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The description of thermodynamic phase transitions in terms of percolation
transitions of suitably defined clusters has a long tradition and boasts a number of
important successes, the most prominent ones being in ferromagnetic lattice
models. Spin glasses and other frustrated systems are not among them as the
clusters of aligned spins usually considered in this context start to percolate in the
disordered phase and hence fail to indicate the onset of ordering. In this mini-
review we provide an overview of the state of the art in this field, including recent
advances, and outline the main open questions in the area.
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1 Introduction

Percolation models were first proposed and studied by Flory and Stockmeyer in the
context of polymer gelation [1, 2], and they have found applications in an astonishingly
broad range of areas, from forest fires [3], over porous media in oil fields [4], to electric
conductivity [5] and all the way to complex networks [6]. For lattice systems, Broadbent and
Hammersley [7] first proposed the idea of what is today known as bond percolation, where
the edges of a lattice are occupied at randomwith a probability p, and the resulting structure
of connected components is investigated [8]. This model provides one of the simplest and
most fundamental examples of a (usually continuous) phase transition. For percolation, the
transition is characterized by the appearance of a spanning or incipient percolating cluster
that connects opposite edges of the system and is of infinite size in the thermodynamic limit.
At the transition point, pc, clusters exist on all length scales and the system is correlated up
to the largest distances, forming a (stochastic) self-similar fractal [3].

This behavior is reminiscent of the spatial correlations observed in other systems near
criticality, for instance in the magnetic ordering transition of lattice spin models [9]. In
view of the success and intuitive appeal of the percolation picture, it has been a
longstanding goal in the description of phase transitions and critical phenomena to
represent the ordering process in general systems as a percolation transition of suitably
defined structures or droplets in the substance that form as the phase changes [10]. Fisher
proposed a model [11] that postulated droplets of a certain free energy whose average size
diverges at the critical point and that feature a cluster size distribution whose exponents
are related to the critical indices of the thermal transition. A microscopic definition of
such droplets, however, was initially not available. While it was clear that they must
correspond to a spatially correlated percolation problem, it soon became clear that the
clusters (connected components) of like spins do not fit Fisher’s description as they
percolate away from the thermal critical point [12]. Coniglio and Klein [13] first realized
that suitable clusters resulted from a merely probabilistic occupation of bonds between
like spins if the occupation probability was chosen as p � 1 − exp(−2βJ), where β is the
inverse temperature and J denotes the ferromagnetic exchange coupling. Independently,
Fortuin and Kasteleyn [14] had provided a representation of the Potts model in form of a
correlated percolation model that contained the same cluster definition. The resulting
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Fortuin-Kasteleyn-Coniglio-Klein (FKCK) clusters percolate at the
thermal transition point and their structure encodes the nature of
spin-spin correlations. They are also the basis for powerful
numerical simulation schemes in form of the cluster algorithms
of Swendsen and Wang [15] as well as Wolff [16].

While these ideas are rather straightforwardly generalized
from Ising to Potts variables, as well as to continuous spins [16],
and even to disordered ferromagnets [17], they fail as soon as
competing interactions and frustration come into play [18, 19].
Further, while FKCK clusters can be easily generalized to this case
by focusing on (parallel or antiparallel) spin pairs with satisfied
bonds, it is found that in three dimensions such clusters percolate
far away from the spin-glass transition point as they, in fact, do
not encode the relevant correlations at the spin-glass transition
[20]. Instead, it has been proposed that one should consider
cluster definitions based on overlap variables, as they encode the
order parameter of the spin-glass transition [21]. Further, it
appears that a more subtle property of clusters than the mere
onset of percolation might be associated with the occurrence of
the spin-glass transition. Only in two dimensions, where the
situation is somewhat different as the spin-glass transition is
shifted to zero temperature, does one observe for some types of
overlap-based clusters the percolation points asymptotically
approach the spin-glass transition [22].

