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High-angular resolution diffusion
tensor imaging: physical
foundation and geometric
framework

Luc Florack* and Rick Sengers

Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven,
Netherlands

This paper proposes a statistical physics-based data assimilation model for the
mobility of water-bound hydrogen nuclear spins in the brain in the context
of diffusion weighted magnetic resonance imaging (DWI or DW-MRI). Point
of departure is a statistical hopping model that emulates molecular motion
in the presence of static and stationary microscale obstacles, statistically
reflected in the apparent inhomogeneous anisotropic DWI signal profiles.
Subsequently, we propose a Riemann–Finsler geometric interpretation in terms
of a metric transform that simulates this molecular process as free diffusion
on a vacuous manifold with all diffusion obstacles absorbed in its geometry.
The geometrization procedure supports the reconstruction of neural tracts
(geodesic tractography) and their quantitative characterization (tractometry).
The Riemann-DTI model for geodesic tractography based on diffusion tensor
imaging (DTI) arises as a limiting case. The genuine Finslerian case is a geometric
representation of high-angular resolution DTI, i.e., a generalized rank-two DTI
framework without the quadratic restriction implied by a simplifying Gaussianity
assumption on local diffusion or a second-order harmonic approximation of
local orientation distributions.

KEYWORDS

inhomogeneous anisotropic diffusion, hopping model, high-angular resolution
diffusion tensor imaging, diffusion weighted imaging, orientation distribution function,
geodesic tractography, Riemann–Finsler geometry

1 Introduction

1.1 The hopping model

In an attempt to gain a deeper understanding of the physics underlying the diffusion
of water in the brain [1], we propose a hopping model, in which mobile, diffusion-
sensitized hydrogen spins (‘particles’ henceforth) are jumping to and from any fiducial
point at a stationary, position-dependent hopping rate. Frictions and orientation preferences
induced by self-diffusion and collisions with static fibrous tissue barriers and DWI-
insusceptible solutes are incorporated in generic statistical constraints on the jumps. These
are assumed to be spatially inhomogeneous and anisotropic, with a priori unconstrained
size and orientation distributions induced by the tissue’s micro-structure (graininess ∼μm)
implicitly averaged over mesoscopic regimes typical of DWI (voxel size ∼mm). Using data
assimilation, these generic distributions can be matched with the observed DWI signals
(e.g., using an appropriate, complete function basis [2]; [3]) and linked to a differential
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geometric norm (or Riemann–Finsler metric), yielding a model-
free, data-driven framework for geodesic tractography and
tractometric analysis.

To appreciate the hopping model in its simplest form, the reader
is referred to the one-dimensional inhomogeneous case introduced
by [4] and scrutinized by [5]. Our application to water diffusion
in the brain in the context of (model-free) DWI has led us to the
following generalizations:

1. Generalize this to three dimensions;
2. Account for anisotropy induced by the fibrous nature of the

brain (white matter) tissue; and
3. Disentangle diffusion orientations to prevent destructive

interference during signal formation.

As a result, we obtain a genericmodel for high-angular resolution
diffusion tensor imaging (DTI) not hampered by the ambiguities of
its classical counterpart (by virtue of item 3). The construction, in
turn, provides the necessary insight for a geometric interpretation
supporting DWI-driven geodesic tractography and tractometry
[6]; [7], generalizing (and including) the familiar Riemann-DTI
paradigm ([8]; [9]; [10]; [11,12]; [13]; [14]; [15]). It also offers
new insights in connection to established DWI representations,
such as constrained spherical deconvolution, diffusion orientation
distribution functions, Q-ball imaging, HARDI, and diffusion
spectrum imaging (DSI) ([16]; [17]; [18]; [19, 20]; [21]; [3]; [22–24];
[25]; [24, 26]).

1.2 The master equation

The master equation governs the instantaneous rate of change
in the local hydrogen spin density at a fiducial point with Cartesian
coordinates x⃗ ∈ ℝ3 in terms of gain and loss terms:

∂u (x⃗, t)
∂t
=∭

ℝ3
d3 ⃗ξ[W(x⃗| ⃗ξ)u( ⃗ξ, t) −W( ⃗ξ|x⃗)u (x⃗, t)] . (1)

Values at a single voxel x⃗ implicitly represent mesoscopic volume
aggregates of unresolvable microscopic structures at an observation
scale determined by MRI resolving power. The evolution process is,
thus, assumed to be completely driven by static geometry (tissue
anatomy), the mesoscopic reconstruction of which is our ultimate
motivation. The weighted transition density W(x⃗| ⃗ξ) is taken as
follows (this is the essence of the hopping model [4]):

W(x⃗| ⃗ξ) =W( ⃗ξ)P(x⃗− ⃗ξ; ⃗ξ) =W( ⃗ξ)∭
ℝ3
d3y⃗P(y⃗; ⃗ξ) δ3 (y⃗− (x⃗− ⃗ξ)) .

(2)

The scalar field W( ⃗ξ) is the local hopping rate at point ⃗ξ, a
heuristic measure for the effective (orientation-independent) local
permeability or inverse local drag experienced by diffusing particles
due to neighborhood interactions, including self-interactions. The
product W( ⃗ξ)u( ⃗ξ, t) expresses the time-dependent relative number
of local hops per unit volume and per unit time. Particle
conservation follows from (1) after normalization:

∭
ℝ3
d3 ⃗ξW( ⃗ξ|x⃗) =W (x⃗) .

