Ni in the cell, wmax is the
maximum of the electron and ion weights we and wi (accounting
for particle duplications), and V is the volume of the cell. Additional
details on duplicating and pairing macroparticles are found in
Higginson et al. [30]. To improve particle statistics, we include
an additional tuning parameterMp that allows the user to artificially
increase the probability that a photon is created, and
correspondingly, reduces the weight of the emitted photon to
maintain the physically-correct reaction rate.
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A reaction occurs when U<P and results in the reduction of the
electron’s energy and the emission of a photon of normalized energy
k = Zω/mec2 with weight wγ � min(we, wi)/MP. The photon
macroparticle is created with the same location and direction of
the electron, with energy k′ sampled from the numerically inverted
cumulative differential cross section dσB′ /dk′. The electron energy is
reduced by the photon energy, i.e., γ′′e � γe′ − k′, and then an inverse
Lorentz transformation is computed to transfer the electron and
photon into the simulation frame.

Bremsstrahlung differential cross sections as functions of the
emitted photon energy are either loaded in from Seltzer and Berger
[35] tables (collected from the Geant4 database [36–38]) or
computed using the model introduced by Martinez et al. [28].
Seltzer–Berger differential cross sections are shown in Figure 2

for atomic numbers Z � 1, 2, and 5. They are derived from a
combination of computational and theoretical models assuming
cold neutral ions. The analytic bremsstrahlung cross sections
derived by Martinez et al. [28] consider screening effects in
arbitrarily ionized plasmas by combining Thomas–Fermi and
Debye (TFD) screening potentials and assume the plasma is
charge neutral and in thermal equilibrium. Figure 3 compares
differential cross sections for the two models for boron showing
that the longer-range shielding at higher temperatures leads to
higher cross sections at lower photon energies in the TFD model.
At present, in our simulation framework we update the TFD cross
sections on a cell-by-cell basis since the Debye length of the cell
varies with the evolving plasma; methods to avoid frequent
recalculations are under investigation.

FIGURE 2
Bremsstrahlung differential cross sections as a function of k/(γe − 1), the emitted photon energy normalized to the electron energy, for atomic
numbers Z � 1, 2, and 5 are shown for electron–nucleus interactions with energies equal to (A) 10 keV, (B) 100 keV, and (C) 1 MeV. Cross-section tables
based on Seltzer and Berger data [35] were collected from the Geant4 database [36–38].

FIGURE 3
Bremsstrahlung differential cross sections of Seltzer and Berger [35] compared with analytic expressions from Martinez et al. including screening
effects from bound electrons, free electrons, and ions (curves) for electron–ion interactions with energies (A) 10 keV, (B) 100 keV, and (C) 1 MeV. The
temperature correction in Martinez’s Thomas–Fermi–Debye model results in an increase in the cross section at low photon energies, shown for plasma
temperatures equal to 1 eV (orange curve), 100 eV (blue curve), and 100 keV.
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2.1.2 Inverse bremsstrahlung absorption
We introduce a new PIC model for simulating IBA, the process of

an electron absorbing radiation as it scatters in the Coulomb field of an
ion [39, 40]. Previous PIC and Fokker-Planck studies of collisional
absorption of radiation typically take wave-based approaches to study
this phenomena [41–49], i.e., oscillations in the electromagnetic fields
directly accelerate electrons. Since our bremsstrahlung emission model
generates radiation in the form of photon macroparticles, we take a
more kinetic approach for simulating radiation absorption. While our
model allows us to simulate the energy deposition of photon
macroparticles in the plasma, by treating photons as classical
particles the model does not retain the collective behavior of the
wave-based approach, and therefore, it is incapable of simulating
phase-dependent phenomena [50].