Based on some of these observations, a number of cluster-
update algorithms for spin glasses have been proposed, the
general target being to ensure that the updated clusters
undergo a percolation transition at or close to the spin-glass
transition, and that the structure of clusters encodes the
correlations of the underlying spin model. A general solution
to this problem has not been found to date, but some approaches
provide reasonably good performance for systems in two
dimensions [23], for spin glasses on diluted lattices [24], or
for an intermediate size range in three and higher dimensions
[25]. In the remainder of this mini-review, we will provide a more
detailed discussion of the connection between percolation and
the spin-glass transition and the simulation algorithms based on
these observations.

2 Spin clusters

While some of what is discussed below can be generalized to the
cases of Potts spins as well as continuous models such as the XY and
Heisenberg spin glasses, to be specific we focus on the case of the
short-range (Edwards-Anderson) Ising spin glass with
Hamiltonian [26]

H � − ∑
〈i,j〉

Jijσ iσj, (1)

where σ i � ±1 and the sum is taken over nearest-neighbor pairs of
the lattice only. To allow for a spin-glass phase, the distribution of
the quenched couplings Jij should include values of both signs, the
most common cases being the bimodal and Gaussian distributions.
In a natural generalization from the cases of ferromagnetic Ising and
Potts models, FKCK clusters may be constructed for such a system
by occupying bonds between satisfied spin pairs, i.e., those with
Jijσ iσj > 0, with probability

pFKCK � 1 − exp −2β|Jij|[ ]. (2)

There is clear numerical evidence that such clusters percolate at
temperatures far above the spin-glass transition, for instance at
Tc,FKCK � 3.934(3) for the three-dimensional symmetric ±J model
[19, 20] as compared to the spin-glass transition temperature at
TSG � 1.101(5) [27] (a similar difference is expected for the model
with Gaussian couplings). In two dimensions, these clusters
percolate at TSG � 1.1894(3) for the Gaussian model [22], while
the spin-glass transition only occurs for T → 0 [28]. More generally,
for a bimodal model with a fraction x of antiferromagnetic bonds
with Jij < 0, a coincidence of the percolation transition and the
thermal transition point is only observed for x � 0 [20]. This
behavior is rather plausible since FKCK clusters do not represent
the relevant spin correlations in these systems. While for the
ferromagnet [29]

〈sisj〉 � Prob i and j are connected by occupied bonds( ), (3)

the situation for spin glasses is more subtle, and one can show that in
this case [21, 30]

〈sisj〉 � Prob i and j are connected by an even number(
of occupied antiferromagnetic bonds)

−Prob i and j are connected by an odd number(
of occupied antiferromagnetic bonds). (4)

Hence, the percolation of FKCK clusters no longer implies the
presence of long-range order. Since the percolation transition of
FKCK clusters does not encode spin-glass criticality (but see Ref.
[31] for a possible connection to damage spreading), it is expected
that it is in the universality class of random percolation, and this
expectation is borne out by the results of numerical simulation
studies [20, 22, 32] as well as rigorous analysis [33, 34].

3 Overlap clusters

This failure is not surprising in view of the fact that the
magnetization is no order parameter for the spin-glass transition
and, instead, for its description one needs to turn to overlap variables
[35]. Several cluster definitions have been suggested based on the site
or link overlap of two spin configurations using the same disorder
realization. Initially in the context of random-field models, Chayes,
Machta and Redner [36] proposed a representation where doubly
satisfied (“blue”) bonds in a two-replica representation are occupied
with a probability

pCMR,blue � 1 − exp −4β|Jij|[ ], (5)
while, additionally, singly satisfied (“red”) bonds are occupied with
probability

pCMR,red � 1 − exp −2β|Jij|[ ].