The left-hand side counts the number of particles per unit time
jumping away from a fiducial point x⃗ and landing anywhere else
in configuration space ( ⃗ξ-domain). By particle conservation, this
must equal the local hopping rate at x⃗ on the right-hand side.
The double-argument function P(y⃗; ⃗ξ) denotes the local probability
density function (pdf) (aka ‘spin density’) for a jump y⃗ originating
at point ⃗ξ, with ⃗ξ-independent normalization:

∭
ℝ3
d3y⃗P(y⃗; ⃗ξ) = 1. (3)

In the quantitiesW(x⃗| ⃗ξ),W( ⃗ξ), and P(y⃗; ⃗ξ), ⃗ξ and x⃗ are base points
in the Euclidean configuration space ℝ3, represented by Cartesian
coordinate vectors relative to an arbitrarily chosen frame. The
argument y⃗ is an element of the local tangent space and represents
a vectorial jump or hop away from the base point to which it is
anchored. The quantities u( ⃗ξ, t), P(y⃗; ⃗ξ), and W(x⃗| ⃗ξ) are densities,
i.e., amplitudes of the corresponding volume forms (on distinct
domains), u( ⃗ξ, t)d3 ⃗ξ, P(y⃗; ⃗ξ)d3y⃗, and W(x⃗| ⃗ξ)d3x⃗, relative to unit 3-
volume forms, d3 ⃗ξ ≐ dξ1 ∧ dξ2 ∧ dξ3, d3y⃗ ≐ dy1 ∧ dy2 ∧ dy3, and d3x⃗ ≐
dx1 ∧ dx2 ∧ dx3, respectively, in Cartesian coordinates.

2 Theory

2.1 The hopping model in configuration
space

Combining Equations 1, 2 yields the following integro-
differential equation:

∂u (x⃗, t)
∂t
=∭

ℝ3
d3y⃗W (x⃗− y⃗)P (y⃗; x⃗− y⃗)u (x⃗− y⃗, t) −W (x⃗)u (x⃗, t) .

(4)

Despite the integral, it may be interpreted as a local equation in
the configuration space confined to the base point x⃗, by assuming
that y⃗-integration takes place over the local tangent space attached to
that point.1 However, it will be important to appreciate the distinct
natures of the base point coordinate vector x⃗ and the associated local
tangent vector component y⃗ thereafter.

2.2 The Fokker–Planck equation in
configuration space

Assuming the pdf P(y⃗; x⃗− y⃗ ) in Equation 4, to be narrow
in ‖y⃗‖ with respect to its first argument, which amounts to
predominantly small jumps, regardless of direction relative to
a slowly varying second argument, we may invoke Taylor’s
expansion around the base point x⃗ under the integral,
truncating at the lowest nontrivial order. Using the shorthand

1 Geometrically speaking, x⃗− y⃗ is the base point reached by traversing

backward in configuration space over a vectorial jump −y⃗ via the

exponential map defined at x⃗, which reduces to a trivial shift by virtue

of the flat geometry of configuration space.
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f(x⃗) ≐W(x⃗)P( ⋅ ; x⃗)u(x⃗, ⋅ ), the relevant approximation is (using
summation convention and abbreviating ∂i ≐ ∂/∂xi)

f (x⃗− y⃗) = exp (−y⃗ ⋅∇) f (x⃗) ≈ f (x⃗) − ∂i f (x⃗)yi +
1
2
∂ij f (x⃗)yiyj +O (‖y⃗‖3) .

(5)

Combining Equations 4, 5 and exploiting the normalization
Equation 3 for the lowest-order term and, for the first-order term,
imposing the symmetry assumption

P (y⃗; x⃗) = P (−y⃗; x⃗) , (6)

implying a vanishing one-point correlation function

∭
ℝ3
d3y⃗P (y⃗; x⃗) yi = 0, (7)

one ends up with the following Fokker–Planck equation:

∂u (x⃗, t)
∂t
= ∂ij (Dij (x⃗)u (x⃗, t)) , (8)

with the configuration space diffusion tensor field

Dij (x⃗) ≐ 1
2
W (x⃗)∭

ℝ3
d3y⃗P (y⃗; x⃗)yiyj

≐ 1
2
W (x⃗)∬

𝕊2
d2ŷℓ2 (x⃗, ŷ) ŷiŷj. (9)

The latter integral extends over the unit sphere 𝕊2 ≐
{ŷ ∈ ℝ3|‖ŷ‖ = 1},obtainedafterintegrationoverthejumpsize‖y⃗‖,with

ℓ2 (x⃗, ŷ) ≐ ∫
∞

0
dρρ4P (ρŷ; x⃗) . (10)

Note the quadratic scaling with a typical jump size and the local
(tissue-dependent) modulation by the hopping rate prior. These
expressions are further analyzed in Section 2.5.The diffusion tensor,
as defined in Equation 9, plays a pivotal role in DTI. An excellent
introduction to DTI and its (potential) clinical ramifications is
explained in the work by [28].

Without Equation 6, a nontrivial first-order termwould emerge.
Since its order of magnitude depends on the degree of symmetry
violation, regardless of step size ‖y⃗‖, its significance is independent
of the second-order term in Equation 5, which is why one must
never truncate at first order. Moreover, symmetry is irrelevant for
our considerations below, cf. [29], for asymmetric distributions that
may effectively arise from locally symmetric distributions due to
asymmetric spatial inhomogeneities at subvoxel scales. Antipodal
symmetry is imposed to explicitly discard the effect of a directional
flow (in a suitably defined rest frame) so that only orientational,
i.e., bidirectional, diffusion effects, on which our considerations are
exclusively built, are manifest.

As remarked by [4], due to the inhomogeneity of the hopping
model, the right-hand side of Equation 8 does not take the form of
Fick’s law, where the diffusion tensor field would be in-between the
partial-derivative operators ∂i and ∂j. Fick’s law would introduce a
spurious flow altering the center of mass of the particle distribution,
which is clearly inconsistent with the (statistical) hop/anti-hop pair
creation implied by our symmetry assumption (Equations 6, 7).

