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This paper presents an innovative approach for achieving rapid synchronization
between two memristor chaotic circuits (MCCs), both with and without noise
perturbations. The proposed adaptive control strategy effectively handles the
uncertainty in control gains by adhering to predesigned update law. Additionally,
this protocol is non-chattering and differentiable, avoiding the use of
conventional discontinuous functions such as signum and absolute value
functions. This method successfully mitigates the tremors caused by
discontinuous functions. We derive two sufficient criteria using finite-time
Lyapunov and stochastic finite-time Lyapunov stability methods. Numerical
results validate the theoretical analysis and demonstrate the influence of noise
intensity on convergence speed. Furthermore, the results have an application in
image encryption transmission.
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1 Introduction

In 1971, Chua introduced the concept of memristors [1]. HP Labs later confirmed their
physical feasibility in 2008 [2]. Memristors, with their unique memory and nonlinear
characteristics, have applications in various fields, including chaotic secure communication
[3], image encryption [4, 5], non-volatile memory [6], and neural networks [7]. Following
the establishment and analysis of memristive models, researchers applied them to nonlinear
circuits [8]. Muthuswamy proposed a third-order nonlinear magnetic-controlled
memristor model, replacing the diode in the classical Chua chaotic circuit to generate
classical double vortices [9]. Bao et al. designed a simple memristive chaotic circuit and
found that system stability depends on the initial state of the memristor, resulting in a
unique equilibrium point [10]. Li et al. introduced a memristor into a three-dimensional
system, resulting in a four-dimensional hyperchaotic system with infinite stable and
unstable equilibrium points [11, 12]. They were the first to propose a line equilibrium
point in a four-dimensional hyperchaotic system.

With advancements in dynamical analysis and physical implementation, research on the
synchronization control of memristive chaotic systems has gained international attention
[13–18]. Various novel control strategies have been designed to explore the synchronization
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of these systems. Yang et al. employed impulsive control methods to
design a coupled synchronization controller for Chua’s chaotic system
based on a cubic smoothmagnetic-controlled dualmemristormodel [19,
20]. Wang et al. developed a nonlinear active controller using Lyapunov
stability theory to achieve improved projection synchronization of a
memristive chaotic system [21]. The classical sliding mode control
technique has also been applied to memristive chaotic systems to
achieve synchronization [5, 22]. To reduce control costs, Wu et al.
adopted sampled-data control for synchronizing a class of memristive
neural networks with time delays [23]. Rakkiyappan et al. proposed an
active backstepping control technique for two heterogeneousmemristive
chaotic systems, achieving various synchronizations [24]. For
heterogeneous neural networks, the synchronous and asynchronous
behaviors have been revealed [25], and the effectiveness has been
validated by the field-programmable gate array circuit. Li and Min
have first proposed the large-scale discrete memristive Rulkov ring-star
neural network model [26], which manifests rich network behaviors,
including synchronization. Apart from the integer-order models,
fractional-order memristive systems and their synchronization have
also attracted significant attention [27–29]. But the convergence time
in these works usually tends to infinity [13–29].

To acquire fast convergence rates, the finite-time control techniques
have been widely applied to memristive chaotic systems. Wang et al.
investigated finite-time synchronization between two memristive chaotic
systems and applied this technique to image encryption [30].Ahmad et al.
discussed finite-time synchronization of memristor-based chaotic
oscillators with applications insecure communication [31]. The finite-
time synchronization of chaotic memristor systems has been applied to
inertial neural networks, considering the effect of time-varying delays
[32]. However, the estimation of the upper-bound of convergence time
(UBCT) is typically restricted by the initial states of the memristive
chaotic systems. To overcome this issue, Wang et al. further investigated
the fixed-time synchronization problem of memristive chaotic systems
[33]. Mirzaei et al. used sliding mode control to achieve fixed-time
synchronization of chaotic memristor-based oscillators [34]. Despite
these advancements, the UBCT in these studies is complex and often
related to control parameters and system dimensions. This issue has been
addressed by studying the predefined-time synchronization ofmemristive
chaotic systems [35]. in which the UBCT is a constant. Additionally,
environmental noise is a common factor affecting the synchronization of
memristive chaotic systems. Ma et al. have considered the impact of
stochastic noise on the fixed-time stabilization for single and
synchronization for two memristor chaotic circuits [36], respectively.

