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FSE-RBFNN-based LPF-AILC of
finite time complete tracking for a
class of time-varying NPNL
systems with initial state errors
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2Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing, Xi'an
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The paper proposes a low-pass filter adaptive iterative learning control (LPF-AILC)
strategy for unmatched, uncertain, time-varying, non-parameterized nonlinear
systems (NPNL systems). To address the difficulty of nonlinear parameterization
terms in system models, a new function approximator (FSE-RBFNN), which
combines the radial basis function neural network (RBFNN) and Fourier series
expansion (FSE), is introduced to model each time-varying nonlinear
parameterized function. The adaptive backstepping method is used to design
control laws and parameter adaptive laws. In the process of controller design, we
may encounter the problem of too many derivatives, which can cause parameter
explosions after derivatives. Therefore, we introduce a first-order low-pass filter
to solve this problem and simplify the structure of the controller. As the number of
iterations increases, the maximum tracking error gradually decreases until it
converges to the nearby region, approaching zero within the entire given
interval [0,T], according to the Lyapunov-like synthesis. To mitigate the
impact of initial state errors, a dynamically changing boundary layer is
introduced, along with a series to deal with the unknown error upper bounds.
Finally, two simulation examples prove the correctness of the proposed control
method.

KEYWORDS

adaptive iterative learning control, time-varying non-parameterized nonlinear systems,
backstepping method, Fourier series expansion-radial basis function neural network,
initial state errors, low-pass filter

1 Introduction

Adaptive iterative learning control (AILC) is a useful control strategy for solving
repetitive tracking control task problems for uncertain nonlinear systems. It continuously
adjusts its control algorithm through iterative learning to gradually approach the ideal
trajectory of the unknown system. AILC has extensive application value and promising
development prospects for practical applications. Repeat systems include uncertain robotic
manipulators and uncertain hard disk drivers. The task requirements specify that it can
quickly achieve exact tracking as the number of iterations increases [1-4].

A non-parameterized nonlinear (NPNL) system refers to a dynamic characteristic that
exhibits a complex nonlinear relationship and unknown parameters, making it difficult to
design effective control strategies. It is particularly challenging to achieve high-precision
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FIGURE 1

Variation in yo,yq1,Z1,0 over time without iteration.
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FIGURE 2
Variation in yso,yq1, 2150 over time during the 50th iteration

tracking and control within a limited time frame. Traditional control
methods often require the establishment of a mathematical model
for the system, but for the NPNL system, this step is usually very
difficult or even impossible to complete. AILC technology has
become an important method for solving these problems [5, 6].
There are many challenging problems in the research of
AILC. This paper considers three difficult problems of AILC.
The first problem is the processing problem of uncertain
with
parameters. In the field of control, the control problem of

nonlinear ~ parameterization  terms time-varying
nonlinear systems with uncertain time-varying parameters is
very challenging. Adaptive control and robust control are
common methods to deal with uncertain problems [7, 8].
Through learning, adaptive control can mitigate the impact of
uncertainties. In order to handle uncertain nonlinear terms,
adaptive control is often combined with some approximation
methods, such as neural networks (NNs) and Fuzzy Logic
Systems (FLSs). However, these adaptive controls only solve
the uncertain linearly parameterized disturbances and ensure

the stability of the system [7-20]. For the uncertain system, a

Frontiers in Physics

10.3389/fphy.2024.1442486

6 T T T T T L L 1 1
L—change curve of output Y100
g 5 —reference trajectory y . )
N.-" s - change curve of error 2 i
S
o 3 -
o
&
o2 7
o
>
- 1 7
°
] BT AP PP PR P PP PR .,
1 L L L L L L L L
0 0.5 1 1.5 2 25 3 35 4 45 5
time
FIGURE 3

Variation in Y100, Y41, Z1,100 over time during the 100th iteration.
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FIGURE 4
Variation in max (|z1x|) according to the iteration index.

fuzzy AILC was presented [21]. The composite energy
function-adaptive iterative learning control (CEF-AILC) is an
effective scheme for systems with time-varying disturbances
[21-23]. Few AILC research results focus on uncertain, non-
parameterized nonlinear systems [24-26]. Specifically, for
systems with non-separable time-varying parameters, the
tracking control problem on finite time intervals is still an
open problem.

The second problem of AILC is ensuring complete tracking over
a finite time interval when the initial state has errors. In these studies
[27-31], the stability analysis section requires that initial state errors
be strictly zero. Although the research on this problem is well done
in traditional D-type or P-type ILC [32-41], it has not been well
solved based on Lyapunov analysis for AILC. Specifically, in the
presence of an initial state error, ensuring the system’s completion of
accurate tracking tasks within a specified time frame presents a
complex challenge. [39] solved the tracking control problem of the
unmatched uncertain NPNL systems. [41] solved the tracking
problem of a class of high-order nonlinear systems with random
initial state shifts, which relaxes the requirement of initial
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FIGURE 5
Variation in max (|zx|) according to the iteration index.
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Variation in |luk|l according to the iteration index.

positioning in ILC. So far, no relevant research results have been
found for AILC applied to NPNL systems with uncertain time-
varying parameters and initial state errors.

The last problem is parameter explosions after the derivative of
the virtual controller. When designing a controller, we may
encounter the problem of too many derivatives, which can cause
parameter explosions after derivatives. Addressing this issue and
streamlining the controller’s structure to ensure the effective
tracking of the non-parametric, nonlinear, time-varying system is
a challenging and crucial problem. [42-44] employed a first-order
low-pass filter to address the challenge of parameter explosions and
achieve satisfactory performance. Therefore, we introduce a first-
order low-pass filter to solve this problem and simplify the structure
of the controller.

Motivated by the above discussion, we will use a low-pass filter
AILC (LPF-AILC) method for uncertain time-varying NPNL
systems. The AILC is given by the adaptive backstepping
technique and Lyapunov-like theorem. In response to the
difficult issues discussed above, the main contributions of this
article are as follows:
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1) An LPF-AILC strategy is proposed for a class of strongly time-
varying, non-parameterized, nonlinear systems combined with
a new approximation method.

2) The processing problem of uncertain time-varying nonlinear
parameterization terms was solved. This is a very important
and difficult problem. Specifically, in the field of AILC, no
relevant research results have been found.

3) The difficulty problem of AILC is ensuring complete tracking
on a given interval when the initial state has errors.

4) The problem of parameter explosions was solved by
applying a derivative to the virtual controller and
simplifying its structure.

In this paper, a combination of Fourier series expansion and
radial basis function neural network (RBFNN) (FSE-RBFNNSs) is
used to model the uncertain, time-varying nonlinear dynamics by
using their uniform approximation [24, 38]. An updating time-
varying boundary layer is used to design the error function to deal
with the initial state error. A common convergence series
sequence is employed to mitigate the impact of approximation
errors on the control performance of the system. A low-pass filter
was introduced to solve the problem of parameter explosions
resulting from the derivative of the virtual controller and simplify
the structure of the controller. Theoretical analysis can
demonstrate the bounded nature of all signals within the
closed-loop system. The maximum value of errors will
gradually converge to a narrow range close to zero as the
boundary layer width satisfies the convergence condition with
the number of iterations. Finally, two simulation examples are
given to prove the effectiveness and correctness of the
control method.