2.3 Angular resolution limitations

It is well-known that the diffusion tensor field (Equation 9),
the keystone of DTI, is a relatively poor descriptor of anisotropy,
among others due to destructive interference caused by the y⃗-
integration process, which entails an ∞-to-6 mapping per base
point, captured by the symmetric two-point correlation matrix
on the right-hand side. The resulting ‘ground truth metamerism’
(equivalence classes of configurations inducing identical DTI
measurements) is a notoriously confusing factor in tractography
validation. Disregarding complicating factors due to spatial
resolution limitations, the only case covered without loss of
information is anisotropic Gaussian diffusion, a simplification one
cannot take for granted in the complex brain tissue, where neural
fiber crossings are omnipresent. Estimates range from 30% to 90%
of white matter voxels, but exact figures depend nontrivially on
one’s definition of a fiber in relation to spatial resolution, cf. [30,31].
To support data assimilation using more sophisticated high-angular
resolutionDWI signalmodels (at state-of-the-art spatial resolution),
one would like to understand better what occurs underneath the
y⃗-integral. This is the subject of the next section.

2.4 The Fokker–Planck equation in phase
space

To reveal the genuine nature of anisotropy at an arbitrary angular
resolution, we must refrain from y⃗-integration in Equation 10, or
at least from integration over orientation encoding spherical shells.
To this end, we start by introducing the phase space (or tangent
bundle) as an extended six-dimensional base manifold parametrized
by coordinate sextuplets (x⃗, y⃗) ∈ ℝ3 × ℝ3 of jumps y⃗ ∈ ℝ3 and their
spatial anchor points x⃗ ∈ ℝ3 as a precursor of subsequent projection
to the five-dimensional sphere bundle with coordinate quintuplets
(x⃗, ŷ) ∈ ℝ3 × 𝕊2 via integration over the jump size distribution.
[32] and [33] provide geometric interpretations of such extended
manifolds in a more general geometric setting.

There is no unique way to extend the Fokker–Planck equation
to phase space based on our hopping model in the configuration
space. An intuitive way is obtained by considering the ‘vertically
lifted’ particle density

uv (x⃗, y⃗, t) ≐ u (x⃗, t)P (y⃗; x⃗) . (11)

Consider the particles at the base point x⃗ being distributed over
the local tangent space of linearized jumps y⃗, according to the local
jump probability density P(y⃗; x⃗). The geometric object represented
by the sparsified density (Equation 11), is uv(x⃗, y⃗, t)d3x⃗d3y⃗, with
the 6-volume form d3x⃗d3y⃗ ≐ dx1 ∧ dx2 ∧ dx3 ∧ dy1 ∧ dy2 ∧ dy3 in
Cartesian coordinates. By virtue of Equation 3, we may interpret the
Fokker–Planck equation in the configuration space, Equations 8, 9,
as arising from y⃗-integration of an extended equation in phase
space, viz.,

∂uv (x⃗, y⃗, t)
∂t
= ∂ij (Δ

ij (x⃗, y⃗)uv (x⃗, y⃗, t)) +T (x⃗, y⃗, t) . (12)

The function T(x⃗, y⃗, t) may be any kernel term that is, by
definition, annihilated upon y⃗-integration:

∭
ℝ3
d3y⃗T (x⃗, y⃗, t) ≐ 0. (13)
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Such a term could arise in various ways, e.g., as a y⃗-
antisymmetric function or as the y⃗-divergence of some vector field,
which vanishes upon integration by virtue of Stokes’ theorem in a
physically realistic setting. The phase space diffusion tensor field is
defined here as

Δij (x⃗, y⃗) ≐ 1
2
W (x⃗)yiyj. (14)

Note its particularly simple, singular form, with only a single,
isotropic local degree of freedom, the local hopping rate W(x⃗),
in a trade-off with the squared jump size ‖y⃗‖2. Since it does not
contain orientation information, which, after all, has been absorbed
in the lifted particle density uv(x⃗, y⃗, t) via the factor P(y⃗; x⃗), as in
Equation 11, it is not a generalization of the classical diffusion tensor
field (Equation 9). By construction, the Fokker-Planck equation
in configuration space and the classical diffusion tensor field
(Equations 8, 9) are reobtained after y⃗-integration of Equation 12.

2.5 The Fokker–Planck equation on the
sphere bundle

The phase space diffusion equation (Equation 12) and its
singular diffusion tensor (Equation 14) may be natural objects of
study in the context of DSI, where one probes the entire phase space
(again ignoring spatial resolution ambiguities), cf. [24, 26]. However,
current clinical and technical constraints preclude a sufficiently
dense sampling of this six-dimensional manifold. Clinical DWI
typically relies on sampling of (one or a few) spherical shell(s).
Moreover, anisotropy is encoded in the distribution of jump
orientations, not magnitudes. We, therefore, decouple the two by
considering marginal distributions for each, setting y⃗ ≐ ρ ŷ, with ρ ≐
‖y⃗‖ and ŷ ≐ y⃗/‖y⃗‖ so that

∭
ℝ3
d3y⃗ ≐ ∫

∞

0
dρρ2∬

𝕊2
d2ŷ. (15)

We may integrate Equation 12, over the jump size distribution
using any spherical coordinate parametrization for ŷ ∈ 𝕊2, retaining
orientation information, such as spherical polar coordinates (θ,ϕ) ∈
[0,π] × [0 , 2π), with

ŷ ≐ (ŷ1 = cos ϕ sin θ, ŷ2 = sin ϕ sin θ, ŷ3 = cos θ) ,

so that

∬
𝕊2
d2ŷ = ∫

π

0
dθ sin θ∫

2π

0
dϕ.

Since a particular form of parametrization is irrelevant
for our discussion, we focus on the notation (Equation 15),
for simplicity. The five-dimensional submanifold ℝ3×𝕊2 ≐
{(x⃗, ŷ) ∈ ℝ3×ℝ3 |‖ŷ‖ = 1} of phase space will, henceforth, be referred
to as the (Euclidean) sphere bundle.