Our model is based on the power deposited in a plasma by a laser, a
method originally used for ray-based radiation-hydrodynamics

simulations [31]. Consider a laser with wavelength λ and intensity I
that produces an electric field of strength

|Elaser| �
�����
2hcnγ
ϵ0λ

√
. (11)

where the photon number density is related to the laser properties by
nγ � Iλ/hc2. The power the laser deposits in a computational cell of
volume V is

Plaser � ϵ0|Elaser|2ne
nc
]eiV (12)

where ne is the electron density, and nc � ϵ0meω2/q2e is the critical
density (for laser frequency ω � 2πc/λ). The electron–ion collision
frequency is [51]

]ei � 21/2niq2eq
2
i lnΛ

12π3/2ϵ20m1/2
e T3/2

e

(13)

FIGURE 4
Bremsstrahlung emission from a 1-MeV electron beam incident on solid-density boron. The simulation results (markers) match the theoretical
predictions (black curve) for the (A) total photon count and (B) normalized photon energy spectra independent of the ratio of the weights of the electron
and ion macroparticles.

FIGURE 5
Bremsstrahlung emission from 1-MeV electrons in a charge-neutral fully ionized boron plasma at 200 keV and 1,000 g/cm3. Plotted are the
simulated (markers) and expected (curves) (A) photon count and (B) normalized photon energy spectra for the combined Thomas–Fermi–Debye
Coulomb potential model (red) and single Thomas–Fermi potential model (blue).
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where ni is the ion number density, qe and qi are the electron and ion
charges, lnΛ is the Coulomb logarithm, and Te is the electron
temperature.

In the particle-based IBA method, we remove the deposited
energy from each of the photon macroparticles in a cell, and then
distribute it to the kinetic energy of the each of the electron
macroparticles in the cell. The energy lost by a single photon in
a simulation time step due to Coulomb scattering with Nion ion
plasma species is PγΔt where the deposited power is

Pγ � ∑Nion

j

ϵ0|Eγ|2ne
nc
]ejV( ) (14)

and the strength of the photon’s electric field is

|Eγ| �
����
2hc
ϵ0λV

√
. (15)

Finally, the total energy removed from Nγ photons with numerical
weights wγ,

EIBA � ∑Nγ

k

wk
γP

k
γΔt, (16)

is evenly distributed amongst the electrons in the cell. The electron
Lorentz factors γe are increased by

δγe �
EIBA

neVmec2
(17)

FIGURE 6
Simulated laser heating of a neutral electron–hydrogen plasma including bremsstrahlung emission and inverse bremsstrahlung absorption. The
laser with intensity 6.37 × 1012 W/cm2 and wavelength of 526.5 nm is injected into the plasma with density 1.195 × 1021 cm−3 for 1 ns. Shown are the
electron temperature (blue) and hydrogen temperature (red) simulated with TRIFORCE and the electron temperature (black) and hydrogen temperature
(orange) simulated with HYDRA. The difference in heating rates between the PIC-MCC and radiation-hydrodynamics codes is less than 5%.

FIGURE 7
Simulated power density measurements (markers) for a fully ionized p–11B plasma at 1,000 g/cm3. Calculations by Putvinski et al. [52] (curves) are
linearly extrapolated from the original low-density plasma to the considered high-density systembymultiplying by the ratio of the product of the electron
and ion densities. Simulated fusion power density (blue) is in good agreement with the previous work. Putvinski et al.’s [52] radiation power density (red
curve) considered a self-consistent electron temperature evaluated from a power balance with thermal ions and slowing-down alphas, while we
consider an electron temperature in equilibrium with the ions (red squares), two-thirds the ion temperature (red circles), and one-third the ion
temperature (red triangles).
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and their momenta are increased accordingly,

pe′ � pe

����������
γe + δγe − 1

γe − 1

√
. (18)

2.2 Model verification

We verify the bremsstrahlung emission model within the binary
collision framework and IBA PIC model by simulating three test cases:
the first produces bremsstrahlung emission due to a monoenergetic
electron beam incident on cold solid boron; the second is a code-to-code
comparison with HYDRA of laser heating of a hydrogen plasma; and the
third simulates photon emission and absorption by thermal electrons in
a fully ionized thermonuclear p–11B plasma.