Then, it is possible to relate the percolation properties of such
clusters to the occurrence of symmetry breaking of the spin system
[21]: in contrast to the ferromagnet, where the appearance of a
percolating cluster suffices to indicate the onset of the ordered phase,
for spin glass there should be a “blue” cluster of strictly larger density
than any other cluster [37]. In practise, one observes the occurrence
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of two percolating clusters of opposite overlap that develop a density
difference at the spin-glass transition [21, 22]. A corresponding
overlap configuration is shown in Figure 1 for the example of the
2D Gaussian spin glass, illustrating that there are mainly two large
clusters of opposite overlap, with any further clusters being much
smaller. If the weight of such smaller clusters diminishes for systems of
increasing sizes, the overlap q (i.e., the order parameter) is connected
to the density difference of the two largest clusters. This is rigorously
the case in the mean-field Sherrington-Kirkpatrick model [21], and
numerical data in 3D [21] and 2D [22] are also consistent with such a
picture—for the 2D case this is demonstrated by the data shown in
Figure 2 that consist of the densities of the three largest clusters as a
function of inverse temperature and for different lattice sizes. The
onset of percolation of CMR blue clusters itself again occurs away
from the spin-glass transition, with Tc,CMR ≈ 3.85 for the 3D bimodal
model [21] (which is surprisingly close to Tc,FKCK); in 2D the CMR
percolation temperatures of finite lattices converge to T � 0 for
L → ∞ [22], consistent with the spin-glass transition
temperature there.

Another possible cluster definition based on the overlap of two
replicas results from a simple duplication of the FKCK construction
on the two spin configurations, i.e., bonds are occupied
independently in the two replicas according to the FKCK
probability (Eq. 2), and clusters are constructed over all bonds
simultaneously occupied in both replicas [38]. This is equivalent
to a bond occupation probability

pTRFK � 1 − exp −2β|Jij|[ ]( )
2

(6)

for doubly satisfied bonds. Such clusters might be referred to as two-
replica Fortuin-Kasteleyn (TRFK) clusters. These clusters behave

rather similarly to the CMR ones [21, 22], which is not surprising as
they follow the same construction apart from the smaller bond
occupation probability pTRFK ≤pCMR,blue. The latter leads to a
significant suppression of the percolation point which now
occurs for Tc,TRFK ≈ 1.77 [21].

Finally, a cluster definition based on a site percolation
problem rather that a bond percolation one was first proposed
in connection with a specific cluster-update algorithm for spin
glasses in 2D [23]. There, clusters are grown in regions of
constant overlap, and neighboring sites of the same overlap
are unconditionally added to the cluster, such that the
effective bond occupation probability is

pHoudayer � 1.

One might hence think of these as some form of geometric clusters
in overlap space [39]. The CMR and TRFK clusters clearly are
subregions of the Houdayer clusters as for the latter one does not
take into account whether a given bond is satisfied or not. In
many 3D lattices such as the simple cubic one, such clusters
percolate already for Tc,Houdayer � ∞ as their site percolation
thresholds are pc < 0.5. Hence they have not been studied in
much detail there. In 2D, on the other hand, they again percolate
at a sequence of temperatures that approaches TSG � 0, but they
are found to be in general larger that the CMR and TRFK
clusters [22].

4 Cluster updates

In view of the spectacular success of cluster updates in
alleviating critical slowing down for ferromagnetic spin
models [15, 16] it has been a natural idea to use cluster moves
to counter the dramatically slow dynamics observed in spin-glass
systems. In fact, the first proposal in this direction [40] even
(slightly) predates the ferromagnetic algorithms. Unfortunately,
the cluster component in this approach was not found to be
extremely efficient, while the replica component eventually lead
to the development of the replica exchange or parallel tempering
method [41, 42] that is the de facto standard for spin-glass
simulations.

Houdayer’s proposal [23] for a cluster update for 2Dmodels was
in this sense more successful. Geometric clusters are constructed in
the way described above, by connecting neighboring sites of equal
overlap, and an update consists of flipping the spins inside a cluster
in both replicas. Crucially, such updates can be performed
unconditionally, i.e., without adding an extra acceptance step,
since they leave the total energy of the replicated system
invariant. Usage of more than two replicas (per temperature) is
possible, but usually not found to be efficient computationally [43].
Due to the fixed energy, it is clear that such updates are not ergodic,
and hence need to be complemented, e.g., by single-spin flip moves.
While this approach works well on the square lattice, where the
percolation threshold pc ≈ 0.59> 1