One of the most important applications of chaotic systems is image
encryption, and recent years have witnessed significant progress [30,
37–39]. A new 3-D chaotic dynamical system has been described in
[37], and the chaotic sequences have been utilized for building a new
colour image encryption algorithm, which has confirmed that the
encryption mechanism has high security with high efficiency in
encryption time. Then, a novel three-dimensional chaotic system
with line equilibrium was proposed [38], and the obtained results
were further applied into image encryption, which can effectively resist
various attacks. After that, a hyperjerk system with a half line
equilibrium was developed [39], and its efficiency and security have
been also proved in image encryption.

However, existing control methods often use non-differentiable
functions, leading to undesired chattering phenomena. Furthermore,
traditional research requires pre-selected, unchanging control gains,

resulting in inefficiencies and synchronization issues. This paper
proposes an adaptive, non-chattering control strategy so as to
achieve the finite-time synchronization of memristor chaotic circuits,
and the main novelties are listed as follows:

1) The control scheme is adaptive, allowing the gains of the
nonlinear control terms to be updated by the system state,
automatically converging to zero upon achieving
synchronization.

2) The control protocol is smooth and differentiable, eliminating
the need for conventional discontinuous functions, thereby
resolving the chattering issue.

3) Sufficient criteria are derived to ensure finite-time
synchronization of memristor chaotic circuits, both with
and without noisy perturbations.

4) The proposed adaptive fast synchronization scheme is
successfully applied to image encryption.

The structure of this paper is as follows: Section 2 presents the
model description and preliminaries. Section 3 derives two sufficient
conditions for guaranteeing the finite-time synchronization of
memristor chaotic circuits with and without noisy perturbations,
respectively. Section 4 provides numerical experiments to verify the
theoretical results. Section 5 concludes the paper.

2 Preliminaries and model description

2.1 Preliminaries

The ordinary differential equation (ODE) is generally
represented as:

dx t( ) � f x t( )( )dt, (1)
where x(t) ∈ Rn is the state vector, and f: Rn → Rn is a nonlinear
vector function. Assume the initial state x(0) � x0 and f(0) � 0.
For the deterministic system, assume the origin is one of the
equilibrium points.

The stochastic differential equation (SDE) is described as:

dx t( ) � f x t( )( )dt + g x t( )( )dW t( ), t≥ t0, (2)
where x(t0) � x0 ∈ Rn, f: Rn → Rn and g: Rn → Rn×m are
continuous functions with f(0) � 0, g(0) � 0,∀t≥ t0. W(t) �
[w1(t), . . . , wm(t)]T is an m-dimensional Brownian motion on a
complete probability space. Assume the SDE (Equation 2) has a
trivial zero solution.

Definition 1. [40] For the SDE (Equation 2), define the diffusion
operator L as:

L � ∂

∂t
+∑n

i�1
fi x, t( ) ∂

∂xi
+ 1
2
∑n
i�1

g x, t( )gT x, t( )[ ]ij ∂2

∂xi∂xj
. (3)

If L acts on V ∈ C2,1(Rn × R+;R+), then

LV x, t( ) � ∂V

∂t
+ ∂V

∂x
· f x, t( ) + 1

2
trace gT x, t( ) ∂

2V

∂x2
· g x, t( )[ ],

(4)
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in which V(x, t) is continuously once differentiable in t and twice in
x, C2,1(Rn × R+;R+) is the family of V(x, t)≥ 0, (x, t) ∈ Rn × R+,
∂V/∂x � (∂V/∂x1, . . . , ∂V/∂xn), ∂2V/∂x2 � (∂2V/∂xi∂xj)n×n.

Lemma 1. [41] If there exists a continuous, positive definite
function V(x, t): Rn × R+ → R+, such that

_V x( )≤ − cVρ x( ), ∀x ∈ Rn,

then the origin is globally finite-time stable and the settling-time
function is

Ts ≤
V1−ρ x 0( )( )
c 1 − ρ( ) ,

where c> 0, 0< ρ< 1.

Lemma 2. [42] If there exists a twice continuously differentiable,
radially unbounded, and positive definite Lyapunov function
V(x, t): Rn × R+ → R+, real numbers 0< γ< 1 and c> 0, such that

LV x( )≤ − c · V x( )( )γ, ∀x ∈ Rn,

the trivial solution of the SDE is stochastically finite-time stable, and
meanwhile the settling-time function

E Ts[ ]≤ V x0( )( )1−γ
c 1 − γ( ) ,

in which E[·] signifies the expectation function.

Lemma 3. [43] If a1, a2, . . . , an ≥ 0, then

∑n
i�1
aϑi ≥ ∑n

i�1
ai⎛⎝ ⎞⎠ϑ

, 0< ϑ≤ 1.