2 Problem description and
mathematical foundations

2.1 Problem description

Uncertain time-varying NPNL systems are considered:
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%L,k = X4+ f1 (9_C1,k, 0, (t)) + g1 (fl,k)

Xik = Xivng + fi1 (X 0: (1) + gi (Xix) )
xn,k = U t+ fn (-’?m,lo en (t)) + In (xn,k)
Yk = X1k

where X, = [x14, .. - ,xi,k]T € R'and x = X, represents measurable
state vectors. uy € Risthe control input. y, € R is the system output.
fi(Xig 0: (1), gi(xix), and i=1,2,..

varying functions, and 6;(t) represents unknown time-varying

.,n are uncertain time-

parameters. k denotes the iteration time.
The design objective of this article is to find u (¢) for system (1)
to ensure that yy (¢) follows the ideal trajectory y4 (t) on [0,T].

2.2 Mathematical foundations

The mathematical knowledge used in this article is provided
with relevant references, and the specific definitions and principles
will not be elaborated. Here, we only provide the conclusions that
need to be used in this article.

In system (1), the processing of unknown time-varying,
fxe0@®) is a
challenge. Since the function 6(t) is not known, 6(t) is expanded
using Fourier series as 0(t) = MT®(t) + &g (), I8¢ ()] < 8g; based
on this, uncertain time-varying nonlinear functions f (y,, 0 (t)) can

nonlinear, parameterized function terms

be approximated as

S (oo 00 (£)) = WS (o M@ (8) + B + O )
A new FSE-RBFNN approximator is built:

Gt t) = WieS (X My @ (1)), (3)
representing f (y,, Ok (1)) as

f Qe Ok (1) = Wl‘S (e M;f@ (1) + Sk (s ) 4)

where

Ok (1) = 8ra + WS (X My ® () + 8gi) = WS (xo My @ (1)).
(5)
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Assumption I: In the compact domain Qy, the weights W and
Mj are constrained, and [Wg||<w,x and |Mg|<mgx with
Wy k> M being unknown positive numbers.

Lemma 17 For (y,., 0k (£)) € O, 8k (x4 ) in (5) is bound, and

18k (o £)1 < B, (6)

where 8 represents the supremum of & (y,, t).

Because W and M are unknown, we estimate them with W
and M, respectively. Wi =Wy — Wi and My = My — M are
estimation errors.

Lemma 2U%): In the surrogate model (4), the following
conclusion holds:

WIS (1 MEO(0) = WS (1 M,0(0)
- Wf(s(xk,Mqu)) _§IML @ (t)) WIS D (1) + d,
(7)

with
.,p, and the remainder

where St = 81 80) ..., Spx] € R™P $he =
(9s; (xp wk))/awklwk:m@(t) and i=1,..

dy is bounded by
~T A Ay T
ldil < IMille® (OW SElle + IWlISEM @ O + Wil (8)

For the processing of the supremum of each error term, this
article introduces the following typical series sequence:
Lemma 2P For a sequence Ay = {%}, where k=1,2,--- and
1>2, the following result exists:
. i 1
lzmkﬂmzi:ﬂ <2. 9)
i
Assumption 2: The initial error value at the beginning of each
iteration should meet |z;x (0)| = €;x with €;x being a convergence

series sequence, where i = 1,...,n.
Considering the initial errors, a new function zgf;:] is accepted:
Zk
Zok = Zk — t)sat
sk = 2k — ¢ (1) <¢k(t)> (10)
¢ () = exe™,
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where sat is the saturation function given as

1 if Zk>¢k (t)

A\ E
sat<¢k (t)) =16, if zp<¢ (1)
-1 if Zr < — ¢k (t)

with ¢, (t) being an updating time-varying boundary layer. When
limic0zpx =0 and considering assumption 2 again, we have
ll‘mk_>00|zk| =0

In order to prevent the problem of gradient explosion, we
introduce the first-order low-pass filter 3, which is given as follows:

B = =&k (B — o), (11

where f3; results from filtering an instruction with oy as its input,
with ay being the virtual controller, & >0, and f; (0) = ax (0).
Because part of ay B, —ax cannot pass through the filter, an
error compensation mechanism ( is introduced to overcome the
influence of the instruction filter. Therefore, a new function Zj is

introduced as follows:

Zk = zgx — (. (12)

3 AILC design

Based on the above mathematical foundations, we present the
specific controller design process.

3.1 Designing the AILC controller

Step 1: Denote N; = w?,,, which will be defined later. z; =
X1k — a1 and 2ok = Xk — 1k, Where o is the virtual controller.
Because the initial state values of the system have errors and gradient
explosion, the new error functions Z, and Z, are given as

Zig = 21k (1k

~ t)”t<¢lk<t>> (13)

21k = X1k — Ya1
¢y, (1) = ere M,

Zok = 224k (21(
= by t)sat(

2ok = Xok — ﬁl,k
¢ () = rpe™™.

Z1pk =

¢2k(f)> (14)

22k =

We recall that
Xk = Xk + f1 (X1 01 () + g1 (X1k)- (15)

Given the derivative of z;4x,

Zig — ¢1,k if  zie>¢,(0)
zlg‘),k = 0 ) if Zik < ¢l,k (1)
Z.I,k + ¢1,k if Z1p < — (/51,)( (t)

= Zy— sgn(zw,k(t))ﬁbm
=z + B + (21,'10 01(1) + g1 (%1.)
Vi~ Sg”(zl“”k)(pl’k'
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Therefore, the derivative of Z;, with respect to time is
as follows:

Zlk = sz+/31k+f1(x1k,91(t)+91(x1k)

(17)
~Var ~ Sg”(zl¢k)¢1k {1,k
The error compensation mechanism is considered
as follows:
(.l,k = ﬂ1,k + (z,k - ’71(1,k - Ay k- (18)

Using Equation 18, we can find the time derivative of the error
function as follows:

Zik = Zag = Cope + Mylipe + k= Jy

+f1 (xl,k) 0, (t)) + g1 (xl,k) - Sg”(zm,k)ﬁbl)k- (1)

The unknown time-varying, nonlinear functions f (X1, 0 (t))
and g; (X1 ) may be approximated by FSE-RBFNN and RBFNN,
respectively.

F1(Zie 01 () = Wi S (R M{ ¢, (£) + 81

20
1 (515) = WT,S,0 (1) + 81, 20

where 671 and §; are the truncation errors after approximation and
Wy and W, are weight vectors.