For the sake of definiteness, one might consider a
Maxwell–Boltzmann distribution for jump sizes ρ ≥ 0 on the
sphere bundle in order to perform the jump size integration;
see Supplementary Appendix 1 for details. In view of data
assimilation, however, the essence is that any distribution induces a
phenomenological diffusion length scale ℓ(x⃗, ŷ) given byEquation 10
via jump size integration, which is an instance of a generalized

(diffusion) orientation diffusion function (ODF), cf. [34]; [35]; [36];
[25] (without the factor ρ4); Barnett’s adaptation [37] (with the
Jacobian factor ρ2); and the generalization by [3], including an
operational scheme to compute Equation 10 from a DWI data
representation, implemented in Dipy, cf. [38]. With this definition,
we can evaluate the jump size integral in Equation 9, yielding

Dij (x⃗) ≐ 1
4π
∬
𝕊2
d2ŷDij (x⃗, ŷ) , (16)

in which the sphere bundle diffusion tensor field is defined in
terms of the phase space diffusion tensor field (Equation 13)
and jump pdf (Equation 3) as

Dij (x⃗, ŷ) ≐ 4π∫
∞

0
dρρ2Δij (x⃗,ρŷ)P (ρŷ; x⃗) , (17)

or, in terms of the hopping rate and phenomenological diffusion
scale with the help of Equation 11, as

Dij (x⃗, ŷ) = 2πℓ2 (x⃗, ŷ)W (x⃗) ŷiŷj. (18)

The occurrences of 4π in Equations 16, 17 are chosen such that
the classical diffusion tensor Dij(x⃗) in configuration space arises as
an idempotent projection of its high-angular resolution counterpart
Dij(x⃗, ŷ) via spherical averaging so that the former is consistent
with an orientation-independent instance of the latter. Figure 1
illustrates this high-angular resolution diffusion tensor to various
orders of spherical harmonic approximation in comparison with the
classical DTI case.

The sphere bundle diffusion tensor field (Equations 17, 18)
supports a high-angular resolution DTI framework alluded to in the
foregoing, generalizing the classical case defined in the configuration
space. However, it inherits its singular nature from the phase
space diffusion tensor field (Equation 14), with a single nonzero
eigendirection spanned by the distinguished direction ŷ at x⃗, i.e., the
direction indicated by the vectorial part ŷ ∈ 𝕊2 of its five-dimensional
base point (x⃗, ŷ) ∈ ℝ3 ×𝕊2.

In Section 2.6, we show how regularization is naturally realized
in the DTI limit by virtue of vertical projection (19), albeit at the
expense of what we determine to achieve, viz., an unrestricted
angular resolution. In Supplementary Appendix 2, we elaborate on
the classical DTI premise, for which projection does not incur the
loss of angular resolution. In Section 2.7, we consider regularization
in combination with geometrization of Equations 17, 18 on the
sphere bundle, maintaining an unrestricted angular resolution, the
novelty and main objective of this article.

2.6 Back to configuration space: classical
diffusion tensor imaging

Recall that, in its most rudimentary form, the classical diffusion
tensor in configuration space captures the second-order momenta
of the stipulated transition density function Equation 2:

Dij (x⃗) = 1
2
∭
ℝ3
d3y⃗W (x⃗|x⃗− y⃗)yiyj.

Subsequently, based on our heuristic hopping model, we have
generalized it to a diffusion tensor defined on extended domains,
notably on the phase space of positions and jump vectors and,
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ultimately, via projection over jump size, on the sphere bundle of
positions and orientations, tacitly assuming antipodal symmetry.
The latter, given by Equations 17, 18 and referred to as ‘high-angular
resolution DTI,’ defines our main object of interest.

By construction, spherical averaging of the singular tensor
(Equations 17, 18) via Equations 16 reproduces the regular, classical
diffusion tensor field (10) in configuration space. This projection
expresses a correspondence principle, clarifying how classical DTI
emerges as a limiting case of high-angular resolution DTI. Clearly,
this procedure causes irreversible loss of orientation information
due to destructive interference, unless very special conditions on
the nature of the medium hold. This restrictive case is considered
in more detail in Supplementary Appendix 2 as an instructive
hypothetical limit.

2.7 Geometrization and geodesic
tractography

In the Riemann-DTI paradigm, it is stipulated that the
configuration space DTI tensor defines (up to isotropic [8]; [9] or
anisotropic scaling [39]; [40]) a dual Riemannian metric, in terms
of which one can express the tractography inverse problem as a
(constrained) geodesic or ‘shortest path’ problem ([7]; [41]; [11];
[13]; [15, 42]). This interpretation is consistent with its symmetric
positive definite nature.

It is tempting to assign a similar role in a generalized, Finsler-
geometric setting, to the high-angular resolution DTI tensor
(Equations 17, 18) on the sphere bundle. However, there is a
fundamental obstruction, viz., its singular nature. Its eigenspace
is, by construction, one-dimensional, spanned by the distinguished
direction ŷ. Instead of pursuing this case in a sub-Finslerian setting,
where such degeneraciesmight be properly handled, it appearsmore
convenient to search for an equivalent, regularized counterpart.