2.2 Model description

This paper explores a 4-dimensional (4D) memristor chaotic
circuit (MCC), as shown in Figure 1, described by a specific dynamic
model [30]:

dv1 � 1
RC1

v2 − v1 + GRv1 − RW φ( )v1[ ]dt,
dv2 � 1

RC2
v1 − v2 + RiL( )dt,

diL � −1
L
v2 − r

L
iL( )dt,

dφ � v1dt,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(5)

in which the voltage v1 (v2) is across the capacitor C1 (C2); Rr and r
signify two unrelated resistors; the conductance G represents an
active flux-controlled memristor; φ is the flux andW(φ) � a + 3bφ2

is the memductance of flux-controlled memristor (a> 0, b> 0); the
current iL flows through the inductor L.

By simplifying the model and introducing variables x1 �
v1, x2 � v2, x3 � iL, x4 � φ, α1 � 1

C1
, α2 � G−2

C1
, α3 � −1

L, α4 � r
L,

1
C2

� 1
and R � 1, the dynamics of the MCC system (Equation 5) can be
characterized as follows:

dx1 � α1x2 + α2x1 − 3α1x1x2
4( )dt,

dx2 � x1 − x2 + x3( )dt,
dx3 � α3x2 − α4x3( )dt.
dx4 � x1dt.

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (6)

In this article, we take the parameters [α1, α2, α3, α4]T �
[9, 1.9,−10, 0.3]T and the initial values
[x1(0), x2(0), x3(0), x4(0)]T � [0.1, 0.5, 0.3, 0.4]T, and the 3D
portraits ofMCC (Equation 6) or (Equation 5) are displayed in Figure 2.

FIGURE 1
Complete circuit of memristor chaotic circuit [30].
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3 Main results

3.1 Adaptive fast synchronization without
noisy perturbations

Take the aforementioned MCC model (Equation 6) as the drive
system, and the related response MCC system containing four
controllers, ui, i � 1, 2, 3, 4, is ruled by

dy1 � α1y2 + α2y1 − 3α1y1y2
4 + u1( )dt,

dy2 � y1 − y2 + y3 + u2( )dt,
dy3 � α3y2 − α4y3 + u3( )dt,
dy4 � y1 + u4( )dt,

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (7)

where yi, i � 1, 2, 3, 4, are the state variables. For the drive-response
MCC systems (Equations 6, 7), we define the synchronization error
ei � yi − xi, i � 1, . . . , 4. In this case, we can get the synchronization
error system

de1 � α1e2 + α2e1 − 3α1 y1y2
4 − x1x2

4( ) + u1( )dt,
de2 � e1 − e2 + e3 + u2( )dt,
de3 � α3e2 − α4e3 + u3( )dt,
de4 � e1 + u4( )dt.

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (8)

Definition 2. The finite-time synchronization between the drive-
response MCC systems (Equations 6, 7) is achieved, if there exists
settling-time function Ts > 0, such that

lim
t→Ts

ei t( )| | � 0,

and ei(t) ≡ 0,∀t≥Ts, i � 1, 2, 3, 4.
In order to realize fast synchronization between MCCs

(Equations 6, 7), the control protocol can be designed as follows:

u1 � 3α1 y1y2
4 − x1x2

4( ) − ge1 − g1e
η
1,

u2 � − α1 + 1( )e1 − g2e
η
2,

u3 � − α3 + 1( )e2 − g3e
η
3,

u4 � −e1 − ce4 − g4e
η
4,

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (9)

and two gains g and c in the linear control terms are non-negative
constants, each control gain gi in the last nonlinear term is
adaptively updated complying with the law

_gi � 1 − g−1
i( )e1+ηi − gη

i , i � 1, . . . , 4, (10)
in which the index η � l

m, and l, m are two positive odd integers
satisfying l<m.

Remark 1. From the designed control scheme (Equations 9, 10),
one can observe that there is no any discontinuous function in it,
whereas the traditional finite-time control usually contains the
signum and absolute value functions [30]. Thus, the tremor issue
has been successfully overcome by this investigation. In addition, the
proposed control protocol is adaptive, in which the control gains
gi, i � 1, 2, 3, 4, for the nonlinear term is updated following the

FIGURE 2
3D portraits of MCC (Equation 6) or (Equation 5).
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adaptive law (Equation 10). That is, the related control gains of
nonlinear terms do not need to be selected beforehand.