Consider Ay =4, a>0, and [>2. The virtual control law is
designed as

o T _ ~ T AT _
X = —Wfl,ksfl(xl,k,Ml,k‘Dl (t)) - ng,ksgl (Xl,k)

1)

-1 )
_Nl,kA_Zl,k + ydl - 11121,10
k

By substituting Equations 20, 21 into Equation 19, we obtain

. ~ 1
Zik = Zop — Nl,kA_Zl,k = Cop + 114Gk
k

_ ~ T _ ~ T

+W?18f1 (xl,k, M{q)l (t)) + 6f1 - Wfl,ksfl (xllk, Ml,chI (t))
_ ~T _

+W§18g1 (X1x) + 0g1 - W 14Sg1 (¥1x)

M2k~ Sg”(zl¢k)¢1,k ()

:sz_le Zig = Coge + M8k

AV
_ N T
+Wflsf1 (xl ko> M (O (t)) flksfl(xl,lo Ml’k(Dl (t))
Sgl (xl,k) + 6f1 + 6g1

+W Sgl (Xlk) ngk

P,k (t)sat( + (o

¢zk(t)
M2k~ Sg”(zl¢k)¢1 i (1)

= Zz,k—le

A Zig+ ¢2k(t)sat<

Sfl (xl k> M D, (t))

bk (t)
. T
W, ksfl (xl,k, M, ®, (t))
+W9 Sgl (xl k) ng kSgl (il,k) + 5f1 + 6g1
M2k~ Sgn(zlvlk)ﬁbl,k () + ’71,k(1,k’
(22)

where Wfl,k, ng o Ml © and Nl « are estimations ofol, W1,
M, and Ny, respectlvely Wﬂk = Wﬂk Wy
Wik =Waik — Wy, Mix=My-M;, and Nyg=Nix-N,
are the estimation errors. It can be proved that the following
result is correct.
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1,21k ~ 01 b1k (t)sat<
1 (1)

=sgn(z1px)$,5 (8) + 1,1
“MZigk + MGk

M2k = Sgn(zw,k)fi’l,k ®) +m,Cix

—Sgi’l(lm,k)(él,k (t) + ’11¢1,k (t))

= —Wl(zlqs,k - (l,k)
1, Lk

Using Equations 7, 23, Equation 22 can be rewritten as

Zik = Zog— le Zik—

A
~T Ii AT 4y AT

W (S (%100 M1, 01 1)) = 111, 01 ()
~T A ~T ~T _

+Wf1 kallle k(Dl (t) - ngsgl (Xl’k)

Mk

Lk

100 10 20 30 40 5 60 70 80

Iteration index k

90 100

> where g1y, Tgi1, Dots and Ty are adjustable matrices, each

being positive, definite, and symmetric. Consider the derivative of

V1 by system (25), we obtain

Vik = ZipZog -0, 22,
+Wf1 krfll(I‘fll(sfl(iclvk’Mf,kq)l (f)) - §f'1,kM1T,k(D1 (t)>Zl,k
(23) +wf1k) ngkrw( Ty11Sy1 (F14) Zok — glk)
+M ry_nn( m11q>1(f)Wf1 WShrZug +M1,k)
_Nl’kAlkZik + 0 Zig+ F;HNLinILk
<SZiZoj— 123,
(24)

W11 ) = Wyt (TonSan (1) 21k = Wone )
+dy + 051 + 01 +¢2k(t)sat<¢ o) fLk gLkt g1 tglt g1 (¥16) 21k gLk
~T __ ~T A 2
" +M1,krm111( L @ (t)WflkallkZlk+M1k>
(1) : 1 1
Let w; =d; +85 + 04 +¢2,k(t)sat(Z:Et)), where d; is the _le Zlk+ A W 22, Ak FT NN
remaining term of the estimation error after FSE-RBFNN
= ZlkZZk mz

expansion, and d; is also the same; then, Equation 24 becomes

. ~ 1
Zip = Zoj — Nl,kA_Zl,k — ML+ Wy
"

W T I
<Sf1<x1,k: M, D, (t)> - Sf’l,le,k(Dl (t)>

~ T ~T _
+Wf1 kal,le)kq)l (t) - ngsgl (Xl,k).

Assumption 3 The remainder
$iori (Dsat GG (1= 1,2,

and wyy; > 0.

Remark 1: This assumption is easily satisfied because 1) d;, § fis

and d,; are bounded and 2) when #; is large enough, ¢, (t)sat (Z’k () )

is sufficiently small.
The Lyapunov-like function is chosen as follows:

Vie = Z1k+ Wflkrfnwflk"' ngk gllW &

1
- le,

1
5 Mlkr 2 nll

M+
2 1,k

mll
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w; :di+8fi+6gi+
..,n—1) is bounded with |w;| < Wy

+Wf1k) ngkrg11< gllsgl (xlk)Zlk_ng,k)
+M1krmll( mn(Dl(t)Wfl ksfl,kzl,k +M1,k>

_Nl'kA_kZik +

(25)

A_kNl'kZI‘k + ZAk + F;lllNl,kNl,k
= ZyZok — ’71Zik
+W, T

+Wf1,k> ng kl‘g“( ToiSg (X16) Z g — ng,k)
~T ~T A S
VLT (T @1 (W) ShaZus+ M)

- 1 % 1
_Nl,kr;h(rnllA_kZik - N1,k> + ZAb

(26)

We choose

06

where for any >0 and mn<im? + in’r, r = A

A AT
+Wf1 kl"ﬂl(l"f”(Sfl(xl k>M1 kq) (t)) - Sf’l,le,kq)l (t))Zl,k

_ ~ T o v
+Wfl krf” (rfll (S (xl’k, Ml,k(Dl (t)) - Sf’l,le,chI (t))Zl’k

I &1 T
fLk f11<rf11<5/1(x1,k’M1,k(D1 (t)) - ShHxM, D, (t))Zl,k

27)
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5 _ AT ar T
Wik = —Trul S| X1p M O (8) | = Sq1aM @1 () ) Z1k
ng,k = rgllsgl (fl,k)zl,k (28)
N ~T ~
Ml,k = -Tm®; (t)Wfl‘kall,kZI,k
’\ 1 )
Nl,k = rnnA—kZLk,
so Equation 27 becomes
. , 1
Vik<ZipZoj — ’71Z1,k + ZAk' (29)

Step 2: Denote N, = w3,,, which will be defined later. Due to
initial state errors and gradient explosion, we introduce the
following error function Zs as

Zyg = 3¢k (3,1:
23k
Z3pk = Z3k — t)sat .
T vy o0
Z3k = X3k — ,32,;C
Gy, (£) = espe B

The derivative of Z, is shown as follows:

Frontiers in Physics

07

10.3389/fphy.2024.1442486

<
8000 T T T T T T T T T
6000 1

4000

2000

Norm of estimated parameter N

C 1 1 1 1 1 1 1 1 1

20 30 40 50 60 70 80 0
Iteration index k

100

A
o T T T T T T T T T

—change curve of output Yo

J—reference trajectory y @

| - change curve of error Z 4 J

Yis and error Zy 15

FIGURE 12
Variation in yis, yaq1, 21,15 over time during the 15th iteration.