In Figure 4, we show the photon count and spectra produced
from solid boron interacting with a 1-MeV electron beam with a
10th of the solid’s ion density. The simulation consists of a single
cubic cell with sides of length 1 μm, a time step of 1 fs,Ne � 1 × 103,
and Ni � 2 × 103, 1 × 104, and 2 × 104 (wi � 5we, wi � we, and
5wi � we, respectively). The simulation results are in close
agreement with the expected evolution of the photon count

Nγ � nenivelσBt, (19)
and photon energy spectra

dNγ

dk
� nenivel

dσB
dk

t, (20)

(shown at 40 fs) for the three cases of particle weighting. In Figure 5,
we consider the same simulation except the solid-density cold boron

is replaced with fully ionized boron at 1,000 g/cm3 and 200 keV.
Bremsstrahlung emission cross sections computed using only the
Thomas–Fermi contribution to the Coulomb potential are shown in
blue, and cross sections computed using the reduced potential
combining Thomas–Fermi and Debye screening are shown in
red. Including the temperature correction increases the total
integrated radiated energy by approximately 4%.

Next, we simulate laser heating of a hydrogen plasma. The
charge neutral plasma starts at room temperature, has a density of
1.195 × 1021 cm−3, and is simulated withNe � Ni � 104 particles in
a single computational cell of size 1 mm × 1 mm × 8.727 μm; the
volume was chosen to match the simulated HYDRA volume used for
comparison. The laser has an intensity of 6.37 × 1012 W/cm2 and a
wavelength of 526.5 nm. It is simulated for 1 ns by injecting photon
macroparticles into the domain each time step of Δt � 1 fs. The Nγ

photons injected each step are initialized with energy Eγ � hc/λ �
3.27 eV, momentum pγ � h/λ, and numerical weight

wγ � nγV

Nγ

cΔt
Δx, (21)

where Δx is the cell-width in the direction of the laser. Because the
bremsstrahlung emission cross section is low at these conditions, we
use a production multiplier of Mp � 100 so photons are created by
both bremsstrahlung and injection. This ensures both radiation
models are tested in the simulation. Figure 6 shows the electron
and hydrogen temperature simulated with TRIFORCE in blue and red,
respectively. The growth in electron temperature leads the growth in
the ion temperature because the radiation is absorbed directly into
electrons. After the laser is turned off at 1 ns, the electrons and ions
quickly reach thermal equilibrium since the relaxation time is short

FIGURE 8
Simulated expansion of a 30-keV DT hot-spot into a 10-eV DT plasma considering Coulomb collisions and fusion reactions. The initial interface
between the hot and cold regions with a uniform density of 500 g/cm3 is at 20 μm. (A, F) Electron, (B, G) deuterium, (C, H) tritium, (D, I) alpha, and (E, J)
neutron density and temperature profiles are shown at 4 ps simulated with LSP (black) and with TRIFORCE (orange). Also shown are the electron and ion
densities computed with HYDRA (blue).
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compared to simulation time (]−1ei ≈ 10 fs). A similar simulation was
performed with the radiation-hydrodynamics code HYDRA for which
electron temperature is shown in black and ion temperature in
shown in orange. We find the two codes maintain heating rates
within 5% of each other—the final equilibrium temperature is
110.5 eV for TRIFORCE and 105.5 eV for HYDRA.

For the third test case, we measure the radiation and fusion
power density in a fully ionized p–11B at 1,000 g/cm3 between 50 and
700 keV. The fusion algorithm is discussed in Lavell et al. [18] and is
based on the method introduced in Higginson et al. [29]; fusion
cross sections are shown in Figure 1. We simulate 104 electron,

proton, and boronmacroparticles in a single computational cell with
1-μm sides using a time step of Δt � 0.1 fs for ten time steps. To
ensure an instantaneous power-density measurement, we take a
small time step and do not compute Coulomb collisions. Figure 7
shows the simulated fusion power density in blue markers and
radiation power density (including bremsstrahlung emission and
IBA) in red markers for the cases Te � Ti (squares), Te � 2

3Ti

(circles), and Te � 1
3Ti (triangles). The blue and red curves are

previously predicted fusion and radiation power densities,
respectively, from Putvinski et al. [52] originally performed for a
lower-density system relevant to magnetic fusion systems (np � 1014

FIGURE 9
Simulated expansion of a 30-keV DT hot-spot into cold fuel at 40 ps simulated with LSP (black), TRIFORCE (orange), and HYDRA (blue). Plots (A-D) show
density and plots (E-H) show temperature for the electron, deuterium, tritium, and alpha plasma species. Some smoothing is applied to the results from
the particle codes.