Theorem 1. The finite-time synchronization for the MCC systems
(Equations 6, 7) will be realized by utilizing adaptive non-chattering
control strategy (Equations 9, 10), if g≥ α2, α4 ≥ 0, c≥ 0.

Proof of Theorem 1. Selecting the following Lyapunov
function candidate.

V � 1
2
∑4
i�1
e2i t( ) + 1

2
∑4
i�1
g2
i t( ), (11)

differentiating it, and combining with (Equations 8, 10), we obtain

_V � e1 α1e2 + α2e1 − ge1 − g1e
η
1( ) + e2 e1 − e2 + e3 − g2e

η
2 − α1 + 1( )e1[ ]

+e3 α3e2 − α4e3 − g3e
η
3 − α3 + 1( )e2[ ] + e4 −ce4 − g4e

η
4( )

+∑4
i�1
gi 1 − g−1

i( )r1+ηi − gη
i[ ]

� − g − α2( )e21 − e22 − α4e23 − ce24 −∑4
i�1
e1+ηi −∑4

i�1
g1+η
i .

If g≥ α2, α4 ≥ 0, c≥ 0, then

_V≤ −∑4
i�1
e1+ηi −∑4

i�1
g1+η
i

� −∑4
i�1

e2i( ) 1+η
2 −∑4

i�1
g2
i( ) 1+η

2 .

According to Lemma 3, we get

_V≤ − ∑4
i�1
e2i⎛⎝ ⎞⎠1+η

2

− ∑4
i�1
g2
i

⎛⎝ ⎞⎠1+η
2

� − �
2

√( )1+ηV 1+η
2 .

In the light of Lemma 1, the finite-time synchronization between
the MCC systems (Equations 6, 7) has been achieved, and the
settling-time

Ts ≤
���������
2V ei 0( )( )√( )1−η

1 − η
. (12)

Remark 2. From (Equation 12), one can find that the upper-bound
of T is restricted by the initial error ei(0) and the parameter η. This
issue can be effectively addressed by exploring the fixed-time or
predefined-time synchronization and combining with the proposed
adaptive non-chattering control method.

3.2 Adaptive fast synchronization with noisy
perturbations

Because the stochastic noise is ubiquitous in man-made and
natural systems, this subsection further discusses the problem of
finite-time synchronization between MCCs in noisy
environments. In contrast to the deterministic model
(Equation 6), the dynamics of drive MCC system disturbed by
noise is ruled as

dx1 � α1x2 + α2x1 − 3α1x1x2
4( )dt + ρ1σ1 x1( )dω1,

dx2 � x1 − x2 + x3( )dt + ρ2σ2 x2( )dω2,
dx3 � α3x2 − α4x3( )dt + ρ3σ3 x3( )dω3,
dx4 � x1dt + ρ4σ4 x4( )dω4,

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (13)

and now the response MCC system containing four controllers
ui, i � 1, 2, 3, 4, in noisy environment is ruled by

dy1 � α1y2 + α2y1 − 3α1y1y2
4 + u1( )dt + ρ1σ1 y1( )dω1,

dy2 � y1 − y2 + y3 + u2( )dt + ρ2σ2 y2( )dω2,
dy3 � α3y2 − α4y3 + u3( )dt + ρ3σ3 y3( )dω3,
dy4 � y1 + u4( )dt + ρ4σ4 y4( )dω4,

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (14)

where the noise intensity ρi ≥ 0, σ i(·) signifies the noise function, ωi

represents the one-dimensional Brownian motion. Similarly, denote
the synchronization error ei � yi − xi, i � 1, . . . , 4, and the error
system is ruled by

de1 � α1e2 + α2e1 − 3α1 y1y2
4 − x1x2

4( ) + u1( )dt + ρ1 σ1 y1( ) − σ1 x1( )[ ]dω1,
de2 � e1 − e2 + e3 + u2( )dt + ρ2σ2 σ2 y2( ) − σ2 x2( )[ ]dω2,
de3 � α3e2 − α4e3 + u3( )dt + ρ3σ3 σ3 y3( ) − σ3 x3( )[ ]dω3,
de4 � e1 + u4( )dt + ρ4σ4 σ4 y4( ) − σ4 x4( )[ ]dω4.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(15)

Definition 3. The stochastic finite-time synchronization for the
drive-response MCC systems (Equations 13, 14) is achieved in
probability, if there exists settling-time function Ts > 0, such that

P{ lim
t→Ts

ei t( )| | � 0} � 1, i � 1, 2, 3, 4,

and P ei(t) � 0{ } ≡ 1,∀t≥Ts, P signifies the probability measure.
In particular, for the noise function, we must make the following

assumption for achieving fast synchronization analytically.