= Zok = Sgn(zw,k (f))ﬁbz,k - éz,k
Z3k + Bkt f2 (922,.10 0, (t)) + g2 (X2k)
Py - Sg"(zz¢,k)¢z,k = (o

(1)

Let the error compensation mechanism be defined
as follows:

éz,k =Bt Gk = 1,00k = Qi — G2k (32)

Using Equation 32, we can find the time derivative of error
function as

Zog = z3p = (ap + ﬂz,k(z,k + g+ ok — /31,,<

+f2 %ok, 02 (1)) + g2 (X2) = Sgn(zz¢,k)¢2,k' 9

The uncertain time-varying, nonlinear functions f, (X, 6, (t))
and G, (Xx) are approximated by FSE-RBFNN and RBFNN,
respectively.

fo(X2p> 02 (1)) = W§25f2 (X MID, (1)) + 052

_ _ 34
G, (xz,k) = W;ng (xz,k) + 892: (34)
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where &, and &y, are reconstructed errors and Wy, and W, are
optimal weight vectors.
Let the virtual control be defined as follows:

AT _ AT
Ak = —sz,ksfz(xz,k, Mz,kq)z (t)>

~ 1 .
—Nz,kKkZZ,k + ﬁl,k -

WgZ kSgZ (3?2,;()
(35)
NyZ2k — 21 k-

Substituting Equations 34, 35 into Equation 33, we obtain

Zog = —zipx + Cip + 23k — P (t)sat<¢)3k(t)> fox

_ _ ~ T
+W§ZSf2 (Xz,k, ng)z (t)) + 6f2 - sz,kaz(JCz’k, MZ,kCDZ (t))
- _ ~T _
+Wl ng (XZ k) + 652 - WgZ kng (Xz’k)

1
_N2 kKZZ¢k + ¢3k t)Sat<¢3k (t))

—MyZak + 1,00x — 39”(Z2¢k)¢2k

1
= _Zlk +ng —Nzkampk + ¢3k(t)5at<

b5 (t)>
B ~ T
+WfZSf2 (XZ,k, M2 D, (t)) + 6f2 - sz’kaz(xz,k, MZ,k(DZ (t))
B T _
+W;28g2 (x2,k) + 65]2 - ng,k:SgZ (xzvk)
—HyZok + M,C0p — Sgn(zw,k)‘/’z,k’
(36)

where sz > g2 . M2 © and Nzk are the estimators of W s,,
Wy, M, and N, respectlvely szk = szk -Whp,
Wk = Wyak =Wy, Mok =My —M,, and Ny = Nayx - N,
are estimation errors. It can be proved that the following results
are correct.

2ok = G225 ) o4 () + 1,005 = —MoZagk = 1,85 (t)sat< )
Do ®

—sgn(zm,k)%,k () + 1,8k
M2k T ’72(.2,k
=5gn( 220 ) (G (1) + 1,00 (1))
M Zagie + 1,02k

—Wz(zzqs,k - (z,k)

= —1,Zo-
(37)
Using Equations 7, 37, Equation 36 can be written as
. ~o 1
Zok = ~Zik + Lz — Nz,kA_k22¢,k Mok
~T _ ~ T ~ ~T
WL (o R ML, 0 (1)) = 8 ML, 0 (1) o8

~T A ~T ~T —_
+Wf2 ka’Z kMz k(DZ (t) - WgZSgZ (XZ,k)

+dy + 852+ 0gn + by ( t)sat<¢3k(t)

(t
Let @y =dy +872+ 050 + 5, (D)sat (G2,
38 becomes

then Equation

Zoy = _Zlk+Z3k_N2kA Zok — Ny Zok + Wy

~T _

W (S5 ML 02 (0) - Ssd, 02 (1) B9
T A, ~T - _

+Wf2,ka’2,kM2,kq)2 (t) - Wnggz (Xz,k).

The Lyapunov-like function was chosen as follows:
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Vok = Vie+ sz + szkerIWﬁk + Wng gzlwg K (40)
+5M2,krm21M2,k + ErnZINZ,k’

where I 21, [ga1, Tima1, and Iyp; are adjustable, positive, definite,
and symmetric matrices. According to Equation 39, Assumption 3,
and Remark 1, V, can be expressed as

Vz,k = Vlk + szsz +Wf2kr
+W52kr

anka
gnwgzk + Mzkrmlezk + rnleszzk
<ZwZok—MZyy + 7Ak = Zi3Zok + ZoxZsg — 1,25
+Wf2k1"f21<l“/21<sfz(xz k)Mzk(DZ (t)) - gfrzykMzT,kq)z (t))zz’k
WgZ kFgZI( Tg18g2 (X24) Z2s = Wﬂz,")
+Mikr;ngl(rmzlq>2 (OW 1538 foxZos + Mz,k>

1 -
Kzg,k + wzzz,k + r;zllNz)sz)k
k

+Wf2,k>

~Nox

< - 111ka + iAk + ZoxZsj — 112Z§
+wf2krf21<r,21<s fz(ka,MZkopz (t)) — 80 M, @, (t))zz,k
+Wf2,k> WgZ kFgZI( Tg1Sg2 (%24 2ok = ngk)
+M§kr;ngl(rmzlq>2 OW oS ok Zo + 1\'“4”)
—Nzk ! sz + Al —wy, 25+ lAk + T2 NoiNoy
= ZyiZsx —ZH,Z,k + Ak
i=1
AW (rf21 (sfz(xz,k, M0, (t)) 8/ M@, (t))zz,k
W fz,k) Wi, (rfmsg2 (%ok) Zo Wgz,k)
+M§kr;;l( T @ (t)szkaZkZZk + Mz,k)
N, kALZZ Al NaxZ + Ak + T2 NN,
= Tz Y 2+ 2
i=1
AW T (rf21 (sfz(xz,k, M, @, (t)) — S ok M, D, (t))zz,k
W, k) Wi (rgﬂsg2 (%24) Zos — Wgz,k)
+M, an( Ty @ (W 18 fas Zoi + I\.7[z‘k>
~Nyl (rnﬂAlkZ;,k - zirz,k>.
(41)
We choose
W s = —rﬂl(sfz(xz,k,Mf,kcp2 (t)) 8§10, 0, (t))zz,k
Wylk = Ig21Sq (%24) Z2k
Mo = Lo @ (OW 1, 8o Zo (42)
Ny = r”“AikZik'
Then, Equation 41 can be changed as
Vok < ZoiZsk — Z N2z + Ak. (43)

i=1
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Variation in y30,Yaq1, 21,30 over time during the 30th iteration

Step i: (3<i<n—1). Denote N; = w},;, which will be defined
later. Because there exist initial state errors and gradient explosion,
the error functions Z;; and Z;,,x are defined as