FIGURE 10
The total mass and energy as a function of time for the simulated release of 30-keV DT into cold DT including Coulomb collisions and fusion
reactions betweenD–D, D–T, andD–3He. Shown are the (A) integratedmass and (B) kinetic energy for each of the plasma species simulatedwith TRIFORCE

(markers) and LSP (curves).
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cm−3 and nB � 0.15 × 1014 cm−3) and shown here scaled to the
higher-density system. Putvinski et al. [52] (and previously Nevins
[53]) computed a self-consistent electron temperature based on the
energy exchange rates with thermal ions and slowing-down alpha
products. As expected, our model predicts that the electron
temperature must be lower than the ion temperature for fusion
power to overcome radiative losses.

3 Results

In this section, we present simulated fusion burn waves in
compressed DT and p–11B plasmas in planar geometry.
Simulations are 1D with reflecting boundary conditions at xmin �
0 μm (an approximation of the situation at the core of a spherical
target) and outflow boundary conditions at xmax � 400 μm. The grid
resolution is Δx � 1 μm (the directions not simulated have sizes
Δy � Δz � 100 μm) and the time step is Δt � 0.1 fs. Particles are
initialized at 1,000 particles per cell as Maxwell–Jüttner distributions
[54], integrated ballistically (i.e., there are no external forces besides
particle–particle collisions that only alter particle trajectories and
numerical weights), and an adaptive particle manager is called every
50 simulation steps to reset the particle counts while preserving the
mass and the velocity distributions [55]. For the case of a DT plasma,
we compute Coulomb collisions between all charged-particle groups
and fusion reactions between D–D, D–T, and D–3He (reaction cross
sections are shown in Figure 1). We compare our results to the same
planar simulation computed with the well-benchmarked legacy code
LSP [21, 22] and a fluid simulation computed with the
hydrodynamics code HYDRA [23–25]. After performing the code-
to-code verification with DT plasma, we simulate an expanding
p–11B plasma including charged particle collisions, p–11B fusion,
bremsstrahlung emission from each of the electron–ion
interactions, and IBA.

Figures 8–11 show plasma profiles and integrated metrics from
an expanding DT hot-spot. A charge-neutral fully ionized DT
plasma with uniform mass density ρ � 500 g/cm3 is initialized
with a temperature of Th � 30 keV in the hot region (0< x< 20
μm) and Tc � 10 eV in the cold region (20< x< 400 μm). The total

starting energy in the hot-spot region with volume 20 μm × 100
μm × 100 μm is 326 kJ (an equivalent spherical target with a radius
of 20 μmhas 55 kJ in the hot-spot). Figure 8 shows that after 4 ps the
ion temperature has increased to ~ 80 keV and the electron
temperature has increased to ~ 60 keV due to fusion-produced
alphas coupling with the expanding hot spot. We find close
agreement between our results and those computed with LSP and
HYDRA. The largest discrepancy is the location of the electron front,
with TRIFORCE leading the other two codes by ~ 5 μm. Certain other
small differences, such as the location of the peak of the alpha
temperature, we attribute to differences in computing the Coulomb
logarithm. The presented data uses the relativistic Coulomb
logarithm defined in Pérez et al. [27], and we obtain similar
results using the Coulomb logarithm presented in Ref. [56].
Emitted neutrons are allowed to expand freely and show
excellent agreement with LSP. The density and temperature
profiles of the electrons, deuterium, tritium, and alphas are
shown at 40 ps in Figure 9 (some smoothing is applied to the
profiles from the PIC-MCC results). The result from TRIFORCE

(orange curve) has a faster burn wave front than LSP (black
curve), but we see general agreement in the expansion of the hot
spot. HYDRA has the slowest electron front, lowest electron
temperature, and sharpest shock, but shows general agreement
with the PIC-MCC codes. Figure 10 indicates that the integrated
mass and kinetic energy of each of the species are consistent between
TRIFORCE (markers) and LSP (curves). Similarly, Figure 11 shows we
find excellent agreement between TRIFORCE and HYDRA in the
predicted fusion power and energy. To put these results into
perspective, our simulated DT case is deep in the ignited regime
with ρR � 1 g/cm2 and Th � 30 keV compared to the minimum
energy isochoric reference case of Atzeni and Meyer-ter-Vehn [57]
with ρR � 0.5 g/cm2 and Th � 12 keV.