Assumption 1. The noise function σ i(xi(t)) satisfies the Lipschitz
condition, and there exists a constant q> 0, such that

trace σTi xi t( )( )σ i xi t( )( )( )≤ 2qxT
i t( )xi t( ), i � 1, 2, 3, 4,

and σ i(0) ≡ 0.

Theorem 2. The stochastic finite-time synchronization for drive-
response MCC systems (Equations 13, 14) will be realized by
implementing the same adaptive non-chattering control scheme
(Equations 9, 10), if g≥ α2 + ql1ρ21, ql2ρ

2
2 ≤ 1, ql3ρ23 ≤ α4, and c≥ l4ρ24.

Proof of Theorem 2. Consider the same Lyapunov
function candidate.

V � 1
2
∑4
i�1
e2i t( ) + 1

2
∑4
i�1
g2
i t( ).

Let the operator L act on the above Lyapunov function, we
can obtain

LV � e1 α1e2 + α2e1 − ge1 − g1e
η
1[ ] + e2 e1 − e2 + e3 − g2e

η
2 − α1 + 1( )e1[ ]

+e3 α3e2 − α4e3 − g3e
η
3 − α3 + 1( )e2[ ] + e4 −ce4 − g4e

η
4( )

+1
2
∑4
i�1
ρ2i trace σ i yi( ) − σ i xi( )[ ]T σ i yi( ) − σ i xi( )[ ]{ }

+∑4
i�1
gi 1 − g−1

i( )e1+ηi − gη
i[ ]
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� − g − α2( )e21 − e22 − α4e23 − ce24 −∑4
i�1
e1+ηi −∑4

i�1
g1+η
i

+1
2
∑4
i�1
ρ2i trace σ i yi( ) − σ i xi( )[ ]T σ i yi( ) − σ i xi( )[ ]{ }.

According to Assumption 1, we obtain

LV≤ − g − α2 − ql1ρ
2
1( )e21 − 1 − ql2ρ

2
2( )e22 − α4 − ql3ρ

2
3( )e23

− c − ql4ρ
2
4( )e24 −∑4

i�1
e1+ηi −∑4

i�1
g1+η
i .

If g ≥ α2 + ql1 ρ1
2, ql2 ρ2

2 ≤ 1, ql3 ρ3
2 ≤ α4, c ≥ l4 ρ4

2 , then

LV≤ −∑4
i�1
e1+ηi −∑4

i�1
g1+η
i

� −∑4
i�1

e2i( ) 1+η
2 −∑4

i�1
g2
i( ) 1+η

2 .

By Lemma 3, we get

LV≤ − ∑4
i�1
e2i⎛⎝ ⎞⎠1+η

2

− ∑4
i�1
g2
i

⎛⎝ ⎞⎠1+η
2

� − �
2

√( )1+ηV 1+η
2 .

By Lemma 2, the stochastic finite-time synchronization between
the drive-responseMCC systems (Equations 13, 14) can be achieved,
and the settling-time function

E Ts[ ]≤
���������
2V ei 0( )( )√( )1−η

1 − η
. (16)

Remark 3. From (Equation 16), one can find that the time
expectation E[Ts] is also related with ei(0), i.e., the initial values
of xi(0), yi(0), and parameter η. This issue can be addressed by

FIGURE 3
(left) The 3-dimensional attractor phase diagrams and (right) the state trajectories of variables xi(yi), i � 1, 2, 3,4, between drive-response MCC
systems (Equations 6, 7) without any control, in which the initial conditions are given as [x1(0), x2(0), x3(0), x4(0)]T � [0.1,0.5,0.3,0.4]T and
[y1(0), y2(0), y3(0), y4(0)]T � [0.1,0.05,0.01,0.1]T .

FIGURE 4
(left) Synchronizing state and (right) synchronization error between drive-response MCC systems (Equations 6, 7) with employing control scheme
(Equations 9, 10).
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investigating the s-tochastic fixed-time or predefined-time
synchronization with applying adaptive non-chattering control
technique in the future.

Remark 4. In the drive-response MCC systems (Equations 13, 14),
ωi, i � 1, 2, 3, 4, represents the one-di-mensional Brownian motion.
Thus, ωi

.
. is the white noise, in which the mean value is zero. And in

th-is investigation, the variance is set to be finite and the noise
function is also bounded as clarified in Assumption 1. Thus, the
expectation value of Equation 16) is finite and convergent
in finite time.