To begin with, let us stipulate a singular dual metric
tensor by ‘demodulating’ the diffusion tensor on the
sphere bundle, Equation 18, excluding local tissue permeability
captured by the hopping rate:

gij0 (x⃗, ŷ) ≐ k (x⃗, ŷ) ŷ
iŷj,

with the scalar field

k (x⃗, ŷ) ≐ 2πℓ2 (x⃗, ŷ) (19)

as a geometric counterpart of the diffusion tensor on the sphere
bundle. The reason for suppressing the hopping rate in the
dual metric is threefold: (i) as a heuristic toy model parameter,
the exact physical significance of the hopping rate is not well-
understood; (ii) the demodulated metric reflects local anisotropic
hydrogen spin mobility constraints, independent of the isotropic
tissue permeability captured by the hopping rate (a manifestation
of non-geometric microstructural properties in a voxel); and (iii)
a demodulated metric is least committed, in the sense that it
can be adapted a posteriori by a conformal scale factor, defining
an effective hopping rate W(x⃗), based on application-dependent
axiomatic considerations. The latter argument is a pragmatic one,
which resonates with historical practice, cf. the various conformal
factors proposed in the Riemann-geodesic tractography paradigm,

either implicit by virtue of the (ad hoc) identification of dual metric
and DTI tensor ([11]; [13]), or explicitly stipulated via certain
axiomatic requirements ([8]; [9]).

Figure 1 illustrates the diffusivity glyphs arising from the scalar
field k(x⃗, ŷ) in a truncated spherical harmonic basis. Although at
second order, the glyphs of k(x⃗, ŷ) resemble those of the classical DTI
tensor Dij(x⃗)—both having six local degrees of freedom—more and
more directional information is obtained at higher orders.

Since detgij0 = 0, we cannot define a covariant metric g0
ij by

inversion in the usual way via gik0 g
0
kj = δ

i
j. However, we may define

it as a generalized inverse satisfying the modified condition

gik0 g
0
kℓg

ℓj
0 = g

ij
0.

Such a generalized inverse is easily seen to be given by

g0
ij (x⃗, ŷ) ≐

1
k (x⃗, ŷ)

ŷiŷj,

modulo ambiguities of the form

g0
ij → g0

ij + λαiϵ
α
j + λαjϵ

α
i ,

in which ϵα ≐ ϵαℓ dx
ℓ and α = 1,2 are two independent eigen-

covectors satisfying gkℓ0 ϵ
α
ℓ = 0 and λαi ∈ ℝ arbitrary coefficients. This

observation could be used to construct a regularized metric tensor
gij but does not offer a ‘canonical’ recipe for the regularizing
terms. The Moore–Penrose pseudoinverse ([43]; [44]) and the
Drazin inverse [45]—which are equal in this special case of a dyadic
self-product—correspond to λαi = 0.

An alternative method that gracefully resolves the ambiguity
proceeds via an intermediate construction of a new, generalized
norm for the vector y⃗ at the base point x⃗, or positive Finsler
function F(x⃗, y⃗), defined on the slit tangent bundle (x⃗, y⃗) ∈ ℝ3 ×
ℝ3\{ ⃗0}, as follows:

F2 (x⃗, y⃗) ≐ g0
ij (x⃗, ŷ)y

iyj.

The Hessian of this Finsler Lagrangian defines a new metric
tensor in the usual manner [32]; [33]:

gij (x⃗, ŷ) ≐
1
2
∂2F2 (x⃗, y⃗)
∂yi∂yj

.

Since this metric exists alongside our original Euclidean metric,
one must remain cautious in view of ambiguous index-raising and
-lowering conventions; unless stated otherwise, index raising and
lowering will henceforth pertain to the Finsler metric. Working out
technicalities, setting2

κ (x⃗, ŷ) ≐ ln k (x⃗, ŷ) , (20)

and writing ∂̇i ≐ ∂/∂y
i for a vertical derivative, a tedious but

straightforward computation yields

gij (x⃗, ŷ) = e
−κ(x⃗,ŷ) [ηij − ŷi∂̇jκ (x⃗, ŷ) − ŷj∂̇iκ (x⃗, ŷ)

+1
2
(∂̇iκ (x⃗, ŷ) + ∂̇jκ (x⃗, ŷ) − ∂̇i∂̇jκ (x⃗, ŷ))] . (21)

2 The dimensionful ln-argument k in (30) may be normalized, without

loss of generality, by a characteristic constant k0 (‘Knudsen number’),

e.g., in terms of the bulk water diffusion path length at some reference

temperature.
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FIGURE 1
Classical and high-angular resolution DTI for increasing levels of spherical harmonic articulation. Glyphs represent apparent diffusivity values Dij(x⃗, ŷ)ŷiŷj
at each location x ∈ ℝ3 on the unit sphere ŷ ∈ 𝕊2; recall (21). There is a trade-off between robustness of any given truncation order and the number of
DWI diffusion gradients used in the acquisition. (A) Classical DTI; (B) second-order; (C) fourth-order; (D) sixth-order; (E) eighth-order.

If we introduce the covariant vertical derivative

Ḋi ≐ ∂̇i −A
v
i ,

with a (−1)-homogeneous vertical diffusion gauge field Av
i (x⃗, y⃗)

defined by the vertical gauge condition ∇vk(x⃗, ŷ) ≐ 0, or, in terms of
coordinates,

Ḋik (x⃗, ŷ) ≐ 0, (22)

then we obtain

Av
i (x⃗, y⃗) ≐ ∂̇iκ (x⃗, ŷ) . (23)

This allows us to rewrite Equation 21 as

gij (x⃗, ŷ) =
1
2
e−κ(x⃗,ŷ)ḊiḊj‖y⃗‖2. (24)

We will refer to the regularized case (Equations 21, 24) as
the Riemann–Finsler metric tensor. The vertical gauge condition

Frontiers in Physics 06 frontiersin.org

https://doi.org/10.3389/fphy.2024.1447311
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Florack and Sengers 10.3389/fphy.2024.1447311

(Equation 22) is the geometric ploy that allows us to sweep
diffusion anisotropies under the rug. With this gauge condition,
one could say that the diffusion path length ℓ(x⃗, ŷ) is adopted
as a renormalized, local, anisotropic unit of reference for length
measurements, regardless of direction; recall Equation 19.