Zik = Zigk — Cix
Ziok = Zi (t)sat
R o) ()
Zik = Xik — ﬁ,_l,k
¢ (t) = e,
Zink = Zit1gk — {z‘+1k
Zivipk = Zistk — Gy, (£)sat Zink
i+1¢,k i+1,k i+1,k ¢;+1k (t) (45)
Ziv1k = Xivlk — Bi,k
¢i+l,k (t) = ei+1,ke_r’i“t-
Therefore, Z ,k can be deduced as follows:
Zi,k = 21k - Sg”(zupk (t))¢ ézk
= Zivk t ﬂ k + f (xtk) 9 (t)) + gi (xtk) (46)
_ﬁt 1,k sgn(zf¢’k)¢z, Cl,k
Let the error compensation mechanism be defined as
éi,k =B+ e = M:Cik = Cimpge — i (47)

Using Equation 47, we can find the time derivative of the error
function as

Zik = Zisig — g + r’i,k(i,k + (g + ik — ﬁ,-,l,k

+fi (Xigo 0: (1) + gi (Xix) — Sgn(zi(b,k)(p,-)k- (48)

The uncertain time-varying, nonlinear functions f; (X, 0; (t))
and G;(X;x) are approximated by FSE-RBFNN and RBFNN,
respectively, and reconstruction errors & i and Sg,- are as
given follows:

Si(%xig 0; (1) =
Gi(%ix) =

ngsfi (ff,bMiT(Di (1) + 35 (49)
ngSg,« (x,-,k) + Sg,»,
where 0 7; and &; are the approximation errors and W s; and W ;; are
ideal weight vectors.
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Define Ay = ﬁ, where a is any arbitrary number with a > 0;
meanwhile, [ >2. Let the virtual control be defined as

AT
Qi = _sz ka,‘(xi,k, Mi,k(Di (t)) ngksgz (xi,k)
1 ) (50)
_Ni,kxzi,k + ﬂ,-,l,k —NZik — Zi—1¢k-
k

By substituting Equations 49, 50 into Equation 48, we obtain

Zir1k

~Zi-1k t Ci—l,k + Ziv1k — ¢,+1 k (t)sat< ) - Ciﬂ,k
¢z+1 k (t)

Zig =
+W§,.s i (Xijo M @ (1)) + 8 — W;Lks f,-(xi,k, Mfkm,- (t))

_ ~T _
+WT-Sg,- (xi,k) + 651 - ng’kSgi (X,‘,k)

Zirlk
—le Zigk T (t)sat< - )
A i, ¢1+1 k ¢i+1,k (t)
—n:zik + .G — 591 Zigk )i
< 1 Zitlk
= —Z,', kT Z,' Kk~ N,‘, —Zipk T ; (t)Sat( .
Lk FLk Kp, Ziok ik Bone (D

WS 3 (g MO (1)) + 873 = W, S 5ot MR 01 0))
- _ AT _
+W;isgi (xi,k) + 6gi - ng,ktsgi (xi’k)
~Zik + 1ok — Sgn(zi¢,k)¢i,k>
(51)

where W ik ng,k, Mi,k, and N,;k are the estimations of W g,
Wy, M;, and N;,  respectively. Wf,k = Wf,k Wi,
ng,k=ngk Wg,, M,k=M,')k— ,, and N,k—N,,k—Ni are
estimation errors. We can rephrase the final three components
on the right side of Equation 51 as

“NZig — sgn(z,-qﬁ,k)q'ﬁi’k )+ 1,8k = ~MZigk — Nk (t)sat( >
¢zk( )

_Sgn(zi¢,k)¢i,k (t) +nGix

= ~NZigk + MGk
—sgn(2igi ) ($usc () + 18,1, (1)
~NiZigk + NGk

= —77,-(Zi¢,k - (i,k)

_nizi,kx
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where I i1, T git, Tiir, and Ty are adjustable, positive, definite,

[=
[=3

T T T and symmetric matrices. According to Equation 54, Assumption 3,
and Remark 1, V;; can be expressed as

[=23
(=3

Vie= Viax+ZuZg+ Wf,krmwf,k + Wg,krg,lwg,k + M,krm,lM
i-1

i-1
i + rmlleN k<Zi-1kZik — Z VI, et TAk = ZiiwZik + ZikZivik — 12y

- _ RS A, AT 5
+ Wf,-,krf,h(rfil(sff(xi,k,Mi,koi (0)) = S/ LD (0)) Zix + W i)

Maximum error max (I22 kI)
- E
(=3

20 . .
ngkrgrl( ailsgi (fxlk)zi,k - Wyi»k)
- N 3 N 1
0 . . " +M, ka,l( T D; (t)W;Lka/,-,kZ,-)k + M,.,k) - Ni,kA—Zf,k + Wi Zik
15 20 2 %0 R - *
Iteration index k FTANUNGS = Y 0,2 + l_TAk + ZigZiig = 2%
FIGURE 15 - .
Variation in max (|z2x|) according to the iteration index. + Wf,krf,l(Ffil(sfi(fi,k,M,'qu)i (t)) _ S/’i,kM,-qu)i(t))Zi,k + Wﬂyk)
WX (TS (536) Zs = W)
AT 8, 13 > 1 2
+ Mx krmxl( Lpin @ (t)Wfi,kai,kZi,k + Mi,k) sz waZx k
12000 T T T T + iAk + F;ill N,-)klif,-yk
10000 : - Y2 +—Ak + ZisZiasc Wb (U (5 (e M, 00
o j=1
3 8000 . oo . i .
Z = SfikM @i (D) Zig + Wrig) — Wg,krg,l( TyirSgi (%ik) Zig — ng,k)
c
9 . - ~ o1
8 o # ML (T @4 (OW 8 i Zs 4 M ) = N 22,
0 k
£ 4000 : I ; ;
5 + A—kN, W2+ 4Ak + AN, N = Z 25+ P+ 2
Z 200 | r o -
5, (i (S5 (T ML (1)) = S ML, (1)) Zaa+ W i)
0 == ———————| )
5 10 15 2 % 30 ngkrgd( TS0 (%uk) Zos - ng,k)
Iteration index k .
I. . \/ .
FIGURE 16 +M,krm,1< mxl(D (t)wf,ksfx‘kzx,k + Mz,k)
Variation in [luk|l according to the iteration index. )
_Nrkrn11< mlA Z,k_Ntk) (56)
We choose
Using Equations 7, 52, Equation 51 can be reformulated as 5 AT Ay AT
& =4 4 Wik = —rfn(sfi(xi,k,M,»,kq’i(t)) - Sf'i,kMi,kq’i(t))Z
. ~ 1 N
Zix = ~Ziag + Zinik — Ni,kxzi¢,k -0, Zik Wik = TgnSgi (f,k)sz (57)
k N
~T _ ~T ~ ~ T M = (D tW Sl‘ Z
+W fi(sfi(x,-,k,M,.,k@i (t)) = S}k M, @; (t)) . ! ik m{ (OW xStk Zik
AT A, ~T ~T _ Ny = 22
W 11 S fie My D () = W, Sgi (i) i = Do Zie
i+1,k
i+ 0fi + i + biiip (t)sat< s, : (t)) Then, Equation 56 can be written as
i+1,k i :
. i
VokS = Y 0,22+ <+ ZisZi (58)
_ Ziv1k (1) - . 2,k Nl k i,k&i+1 k>
Let w;=d;i+85i+0g+¢, 1, (t)sat( ”(t)) then Equation = 74
53 becomes
] 1 Step n: Denote N, = w3,,, which will be defined later. Because
Zix = ~Zix+Zing— N i,kEZi,k — N, Zij + w; there exist initial state errors and gradient explosion, the function
AT A, AT Zu k> denoting the error, is defined as
W f,k(sf,»(x,-,k, M0 - Shudoi ) 69 &
=T - T _
+Wf, kS]{i,kM,',k(Di (t) - Wg,'sgi (xi,k)- Zn,k = Zngk — (
_ nk
Consider the following nonnegative function: npk = = P (t)sat<¢n f (t)) (59)
Znk = Xnk — ﬁn—l,k
Vik=Vix+ Z:k + Wﬁkl“fﬂWf,k + ngkrgllwg,k ¢n,k (t) = en,ke"ln‘.
1. 1 (55)
+2M melMlk + zrmlN ik The derivative of Z;; with respect to time is expressed as
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Variation in [lax|| according to the iteration index.
Zn,k = 2n,k - Sg”(zmp,k (t))¢n,k - én,k
= uk. + fn (kn,ka en (t)) + In (-’.En,k) (60)
_ﬁnfl,k - Sg”(zmp,k)(pn,k - (Vl,k'
Let the error compensation mechanism be defined as
{n,k = _ann,k - (nfl,k' (61)