4 Numerical experiments

To verify the theoretical results, numerical simulations are
conducted. Various scenarios with different noise intensities are

tested, demonstrating the effectiveness of the proposed adaptive
control strategy in achieving rapid synchronization of memristor
chaotic circuits.

4.1 Adaptive fast synchronization of MCCs

The initial values and parameters contained in the drive MCC
system (Equation 5) or (Equation 6) have been given between
Equation 6; Figure 2. For the response MCC system (Equation 7),
we set the initial condition [y1(0), y2(0), y3(0), y4(0)]T �
[0.1, 0.05, 0.01, 0.1]T with the same parameter values as those
in drive MCC system, and take simulation time t � 200. For
this case that there is no any control implemented, the drive MCC
system (Equation 6) and response MCC system (Equation 7)
exhibit chaotic behaviors as illustrated in Figure 3 (left). And the
state trajectories of variables xi(yi), i � 1, 2, 3, 4, are displayed in
Figure 3 (right). From these two figures, one can observe that
every pair of traces cannot overlap by themselves. That is to say,
the synchronization of drive MCC system (Equation 6) and
response MCC system (Equation 7) cannot be realized without
any control.

Now, we implement the designed adaptive finite-time control
scheme (Equations 9, 10) for the response MCC system
(Equation 7), in which the linear control gains g � 5, c � 3,
index η � 3/5, and the initial nonlinear control gains gi(0) �
0.0001, i � 1, 2, 3, 4. In this case, the drive-response MCC systems
(Equations 6, 7) can be synchronized within time t � 5, where the
trajectories of each variable are depicted in Figure 4 (left) and the
synchronization errors ei, i � 1, 2, 3, 4, will converge to zero
eventually as given in Figure 4 (right). Meanwhile, the signals
ui, i � 1, 2, 3, 4, of control scheme (Equation 9) are illustrated in
Figure 5 (left) as well as the nonlinear gains gi, i � 1, 2, 3, 4, of
(Equation 10) adaptively converge to zero finally as displayed in
Figure 5 (right).

Furthermore, we know that the proposed adaptive finite-time
control protocol (Equation 9) is non-chattering which has been

FIGURE 5
(left) Control signals ui , i � 1, 2, 3,4, and (right) adaptive gains gi , i � 1,2,3,4, of the nonlinear control term in (Equations 9, 10).

FIGURE 6
The traditional chattering control scheme (Equation 17).
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reflected by the Figure 5 (left), whereas the traditional control
scheme is usually designed as follows:

u1 � 3α1 y1y2
4 − x1x2

4( ) − ge1 − g1sign e1( ) e1| |η,
u2 � − α1 + 1( )e1 − g2sign e2( ) e2| |η,
u3 � − α3 + 1( )e2 − g3sign e3( ) e3| |η,
u4 � −e1 − ce4 − g4sign e4( ) e4| |η,

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (17)

in which the parameters and control gains, including linear and
nonlinear term, can be the same as those in (Equations 9, 10)
except for the index η � 0.7. And the signals ui, 1, 2, 3, 4, of
(Equation 17) are illustrated in Figure 6, in which there exist
obvious chattering phenomena in the convergent process. In a
word, this chattering matter has been overcome successfully by
this investigation.

4.2 Stochastic fast synchronization of
MCCs in noisy environments

This subsection further considers the influence of environmental
noise on the MCC systems. In the drive-response MCC systems
(Equations 13, 14), we take the noisy intensity ρi � 0.5, noisy
function σ i(xi) � xi, i � 1, 2, 3, 4, for simplicity, and the
simulation time t � 200, other parameters and initial values are
the same as those in (Equations 6, 7) tested in previous subsection.
For this case that there is no any control implemented, the drive
MCC system (Equation 13) and response MCC system (Equation
14) exhibit stochastic chaos behaviors as illustrated in Figure 7 (left).
And the state trajectories of variables xi(yi), i � 1, 2, 3, 4, are
displayed in Figure 7 (right). From these two figures, we can

FIGURE 7
In noisy environments, (left) the 3-dimensional attractor phase diagrams and (right) the state trajectories of variables between drive-response MCC
systems (Equations 13, 14) without any control.