Next, we consider the case of a p–11B burn wave with increased
initial density, temperature, and hot-spot radius compared to the DT
configuration; the plasma is given an initial mass density of 1,000 g/
cm3, ion density ratio of nB/np � 0.2, hot-spot radius of 100 μm, hot-
spot temperature of 200 keV, and a temperature of 10 eV outside of
the hot spot. We choose an initial hot-spot temperature of 200 keV
because this temperature had the least restrictive electron–ion

FIGURE 11
(A) Fusion power and (B) total fusion energy produced from the DT hot-spot simulated with TRIFORCE (blue) and HYDRA (orange).
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temperature ratio in the power balance measurement to achieve
more fusion energy gain than radiative losses (see Figure 7). The
initial total kinetic energy in the hot-spot region with volume
100 μm × 100 μm × 100 μm is 35 MJ (an equivalent spherical
target with a radius of 100 μm has 147 MJ in the hot-spot). Figure 12
shows the density and temperature of the electrons, protons, boron
ions, and alpha particles at 10 ps and 20 ps for three cases: radiation
enabled with Seltzer–Berger bremsstrahlung cross sections (red),
radiation enabled with the temperature-dependent TFD
bremsstrahlung cross sections from Martinez et al. [28] (blue),
and radiation disabled (orange). Including radiation removes

thermal energy directly from the electrons, slows the propagation
of the burn front, and reduces alpha heating of the ions. Notably,
IBA quickly raises the temperature of the surrounding fuel to several
keV reducing the stopping of alpha particles compared to the no-
radiation case. More energy is removed from the electrons using the
Seltzer–Berger cross sections because the values are larger than the
TFD cross sections for boron near 100 keV, as shown in Figure 3B.
The power and integrated energy from fusion and each of the three
electron–ion radiation channels using the TFD model are shown in
Figure 13. After 20 ps the energy produced from fusion is 70.9 MJ
and the total radiated energy due to the three bremsstrahlung

FIGURE 12
Simulated expansion of a 200-keV p–11B hot spot into 10-eV p–11B fuel at 10 ps and 20 ps. Plots (A–H) show density and plots (I–P) show
temperature for each of the simulated particle groups. The initial interface between the hot and cold regions of the isochoric plasmawith density 1,000 g/
cm3 is at 100 μm.We compute Coulomb collisions between all particles, p–11B fusion, and consider the cases where radiation emission and absorption is
enabled using Seltzer–Berger tables (red) and the TFD model (blue), as well as the case where radiation is disabled (orange).
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channels is 71.7 MJ. When the radiation model is disabled, the
integrated fusion energy after 20 ps is 73.4 MJ. The model predicts
only a small decrease in net fusion energy in the simulated time
because most of the radiated photons are re-absorbed by the high-
density opaque plasma. If radiation absorption is not included in the
model, the predicted fusion power drops below 1 MJ/ps due to
radiative losses.

4 Discussion

Previous studies of the energy balance in p–11B burn waves solved
systems of coupled differential equations dependent on analytic
expressions for electron–ion energy exchange rates through
collisions, bremsstrahlung power, fusion power, as well as other
effects [58, 59]. In this study, we implemented and verified a
bremsstrahlung emission model and introduced a new IBA model
in a PIC-MCC code and used this fully kinetic model to investigate the
planar propagation of fusion burn waves in compressed DT and p–11B
plasmas. The bremsstrahlung radiation model allows for the
investigation of radiative losses in addition to simulating the
exchange of energy through Coulomb collisions and fusion reactions.