Using Equation 61, we can obtain the time derivative of the error
function as

Zuk = e+ 0,08k + G = Broik

t+f (X 0 (1)) + G (%) = Sg"(zn¢>k)¢n,k' (©

The overall approximation capability of the RBFNN asserts that the
unknown nonlinear functions f, (X, 6, (t)) and G, (X,.x) are capable
of approximation within a defined scope by FSE-RBFNN and RBFNN,
respectively, and reconstruction errors 85, and §, are as follows:

fn (En,k: en (t)) = W;,,an (xn,lo MZ:(Dn (t)) + 8fn (63)

Gn (-’En,k) = W;,,Sgn (-’En,k) + 8gn>

where 0, and 4, are the approximation errors and W s, and W,
are ideal weight vectors.

Define Ay = ﬁ,where a is any arbitrary number such that a > 0;
meanwhile, [ >2. Let the virtual control be defined as

AT _ ~ T ~ T _
Ui = —an’ka,,(xn,k, Mn,kq)'l (t)) - Wgn,ksg,1 (xn,k)
. . (64)
_Nn,kA_an,k + ﬁnfl,k —N,Znk — Zn71¢,k-

By substituting Equations 63, 64 into Equation 62, we can
conclude that
Zn,k = “Zpigk T Cn—l,k — N2k t r]ncn,k - Sgn(z'lqb,k)d)n,k
— T v e
+W§nan (X,,,k, Mzzq)n (t)) + 6fn - an)kan(xn,k, Mn,k(D'l (t))

. _ AT _ A1
+W;nsgn (x,,,k) + 65,, - Wgn)ksg,, (x,,,k) - Nn'kA_kzmp’k
_ AT _ ~ T
= W;nan (Xn)k, MZ(Dn (t)) + an - an,ka,,(x,,,k, Mn,kq)'l (t))
_ AT _ ~o 1
+W;nsgn (Xn,k) + 6gn - Wgn)ksg,, (x,,,k) - Nn,kaZn¢,k
_anl,k ~ Ny Zni + nncn,k - Sgn(zn¢,k)¢n,k’
(65)
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where W Frks Wgn,k, Mn,k, and N nk are the estimations of W g,,,
Wgns M,, and N,, respectively. an,k = an,k -Wip
Wgn,k = Wgn,k - Wgn: Mn,k = Mn,k -M,, and Nn,k = Nn,k - N,
are estimation errors. We can rephrase the final three

components on the right side of Equation 65 as

2k = G Zup ) B (8) + 1,k

z nk

¢n,k (t)
= _’7nzn¢»k + r]n(n,k - Sgn(Z”‘Prk)(d)n,k (t) + qn¢n,k (t))
= ~N,Znpk + ﬂn(n,k = —Wn(zmp,k - Cn,k) =1, Znk-

= MpZngk — r]n¢n,k (t)sat< ) - Sgn(zn¢xk)¢n,k (t) + nncmk

(66)
Using Equations 7, 66, Equation 65 can be reformulated as

L1
Zn,k = _Zn—l,k - Nn,kA_zmp,k - nnZn,k
k
~T _ ~ T & ~ T
A (S (T M 00 (6) = s, 00 6))

~T ~ T ~T _
+an,ka,,,an’kCD,, (t) - WgnSg,, (xn,k)
+d, + Oy + g

(67)

Let w, = dy, + 07, + 84, then Equation 67 becomes

. ~ 1
Zn,k = _Zn—l,k - Nn,kizn,k - UnZn,k + Wy,
Ay
+W§n,k<sfn<xn,ka M;I;kq)n (t)) - S/ln,kMz;k(Dn (t)) (68)

~T ~ ~T ~T _
+an,kaI,,,an’k(Dn (t) - WgnSgn (x,,,k).

Assumption 4: The remainder w,, is bounded with |w,| < wp,
and wyy, > 0.

Remark 2: This assumption is reasonable because 1) d,,, & 7,, and
Ogn are constrained within the specified area by Equations 6, 8.

Let the following non-negative function be defined as

1 1.1 | -~ 1.1 | ~
Vik = Vierk + 5 Zog + W ) Wi+ S W o, T W
Lo 2R 2 (69)
+5Mn,kr;nlnlM”>k + Er;\llnan,k’
11 frontiersin.org
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where I 1, Tgn1s Dpnt» and Ty are adjustable, positive, definite,

and symmetric matrices. The derivative of V) is considered as

follows (Equation 68):

Vn,k = Vn 1k +anan +ankrfnlwfnk

+Wgnkrgnlwﬂ"k + MnkrmnlM"k + anlNVlank

n-1

-1
ZoriZonk = Z 25+ TAk -

IA

anl,kzn,k - nizik

+ankrf,11 (anl (Sf,,<xnk, Mnkd) (t))
8 M D, (£ ))Z,,,k +wfn,k)
Wgn krgnl( gnlsgn ()_Cn,k)Zn,k - Wgn,k)