FIGURE 8
In noisy environments, (left) stochastic synchronizing state and (right) synchronization error between drive-response MCC systems (Equations 13,
14) with employing control scheme (Equations 9, 10).
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conclude that every pair of traces cannot overlap by themselves. In
other word, the synchronization between the stochastic drive MCC
system (Equation 13) and response MCC system (Equation 14)
cannot be achieved without any control, in which there is a violent
tremor phenomenon among them.

In the noisy environments, we also employ the previous
proposed adaptive finite-time control protocol (Equations 9, 10)
for the response system (Equation 14). In this case, the stochastic
drive-response MCC systems (Equations 13, 14) can also be
synchronized within time t � 5, where the trajectories of each
variable are depicted in Figure 8 (left) and the synchronization
errors ei, i � 1, 2, 3, 4, will converge to zero eventually in probability
as given in Figure 8 (right). Meanwhile, the signals ui, i � 1, 2, 3, 4, of
control scheme (Equation 9) are illustrated in Figure 9 (left) as well
as the nonlinear gains gi, i � 1, 2, 3, 4, of (Equation 10) adaptively
converge to zero finally as displayed in Figure 9 (right).

Next, we test the effect of different noisy intensities, ρi �
0.5, 1, 2, 3, 4, 5, respectively. Finally, we define the total error ϒ �
‖[e1, e2, e3, e4]‖, and the evolutions are illustrated in Figure 10, all of
them will converge to zero within time t � 5, which reflects that the
proposed control technique has anti-interference ability against
different noise intensities. Looking back to the Figures 7–10, there is
always vibration phenomenon in these trajectories, despite the use of
smooth control protocols. Therefore, how to completely eliminate the
impact of tremors is a challenging and meaningful issue.

4.3 Application into image encryption
transmission

Step 1. Read the original image and generate the

plaintext matrix.

Step 2. Reorganize plaintext matrix into the sequence hj

and then convert the sequence hj to the DNA sequence h′
j.

Step 3. Utilize the ode45 method to solve state equations

of the MCCs with the sampling interval T, the number of

pixels a × b, and the time interval [t0 ,tn].

FIGURE 9
(left) Control signals ui , i � 1, 2, 3,4, and (right) adaptive gains gi , i � 1,2,3,4, of the nonlinear control term in (Equations 9, 10).

FIGURE 10
The total error ϒ � ‖[e1 , e2 , e3 , e4]‖with different noise intensities
ρi � 0.5, 1, 2, 3,4, 5, respectively.

TABLE 1 Method of DNA encoding.

Mode A T C G

1 00 11 10 01

2 00 11 01 10

3 11 00 10 01

4 11 00 01 10

5 01 10 00 11

6 01 10 11 00

7 01 01 00 11

8 01 01 11 00
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Step 4. Code discrete chaotic sequences as follows:

w 4i( ) � 1000 x1 i( ) + a[ ],
w 4i + 1( ) � 1000 x2 i( ) + b[ ],
w 4i + 2( ) � 1000 x3 i( ) + c[ ],
w 4i + 3( ) � 1000 x4 i( ) + d[ ],

⎧⎪⎪⎪⎨⎪⎪⎪⎩
In which i � 1,2, . . . ,n,a,b,c and d are random integers from

interval [0,256]. Thus, pj � w(j)mod 256.

Step 5. Convert the binary sequence pj to DNA sequence p′
j

composed of “A, T, C, G” by DNA coding rules.

Step 6. Encryption function executes an XOR

operation: r′
j(t) � E(h′

j ,p
′
j) � h′

j ⊕ p′
j,

In which E(x,y) is bitwise XOR operation and r′
j is

ciphertext sequence.

Step 7. Convert the DNA ciphertext sequence r′
j into

binary ciphertext sequence rj, and then the sequence rj

is reassembled into a ciphertext matrix by the

previous Step 2.

Algorithm 1 Pseudocode for the Encryption Algorithm.

Finally and importantly, we apply the proposed adaptive fast
control strategy (Equations 9, 10) into image encryption transmission.
Let’s begin by introducing the DNA algorithm briefly. It is widely
recognized that DNA sequences consist of four types of
deoxyribonucleotides: adenine (A), guanine (G), cytosine (C), and
thymine (T). In a similar manner, binary coding also has a

FIGURE 11
The image transmission process.

FIGURE 12
(A) Original image. (B) Encrypted image. (C) Recovered image.

TABLE 2 Correlation coefficients of adjacent pixels in Baboon’s image.