TheRiemann–Finslermetric tensor is regular3 for typicalmedia,
given a physically realistic choice of Equation 20. It defines a local,
orientation-dependent norm that reflects the typical diffusion path
length in the local brain tissue along the corresponding orientation.
This means that a vector y⃗ anchored at the base point x⃗ will
have a norm F(x⃗, y⃗) that is relatively small (large) if there are few
(respectively many) diffusion obstacles at that point along the
orientation ŷ.

2.8 The Riemann–Finsler geodesic
rationale

The commonly accepted tractography premise that white matter
tracts follow paths of least resistance to diffusion suggests that
white matter tracts are locally shortest paths, or geodesics, relative
to the Riemann–Finsler metric (Equation 21). Recall that a curve
between fixed end points is called locally shortest if any small
perturbation of that curve increases its length. The attribute ‘local’
is necessary since two sufficiently distant points in the non-
Euclidean brain space may be connected by multiple geodesics.
The length of the globally shortest geodesic connection provides
an unambiguous notion of distance between its endpoints.4 The
Hopf–Rinow theorem [46] guarantees the existence of a geodesic
curve between any two points ( geodesic completeness), which makes
geodesic tractography fundamentally different from mainstream
streamline-inspired paradigms despite their shared underlying
hypothesis.

In contrast to streamlines, geodesics are stipulated to optimize
sensitivity, regardless of specificity. As a result, an arbitrarily
chosen geodesic is almost surely a false positive since anatomical
connections are sparse, whereas geodesic connections are dense.
Data-driven tractometric analysis, ideally supported by external
anatomical information, must, therefore, be a constitutional part of
any unambiguous geodesic tractography paradigm. Recall that the
Riemann–Finsler geometric representation of the brain is meant to
hide local diffusivities such as tomake things look homogeneous and
isotropic, as a result of which there are no a priori preferred (such
as ‘true’ versus ‘false positive’) members in a geodesic congruence.
Tractometric invariants for pruning by false positive removal must
necessarily incorporate explicit diffusion characteristics, defined

3 In particular, in the limiting case κ→ κ0 = 0, corresponding to

homogeneous isotropic diffusion in bulk water at the reference

temperature, we reobtain the flat Euclidean metric gij→ ηij appropriate

for that case.

4 One should note that the use of absolute distance as the main criterion

for anatomical brain connectivity, such as implied by some fast marching

schemes based on an eikonal equation, ignores non-minimal geodesics

and thus incurs loss of sensitivity, which runs counter to the geodesic

tractography rationale.

only by virtue of a combined Euclidean/Finslerian perspective.
Unlike Einstein’s general relativity theory, the Riemann–Finsler
geodesic rationale, thus, relies on a metric transform connecting
two metrics on a metrically amorphous manifold, which has been
conveniently furnished with a global ‘Cartesian’ coordinate chart.

Tractometric analysis for the purpose of anatomical tract
disambiguation is beyond the scope of this article and will be
considered in future work, cf. also Colby et al., DeSantis et al., and
St-Jean et al. for some inspiring ideas ([47]; [48]; [49]).

Geodesics are obtained by (locally) minimizing the length of a
parametric curve γ:ℝ→ℝ3:t↦ x⃗(t), keeping endpoints, x⃗(0) and
x⃗(T), fixed. Lifted to the slit tangent bundle, we obtain a particular
‘horizontal’ curve in phase space, viz., γ:ℝ→ℝ6:t↦ (x⃗(t), y⃗(t)), with
the ‘horizontal constraint’

y⃗ (t) ≐ ̇x⃗ (t) . (25)

Length is then expressed by the functional

L (γ) ≐ ∫
γ
F (x⃗,dx⃗) ≐ ∫

T

0
√gij (x⃗ (t) , y⃗ (t))yi (t)yj (t)dt, (26)

subject to Equation 25. Variational calculus produces the geodesic
equations ([32]; [7]; [33]):

̈xi +Gi (x⃗, ̇x⃗) =
d ln F(x⃗, ̇x⃗)

dt
ẋi, (27)

where the geodesic spray coefficients are given by

Gi (x⃗, y⃗) ≐ 1
2
gik (x⃗, ŷ)(yℓ∂ℓ∂̇kF2 (x⃗, y⃗) − ∂kF2 (x⃗, y⃗)) , (28)

cf. [32] and [33] for details. Alternatively, we have

Gi (x⃗, y⃗) = γijk (x⃗, y⃗) y
jyk, (29)

yielding

̈xi + γijk (x⃗, ̇x⃗) ẋ
jẋk =

d ln F(x⃗, ̇x⃗)
dt

ẋi, (30)

with (0-homogeneous) formal Christoffel symbols of the
second kind

γijk (x⃗, y⃗) ≐
1
2
giℓ (x⃗, ŷ)(∂jgℓk (x⃗, ŷ) + ∂kgjℓ (x⃗, ŷ) − ∂ℓgjk (x⃗, ŷ)) . (31)

Figure 2 shows some (initialization-dependent) numerical
solutions connecting seed and target regions associated with the
corticospinal tract (CST) for both the classical Riemannian case and
the genuine Finslerian case. In the Riemannian limit, the metric
tensor becomes vertically constant. In that case, it is easy to see that
the geodesic spray coefficients (Equation 29) reduce to quadratic
forms, viz.,

Gi (x⃗, y⃗) = Ni
j (x⃗, y⃗)y

j = Γijk (x⃗)y
jyk,

whereas the formal γ-symbols (Equation 31) reduce to the more
familiar (by definition, vertically constant) Levi–Civita Γ-symbols
from Riemannian geometry:

Γijk (x⃗) ≐
1
2
giℓ (x⃗)(∂jgℓk (x⃗) + ∂kgjℓ (x⃗) − ∂ℓgjk (x⃗)) .
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FIGURE 2
Sparse subset of geodesic tracts, i.e., solutions of (38), stipulated for the CST, connecting arbitrarily chosen endpoints in a seed and target region based
on an anatomical atlas. These should not be mistaken for actual anatomical nerve bundles, the determination of which requires a characterization of
their anatomical plausibility in terms of tractometric features and external anatomical constraints. The two-dimensional coronal background slice of
the DWI image provides some qualitative anatomical context for the three-dimensional visualization of the tracts. The experiment was performed on a
DWI dataset from the Human Connectome Data Project (dataset “WU-Minn HCP Data—1200 Subjects”: Subject 100,307; TE/TR/echo spacing
89.5/5520.0/0.78 ms; b = 2000 s/mm2). (A) Riemann-DTI geodesics; (B) Finsler-DWI geodesics to eighth-order spherical harmonic
approximation; recall Figure 1E.