+M F;nnl( mnl (Dn (t)Win,ka,mk Zn,k + ]\A/I,,,k>

—N,, kA 22 + w,,Z,,,k + I‘;,lnlﬂfn,an,k
n-1
< - Z n]Z?k k— ’7an.,1<

+ankrfn1 (anl (an(’zmk’ M;k% (t))

=S s M @0 (0 Zoe + W )

Wgnkrgnl( T g1 Sgn (Xnk) Znge — V.\A/g,,,k)
+Mnkrmn1( L @y (t)ankanank + Mnk>

(70)

1
_Nnk Zfzk anZf‘k+ Ak+an1Nnank

= - z ﬂjzﬁ,k +

+ankrfn1(rfnl(sfn(xnkaMnk(D (t))

=S s M ©0 (0 Zok + W g )

W gDt (Ve Son (500 Zoi = W)
+Mnkfmm( Lo @y (t)anksfnkznk + Mnk>

—N,,k Zﬁk ,,ank+ Ak+an1Nnank

A
= - Z 25+ _Ak
+Wf"krf"1(rf’“(Sf”<x”k’Mnkq) (t ))
—anankq) (t ))Zn,k + an,k)
Wgnkrgnl (rgnlsgn (%nke)Znk = Wgn,k)
+Mnkrmn1( L @ (f)Wf,,kan,an,k + Mn,k)

- 1 B
_Nn,kr;\]lnl <anlA7kZi,k - Nn,k )
We choose

3 _ T A AT
ank = _rfnl (an(xn,k) Mn’k(Dn (t)) - Sf’n,an,kq)n (t))an

Wgnk = rgnlsgn (xnk)an

Mn,k = - mnl(D (t)ankanank
- 1

Nop = Tym—22,.
k N lAk nk

Then, Equation 70 can be written as
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n
n
<= Y02+ s (72)
j=1

For the initial state, we rely on the following set of assumed

conditions:
Assumption  2: When t= O, Wf,k (0) = Wf,»,k,l (),
Wik (0) = Wikt (T),  Nix(0) = Nig (T),  and Mk (0) =

Mi,k,l (T) (i=1,...,n) holds true for all values of k.

3.2 Stability and convergence analysis

Theorem 1: For nonlinear system (1) with assumptions 2, 3, and
4, if we design virtual controllers (21), (35), (50), controller (64), and
parameter updating laws (28), (42), (57), (71),then all signals in the
closed-loop system are bounded within the interval [0, T].
We obtain

limkaZj,k (t) =0, _] =1,2,...,n (73)

In other words, limy_colZ1g4 (£)] = limg_oo |Gy 4 ()]
<VRu(p_em@D) and  then  limy_colzik () < ¢, o (B)
2 V2R (1 — e D) where Ny is the boundary of the difference

between B, and ;. Let , be chosen sufficiently large, ensuring that
$1.00 () and 22 (1
throughout the entire time interval [0, T].

— e (1)) can be minimized as much as possible

Proof: In accordance with Assumption 2, we find that
1Zx (0> = 0< |12 (). Consider that Vo=
Vouk (Zi (0), W 1 (T), W gk (T), N (T), Mk (T)). Using Equation

69, we obtain Zie = [Z1goo Zoger > Znid s W =
[Wflvkﬁfvfz,ky . }’an,k]T>ng = [ng,if,WgE,k, . ,Wgn)k]T,
My = [Myj Mags ..., Mur]',  andNg = [Ny Nogs ..., Nl ™
Using Equation 72,
Vil < V(2 (0), W (0), W i (0), Ny (0), M (0))— s
k T 2 1 X 74
zf:lz?ﬂ .[0 ’71'(213") dt + n<Z>T(2i:1Ai)'

Let Vo (k) = V1 (Z1(0), W 11 (0), W 41 (0), N, (0), M,

(0)) + "(i)T(Zf-ilAi), then Equation 74 can be rewritten as

T
2

ZLZZLIL 1,(Z35) dt <V (k) = V. (75)

Using Equation 9, we obtain limy_ Vo (k) <V, + Zan(i)T and
Vo (k) is bounded. V,,x (Zk (0), W 5 (T), W g (T), N (T), My (T)) 2 0, s0

T
limkﬂmZ;’ZIJ’O n,(Zu) dt = 0. (76)

Based on
Vn,k (t) =

Equation 69, for any given value of Kk,
Vi (0) + J:) Vm,k (7)dT; substituting Equation 72 obtain

Vo () €V, (0) ~ T, J;” (Ziw (@) dr+ tnG)Ak. 77)

Based on Equation 76, 27:1 .[gnj(Zj,k(T))sz is bounded.
According to definition 1, A; is bounded and t € [0,T], so
tn(4)Ak is also bounded. In addition, Wfk(o):Wf(k_l) (T),

W gk (0) = Wy oy (T), M (0) = My (T), and N (0) = Ny (T);
based on Equation 77, for of k,

any given value
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FIGURE 19 .
Variation in ||[M|| according to the iteration index.

Vi (Zic (0), W i (T), W i (T), N (T), M (T)) is bounded. So,
Vouk (0, Wfk(?),ng (0},Nk (0), My (0)) = Vit (0, W 7oy (T),
W k1) (T), N1 (T), M1 (T)) is also bounded; from above all,
for any given value of k, if V,, (t) is bounded, then we can deduce
that xix, Wee(t), We(t), Ni(t), and My (t) are bounded.
According to Equation 64, uy is bounded. According to Equation
53, Zi,k is bounded, so Z; is continuous uniformly. Thus, we can
deduce Equation 73.

Then, we need to prove that N; will converge to a
neighborhood that approaches 0. Initially, let a;;(t) be a
signal satisfying | (f)|<a and |a;(t)|<h for all t>0.
The compensation error within the compensation system is
defined as

O = Bix — ik (78)

With
ie,0,=0, i=12,...,n-1. From (11), we obtain

specified initial conditions, Bio = %0

Oix = ik (ﬂi,k - ‘xi,k) — ik
= _’fi,in,k — Qi
0, (1) = —J;di,ke’fi’k(”’)dr
low (D = | = [ dig (D)™ d]
= 1o (D) e el (79)
< max |dy ()] [ e dr]

< 11—ty

§ik
h
ik

N

< T N;.
As shown in Equation 79, choosing an appropriate value for &;;
confines the error g,, within a narrow range, approximately
equating a;x to f3;,. In addition, based on the compensation
system, the Lyapunov function is defined on the interval [0,T]
as follows:

n 1 N
Ve = z =5, 80
Gk < 2(1,1( ( )
The derivative of V¢ along systems (78) with respect to time is

expressed as
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Vf,k = Z(:‘,kéi,k

= - Z "Ii(iz)k + Z ("xk(ﬁi,k bl ‘xi,k)
_;ﬂfff,k+;|(i,kll(ﬁ,-,k—a,«,k)| o
= =Y 0 S 1Gl(Be — )l + 01,

i=1 i=1

< Z (12k +R z IC; ]
i1 i1
< MGl + V2RICkl,

IN

whereN = max N;, 7, = min#;. To ensure the stability of the
compensation system, it is sufficient to satisfy

V2R

0

I8l <

(1-em0D). (82)

Equation 82 leads to the conclusion that [|{; ;| is bounded. Hence,
{;x is also bounded. Moreover, we can choose a parameter ;; >0 to
arbitrarily reduce N;, thereby causing the compensation (;; of the
system to approach 0. In this way, by ensuring that the error Zj
approaches 0, zy x will converge to the neighborhood approaching 0.
Thus, we conclude Theorem 1.