Image Horizontal Vertical Diagonal

Original image 0.9801 0.9712 0.9920

Encrypted image 0.0021 0.0015 0.0016
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complementary nature between the digits 0 and 1. As per the base
pairing principle, binary data can be represented in eight different
DNA encodings, as illustrated in Table 1. By converting binary data
into a DNA sequence, we can select any one of these eight encoding
methods. Building on this straightforward DNA sequence algorithm,
we propose an image encryption method, with the encryption and
decryption processes depicted in Figure 11. The drive system
(Equation 13) and response system (Equation 14) are employed to
produce chaotic sequences in the encrypter and decrypter,
respectively, incorporating the DNA method as given in Algorithm
1. Using the proposed adaptive fast method for the image `Baboon’,
the simulation outcomes are depicted in Figure 12, where subfigure (a)
represents the original image to be encrypted, subfigure (b) shows the
scrambled encrypted image which appears disordered, and subfigure
(c) displays the recovered image almost identical to (a). Therefore, the
practicality of Theorem 1 or Theorem 2 and the effectiveness of finite-
time fast synchronization between drive-response MCCs have
been confirmed.

Correlation analysis. We test the correlation of 10,000 pairs of
neighboring pixels in the horizontal, vertical, and diagonal
directions, respectively. The calculation of correlation coefficient
(CC) can be expressed as

CC � E X − E X( )( ) Y − E Y( )( )[ ]����������
V X( )V Y( )√ ,

in whichX and Y are the intensity values of two adjacent pixels, E(·)
and V(·) signify the mean value and variance. CC results between
the adjacent positions of the original image and the encrypted image
of Baboon are displayed in Table 2, which indicates that the CCs of
original images are highly correlated, whereas CCs of encrypted
images are basically not connected as illustrated in Figures 13, 14,
respectively.

Entropy analysis. The information entropy is often used to
measure the bit distribution per level of the image’s pixel values,
which is defined as

H w( ) � −∑255
i�0
p wi( )log2 p wi( ),

in which p(wi) is the proportion of the image grey value. H(w) is
the maximum information entropy for the fact that the colors are
coded in 256 � 28 symbols, i.e., all 256 symbols are equiprobable
p � 1/256, so that H � log2 256 � 8 bits. But the practical value is
usually little smaller than this. For an effective algorithm, the
information entropy should be very close to 8. The experimental

FIGURE 13
Correlation distributions in (A) horizontal, (B) vertical, and (C) diagonal directions of original image.

FIGURE 14
Correlation distributions in (A) horizontal, (B) vertical, and (C) diagonal directions of encrypted image.
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data is given in Table 3, in which all are near 8 bits. That is, the
proposed method is indeed effective.

Histogram analysis. In this subsection, the histograms of
the original image are compared to those of the encrypted
image. Each image possesses unique histograms that reveal the
effects of the image encryption algorithm’s scrambling.
Histograms can directly show the statistical differences in
the image before and after encryption. To thwart attackers
from deciphering the image data through gray value
distribution analysis, the histogram of the encrypted image
should be smooth and uniform. Figure 15 displays the
histograms of Figure 12A in the red, green, and blue
channels, showing steep and fluctuating shapes. Conversely,
Figure 16 presents the histograms of the encrypted image
across the red, green, and blue channels, demonstrating
uniform distributions. This uniformity indicates that

statistical attacks will not allow an attacker to extract
accurate information from Figure 12A using Figure 12B.

5 Conclusion

This study presents an innovative adaptive control strategy
for fast synchronization of memristor chaotic circuits, both with
and without noisy perturbations. The developed control strategy
is adaptive, addressing the issue of uncertain selection of the
associated controlling gains as they can adapt according to the
predesigned adaptive laws. Specifically, the associated
controlling gains eventually reduce to zero upon achieving
synchronization, thereby minimizing the control cost.
Furthermore, using the second Lyapunov method, sufficient
criteria have been progressively established to achieve finite-
time and stochastic finite-time synchronization of MCCs.
Numerical experiments validate the theoretical conclusions
and emphasize potential applications in areas like image
encryption transmission. Given that the time estimation for
finite-time convergence is linked to the initial conditions of
MCCs, future research can utilize the proposed adaptive non-
chattering control to investigate fixed-time or predefined-time
synchronization.

FIGURE 15
(A) Red, (B) green, and (C) blue histograms of original image.

TABLE 3 Information entropy of Baboon’s image.

Image Red Green Blue

Original image 7.4814 7.6121 7.0912

Encrypted image 7.9981 7.9942 7.9978

FIGURE 16
(A) Red, (B) green, and (C) blue histograms of encrypted image.
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