In the Riemannian limit, we, thus, retrieve the established
Riemann-DTI geodesic tractography paradigm. Reversely, a linear
connection defines a Riemann–Finsler geometry of Berwaldian
type, which is slightly more general than the Riemannian limit.5

The right-hand side of Equations 27, 30 merely contributes
to a parameter-dependent ‘acceleration’ along the curve and
may be set to zero (‘affine parametrization’) if one does not

5 By Szabó’s metrizability theorem, Berwald geometries are of little

interest for parameter-invariant geodesic tractography since it claims the

existence of a Riemannian metric inducing the same geodesic curves, cf.

[32], [33], and [56].

care about parametrization. This is automatically achieved in
the variational formulation if one replaces the 1-homogeneous
integrand F in Equation 26 by its 2-homogeneous Lagrangian
L ≐ F2 (‘kinetic energy minimization’ instead of curve length
minimization).

In the context of our extended slit tangent bundle
furnished with a Finsler metric, Berwald’s horizontal
derivatives are often encountered replacing partial
derivatives for a geometrically consistent horizontal/vertical
splitting:

δi ≐ ∂i −N
j
i∂̇j.
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The so-called nonlinear connection coefficients in this
expression satisfy

Ni
j (x⃗, y⃗) =

1
2
∂̇jG

i (x⃗, y⃗) .

Recall Equation 29, 30. Using this definition, we may define a
covariant horizontal derivative:

Di ≐ δi −Ah
i .

Analogous to Equation 27, we may then set

Dik (x⃗, ŷ) ≐ 0

to define the 0-homogeneous horizontal diffusion gauge field
Ah
i (x⃗, y⃗). With the help of the already-defined vertical diffusion

gauge field (Equation 23), it follows that this is completely
determined by the canonical nonlinear connection, viz., Nj

iA
v
j +

Ah
i = 0, or

Ah
i (x⃗, y⃗) ≐ δiκ (x⃗, ŷ) .

This is the horizontal counterpart of Equation 23, rendering the
scalar field k(x⃗, ŷ) (Equation 19), both horizontally and vertically
covariantly constant. In other words, both inhomogeneous and
anisotropic details of diffusion (ignoring hopping rate dependency)
have been ‘geometrized away’ via the sphere bundle furnished with
the Riemann–Finsler metric constructed above and the induced
gauge fields under horizontal/vertical splitting.

Equations 27, 30 generalize the Riemann-DTI geodesic
tractography paradigm ([7]; [40]; [15]) to genuine Finsler-DWI
geodesic tractography for our new high-angular resolution DTI
model. The conceptually simple but mathematically profound
difference lies in the nature of the DWI-induced local anisotropic
norm concept. In the Riemann-DTI case, this is an inner product-
induced norm, the dual Gram matrix of which matches the DTI
tensor one-to-one (at the expense of residual DWI signal loss).
In the genuine Finsler-DWI case, we have a general norm, the
infinitely many degrees of freedom of which admit a good match
with an unconstrained DWI model based on an arbitrary number
of diffusion orientations, e.g., using a suitably truncated complete
function basis ([2]; [3]).

3 Summary, conclusion, and
discussion

Hopping models are convenient proxies for statistical models
of complex diffusion phenomena, especially when corroborated
by complementary empirical evidence. The brain, considered as a
porous medium for water diffusion, is an epitome of such a system,
for which the convoluted interplay of molecular dynamics and
the physicochemical environment would be prohibitively difficult
to capture if not distilled down to its quintessential components
admitting ‘model-free’ data assimilation. We have proposed such a
hopping model to explain inhomogeneous anisotropic diffusion in
the brain with relevantmodel parameters for DWI data assimilation,
obviating a priori constraints on anatomical complexity.

A standard statistical procedure produces a Fokker–Planck
equation that is fully determined by a classical DTI tensor defined

in the three-dimensional configuration space. Its form betrays a
‘vertical projection,’ or angular average, of an underlying high-
angular resolution DTI tensor. The latter is a singular, dyadic tensor,
defined on the sphere bundle of base points capturing both positions
and orientations, with a preferred orientation aligned with that of
its underlying five-dimensional base point. This enables local scalar
features, notably the diffusion path length, to be defined orientation-
wise, preventing loss of information due to angular superposition
inherent in classical DTI.

We have subsequently provided a geometric interpretation
to support an operational scheme for geodesic tractography,
generalizing the restrictive Riemann-DTI framework. The
generalization entails the removal of implicit constraints on
either the nature of the underlying diffusion process (Gaussianity
assumption), or on the angular resolution by which it is represented
in classical DTI (second-order harmonic truncation). By virtue
of a metrizability trick via a so-called Finsler norm on the (slit)
tangent bundle, it has turned out possible to retain a simple
second-order, non-singular metric structure. The generalized,
Riemann–Finsler metric, defined on the sphere bundle, adds novel
structure to the metrically void ‘higher-order DTI’ model defined in
the configuration space, as originally proposed by [50] and [51]
to overcome classical DTI limitations. This additional metric
structure enables generalized Finsler-DWI geodesic tractography,
fully exploiting the generic nature of such a generalized model.
Thus, the paradigm shift from low- to high-angular resolution DTI
reverberates in the canonical way in which Riemann geometry is
embedded into the more general Finsler setting.