4 |llustrative examples
4.1 Number simulation

This section includes an example illustrating the effectiveness of
the proposed adaptive iterative learning controller.
The second-order pure-feedback nonlinear system described is
considered as follows:
2 4.2
. X1k + rlxl’k
Xk = Xok+ —————5———
1+7rixi,
? 2,2 42 (83)
. . —T5XT X
KXok =ty + sin(rax s )e 1%
Vi = X1k

where t € [0, 5], x1 4, and x, are state variables and u is the input
variable. Utilizing the widely recognized van der Pol oscillator as the
reference model, we obtain

X1 = Xaa
xdz = =9x4 — 6x45 + 2 (84)
Yd1 = Xdi»

where x4; and x4, are state variables. The primary control objective
is to synchronize the output of systems (82) with the reference
trajectory yg; generated by system (84) over the interval [0,5] under
the condition k — oo.

In accordance with Theorem 1, the adaptive iterative learning
controller is chosen as

AT _ AT ~ 1 .
App = —Wl,ksl<x1,k,M1,k®1 (t)) - Nl,kA*Zw,k + ¥, — M 21k
k
AT _ AT A 1
Ux = —sz,ksfz(xz,k,Mz)k(Dz (t)) - Nz,kA*ZZ,k (85)
k

Py = MuZ2k — Zigie
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FIGURE 20 . .
Variation in [[N1x|l and [[N2|l according to the iteration index.
The error compensation mechanism is
{1,1( = B+ G = m Gk — (86)

(z,k = _’72(2,k - (l,k)

where B, = ~&(B, ) — a1x).
The parameter adaptive iterative learning laws are provided

by (57):

Wfi,k = —rfu(sfi(ffi,k,M:kq)i(t)) - Sf'i,kak(Df(f))Zi,k
Mi,k = —rmflq)i(t)W;,kai,kzi,k (87)
Nik = Ly 22
where i=1,2, ¢, =5 ¢ =10,Ar=a/k’, a=50000, T =

diag{1,1,1,1,1}, T5; =10, I'; =diag{1,1,1,1,1}, T =1, and £=1.

Figures 1-3 show the tracking performance of the system output
and expected output without iteration and at 50th and 100th
iterations, respectively. Figures 4, 5 show that as the number of
iterations increases, the system error may converge to a small region
near the zero point. Furthermore, observations shown in Figures
6-10 confirm that both control signals [lux | and |la | and estimated
parameters, IWycl, IWaxl, 1Nl 1Mokl [Ny cland [N,
exhibit bounded behavior within the [0,5] range. The validity of
the control strategy presented in this research is reaffirmed by the
simulation results shown in Figures 11-20 over the interval [0, T].

4.2 Simulation of a single-joint robotic arm

In this section, we conducted simulation verification on a single
degree-of-freedom robotic arm system to assess the performance of
the proposed control method. The dynamic equation of a single
degree-of-freedom robotic arm is

0

o (88)

. 00
=-10sinf@ - 2— +u,
ot

where 0 is the angle between the robotic arm and the reference
frame.u is the input of the DC motor.
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7 Ya1 a)’dl
FYe = —9)/41 - 67 + 2r, (89)

where yg; is the output of the reference model. 7 is the reference

input signal. According to Equations 88, 89, the state equation of the

system is derived as
X1k = Xk

—10sin (x1%) — 2x (2, k) + uy

X1k>

Kok (90)

Yk

and its reference model is derived as

Xd1 = Xd2

xdz = -9x4 — 6x4, + 21 (91)

Yar = Xai,

where x;; equals to 6 can be defined as the angle between the
robotic arm and the reference frame. x,  is the time derivative of 6,
i.e., 6. The primary control objective is to synchronize the output of
systems (88) with the reference trajectory y,4 generated by system
(89) over the interval [0,5] under the condition k — oo.

In accordance with Theorem 1, the adaptive iterative learning
controller is chosen as

1 )
ke = —Nik—Z1pk + Vg — 1121k

Ay
AT _ AT ~ 1
U = —Z1pk — €222k — WZ,kSZ(XZ,Io Mz,kq)z (t)) - Nz,kA—Zz¢,k
) k
+B1 g
(92)
The error compensation mechanism is
c:l,k = Bt G =Gk — a1k (93)

(2,k = _’12(2,k - (1,k»

where B, = —&(B, . — a1x).
The parameter adaptive iterative learning laws are provided

by (57).

. T Ay T
Wi = Ty(S(%o0 M0 () = SN0 (0 )z (99)
5 1 .
Nix = I‘NiA_kZ,-qu)ks i=1,2, (95)
My = T, @ (OW; 82250 (96)
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where ¢, =50, ¢, =150,A =a/k?, a=50000, T =
diag{1,1,1,1,1}, [y = 10, I';; =diag{1,1,1,1,1}, I';; = 1,and¢ = 10.

Figures 11-13 show the tracking performance of the system
output and expected output without iteration and at 15th and 30th
iterations, respectively. Figures 14, 15 show that as the number of
iterations increases, the system error may converge to a small region
near the zero point. Furthermore, observations from Figures 16-20
confirm that both control signals [lux| and [lax| and estimated
parameters, |[Wl, Mgl INixl, and [|[Nogll, exhibit bounded
behavior within the [0,5] range. The validity of the control
strategy presented in this research is reaffirmed by the simulation
results shown in Figures 11-20 over the interval [0, T].

5 Conclusion

This article presents a solution to the complete trajectory, following
challenges within a finite time frame for a category of nonlinearly
parameterized systems characterized by time-varying disturbed
functions and initial state errors. A new FSE neural network is used
to learn the time-varying, nonlinearly parameterized term. Based on this
and Lyapunov theory, we proposed the new LPE-AILC method. A low-
pass filter is used to solve the problem of parameter explosion after
obtaining the derivative of the virtual controller. The unmatched
uncertainties, nonlinear parameterization, and initial state errors are
well considered. Two simulation examples have proven the feasibility of
the control approach. This article does not mention time-delay issues,
but they often exist in practical systems. Our future work should consider
solving the complete tracking problem on a finite time interval for these
complex systems with time delays. This is a more interesting issue. In
addition, there are two deficiencies in the controller design process: the
assumption of time-varying parameters being periodic and the jitter
issues caused by the low-pass filter. These challenges will be carefully
considered and addressed in our future work.
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