Ourmodel predicts that including radiation increases the transfer of
thermal energy from the hot-spot to the surrounding fuel. While the
electron temperature drops by almost a factor of two due to
bremsstrahlung emission, the cold plasma temperature increases by
almost four orders of magnitude (10 eV–100 keV) due to IBA over the
course of 20 ps. The radiative cooling of the hot spot leads to less thermal
work being done and a slower shock front, whereas, radiative heating of
the cold fuel decreases the stopping of fusion alpha leading to non-local
energy deposition. Currently, our model predicts the development of
additional modes late in time in the density and temperature of the
initially-cold region.While they appear to coincide with the spikes in the
temperature of the alphas, we are still working to understand if these
modes are physical or numerical artifacts.

There are certain limitations to our simulation results due to
missing physics. The absence of electromagnetic fields in these

simulations means that we do not currently capture the collective
effects and instabilities that stem from particle coupling at long
range. This is expected to have an impact on the separation of the
electron and ion wave fronts and the burn wave propagation speed;
more specifically, it will reduce the electron heat flow and increase
the ion heat flow through a pressure gradient. The omission of field
effects is evident in the discrepancy between electron and ion
densities in Figure 9 where the electron pileup at the shock front
exceeds the ion density. While charge separation is not seen in the
charge neutral HYDRA solution, we expect long-range electron–ion
coupling will play a minor role in the overall plasma dynamics.
Electromagnetic LSP simulations of the DT burn wave (not shown in
this report) predicted field energies that were ~ 0.3% of the total
particle energy and showed little difference in the plasma motion
compared to the case computed without fields.

A greater limitation to our results is that the planar description
of expansion underestimates the thermal expansion work compared
to spherical expansion, and therefore, our results predict a faster
wave front, less ion cooling and more self-heating of the hot spot
than expected in an equivalent ICF target. However, planar
expansion also underestimates the available fuel mass for the
wave to propagate through and burn. Simulating the strongly
ignited DT case in 1D spherical geometry with HYDRA (not
shown in this report) led to an increase in the fusion power from
7 MJ/ps to 45 MJ/ps and fusion energy from 190 MJ to 430 MJ at
40 ps compared to the case simulated with planar geometry.

We note that, in light of the foregoing limitations, this work is
not intended to argue the case for p–11B fusion or provide a design
point for ICF targets. The goal of the present work is to test and
verify TRIFORCE in its current state; future work with TRIFORCE

(including both the physics mentioned above as well as
additional effects) will address the question of what target
designs might make p–11B fusion feasible.

In future work, we will continue to improve the model and
explore the ignition space of p–11B. For example, inclusion of
Compton scattering [32] and elastic nuclear scattering within the
binary Monte Carlo collision framework will improve the accuracy

FIGURE 13
Fusion (black) and radiation (orange, red, blue, purple) (A) power and (B) total energy for each of the reactions using the TFD model for
bremsstrahlung cross sections simulated during the expansion of a hot spot of p–11B into a reservoir of colder p–11B fuel.
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of our burn wave simulations. We anticipate these effects will
improve plasma coupling and boost the fusion yield. We also
plan to include quantum effects that are relevant to the warm-
dense-matter regime we are considering, where it is theorized the
stopping power will decrease thus increasing the likelihood of fusion
chain reactions [60]. There exist methods for simulating degenerate
particles with Fermi–Dirac statistics by enforcing the Pauli exclusion
principle and modifying the collision frequency that we plan to
include in the future [33, 61, 62]. Following the work of Liu et al. [34]
that proposed proton fast ignition of warm dense p–11B, we expect
that including degeneracy effects will improve the ion coupling and
fusion gain as particle slowing on the bound and free electrons will
be reduced significantly.

Additionally, we plan to improve the fidelity of future
simulations by including the fast-ignition heating process of a
beam heating an assembled isochoric plasma. Kinetic effects,
such as nonlocal transport where density and temperature
gradients are comparable to or shorter than the mean free path
length, may play an increasingly important role. With TRIFORCE and
the PIC-MCC approach, we can continue to investigate kinetic
physics in reacting multi-species plasmas at extreme conditions.
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