The classical Riemann-DTI geodesic tractography paradigm
arises as a (very) special case. This suggests a quantification
of the relative global volumetric contributions of complex fiber
configurations versus regions with single fiber coherence, cf. [30, 31],
either in terms of the difference tensor gij(x⃗, ŷ) − gij(x⃗), where the
latter term is the orientation average of the former, or in terms of the
Cartan tensor Cijk(x⃗, ŷ) ≐

1
2
∂̇kgij(x⃗, ŷ) or, equivalently, its reduction to

the Cartan one-form Ck(x⃗, ŷ) ≐ gij(x⃗, ŷ)Cijk(x⃗, ŷ), which, by Deicke’s
theorem ([32]; [33]), all vanish if and only if the brain space is
Riemannian, and thus, by construction, DWI anisotropy evidence
is fully captured by classical DTI.

Our heuristic approach via a hopping model defined in
configuration space undergoes inherent ambiguities in the form
of nontrivial kernel functions on the sphere bundle that have
no manifestation in configuration space due to zero angular
average. Although such ambiguities do seem harmless for our
application and have been glossed over in this article, a more
rigorous top–down approach, departing from a hopping model in
position–velocity phase space, reflecting actual molecular motion,
might be more convincing. In such a model, one would need to
couple a displacement vector (or an average velocity vector over a
given diffusion time interval), i.e., a jump in the ‘vertical direction’
along a tangent fiber, to a spatial displacement, i.e., a change of
position in the configuration space consistent with the jump vector.
In geometrical terms, phase space translations corresponding to
actual molecular motions are subject to a ‘horizontality condition,’
which dictates that the displacement or instantaneous velocity vector
must be consistent with the induced movement in configuration
space. In such a phase space hopping model, one might stipulate a
Maxwell–Boltzmann-type distribution for particle velocities with a
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different ‘temperature’ for each position and orientation to capture
the inhomogeneous and anisotropic nature of brain tissue since
this would be consistent with established physics in the limit of
obstacle-free bulk water, cf. Supplementary Appendix 1.

A physically appealing but mathematically mind-boggling path
integral approach may be another way to arrive at a model for high-
angular resolutionDTI [52]; [53].This turns out possible, even in the
mathematically closed form, for the simplified case of classical DTI.
However, path integrals other than those based on quadratic forms
(i.e., nearly anything beyond classical DTI) do not yield closed-
form expressions and may not even be well-defined. At best, one
may hope for insights via a perturbative expansion or via formal
symbolic manipulation. This might nevertheless be a viable way
toward theoretical underpinning.

Because it poses no a priori constraints on angular resolution,
high-angular resolution DTI offers a new, generic DWI model on
a par with popular existing models but, as opposed to these, is
specifically geared toward a geodesic rationale. More specifically,
in the operational definition of high-angular resolution DTI, a
particular orientation distribution function, ‘ODF4,’ presents itself
in the form of a characteristic inhomogeneous anisotropic diffusion
path length, recall (11), which is the pivot of the Riemann–Finsler
metric. This is a specific instance of the general class of ‘ODFn’
studied by [3].

The operational significance of the hopping rate factor W(x⃗)-
relating diffusion tensor and dual metric remains an open question,
but it is interesting to note that several pragmatic attempts to
improve classical Riemann-DTI tractography have been sought
precisely in the choice of a suitably data-adapted conformal
factor, cf. [8] and [9], for examples that differ from the historical
case [13]; [11], which entails an implicit scaling in itself. A
refinement of the hopping model might shed light on this issue
from a fundamental statistical physics perspective. The analogy of
hopping rate with a local ‘temperature: viscosity’ ratio—recall the
Stokes–Einstein–Sutherland equation (Supplementary Equation 72)
—might be useful in search for a more rigorous underpinning.

Finsler geodesic equations are well-known from the literature.
From an anatomical perspective, their solutions are imbued with
the same pros and cons as their Riemann-DTI counterparts and
with all validation issues common to tractography methods in
general. A clear advantage is their generic and (via tractometric
characterization) adaptable nature, intuitive physical appeal, and
mathematical rigor, with no parameters other than boundary
conditions and those instantiated by DWI measurements, cf. the
observations by Schilling et al., in this respect [54]. A disadvantage,
in comparison to streamline methods, is their computational
complexity (which may be mitigated by dimensionality reduction,
cf. the geodesic tubes exploiting the linear geodesic deviation
equations by [15] in the Riemann-DTI context), and their a priori
lack of anatomical significance as a result of geodesic completeness.
Without complementary tractometric characterization, which is
beyond the scope of this article, geodesics must not be mistaken
for anatomically meaningful tracts. They are optimal diffusion
pathways in an operationally well-defined sense, expressing the
basic tractography premise in a least committed way, with room for
anatomical specification and pruning. With regard to the latter, the
flexibility offered by virtue of geodesic completeness may also be
clearly seen as an advantage. Note that, by virtue of a non-vanishing

Cartan tensor, high-angular resolution DTI admits a richer set of
tractometric invariants for tract characterization and filtering than
its classical counterpart [40]; [55].

To summarize, the main result in this paper is twofold, viz.
(i) freeing classical DTI from its inherent angular resolution
limitation and (ii) embedding Riemann-DTI geodesic tractography
into a generic Finsler-DWI framework. This puts the geodesic
tractography rationale potentially (i.e., if furnished with biologically
plausible tractometric criteria) on a par with state-of-the-
art tractography methods. Its operationalization, including
tractometric pruning, and experimental and clinical ramifications,
will be considered in future work.
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