2 and the percolation points of
Houdayer clusters approach TSG � 0 for L → ∞ [22], the method is
not very efficient in 3D, which is blamed on the fact that, for most
lattices in 3D, pc < 1

2 [23]. In an attempt to improve on this aspect,
Zhu et al. [25] proposed amodification of Houdayer’s method where

FIGURE 1
Typical configuration of CMR “blue” clusters in a sample of the 2D
Gaussian Edwards-Anderson spin-glass model at low temperature
(β � 3). The red and green bonds correspond to the largest and
second largest clusters, respectively.
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they grow a single cluster in theminority phase of the overlap, which
is claimed to somewhat improve the performance in 3D. More
recently, the cluster selection for updates has been scrutinized in a
multi-cluster version of the algorithm discussed in the context of
combinatorial optimization problems [44], a close relative of spin-
glass problems (see, e.g., Ref. [45]).

The CMR representation also suggests several cluster updates.
Constructing only the blue clusters, these can flip freely as the cluster
construction rules together with the bond occupation probability
(Eq. 5) mean that the update satisfies detailed balance with respect to
the equilibrium distribution [22]. This was used by Jörg [24] to
efficiently simulate spin glasses on diluted lattices, leading to overall
smaller clusters. By construction, however, the update is not ergodic
since spins connected by (partially) unsatisfied bonds cannot be
updated. An extension proposed in Ref. [36] (see also [21]) uses both
red and blue bonds to construct blue and grey clusters, leading to a
rejection-free and ergodic update which, however, is still found to be
relatively inefficient due to the onset of cluster percolation
above TSG [21].

5 Discussion

While a percolation perspective onto spin glasses and other
frustrated systems has not led to the same level of revolutionary
success this approach has seen for ferromagnets, significant progress
has been possible. The cluster construction rules used for
ferromagnets (Fortuin-Kasteleyn–Coniglio-Klein), while
applicable to spin glasses, do not lead to structures that reflect
spin-glass correlations. Instead, clusters must be constructed in
overlap space, corresponding to the order parameter of the spin-

glass transition. While there is no one-to-one correspondence
between the spin-glass transition and a simple percolation
transition of a cluster type that has been investigated to date, an
intriguing picture has emerged: for the CMR and TRFK clusters
defined on two replicas two equally large percolating clusters appear
significantly above the spin-glass transition, and it is only at the
spin-glass transition that their densities start to differ [21, 22]. It
appears that below the percolation point smaller clusters beneath the
two dominating ones are asymptotically irrelevant.

Regarding cluster updates, a fundamentally efficient algorithm
only exists in two dimensions, while attempts for more general,
and in particular, 3D systems have only partially been successful.
While some improved results where found in cases where the
average sizes of clusters constructed are reduced such as in diluted
systems [24] or with algorithmic modifications [25], it is not fully
clear whether such size reduction is a sufficient condition for
improving performance.

In view of this state of affairs a number of interesting
questions remain to be addressed in future studies. Is it
possible to construct clusters that percolate at or very close to
the temperature of the spin-glass transition? One promising
direction in this respect is the study of multi-replica overlaps
[22]. In view of Eq. 6 it is clear that, depending on their precise
construction, such clusters could percolate at lower and lower
temperatures as the number of replicas is increased. Regarding
the algorithms, it was seen that for blue clusters there are two very
dominant large clusters in the vicinity of the glass transition, such that in
contrast to the ferromagnetic case close to the transition there is no
multi-scale nature of spin updates for such blue clusters close to the
spin-glass transition. This is likely the prime reason for the
unsatisfactory performance of such algorithms. In contrast, for
Houdayer’s algorithm and its extensions, what is the cluster-size
distribution? How do multi-cluster variants of such algorithms
perform as compared to the default single-cluster ones? Answers to
(some of) these questions hold the potential for significantly advancing
our understanding of the spin-glass transition while simultaneously
facilitating much improved efficiency in simulating spin-glass systems
with the hope of answering some more of the fundamental open
questions of this field.
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FIGURE 2
Average densities ρ of the largest three CMR clusters in the 2D
Gaussian Edwards-Anderson spin-glass model as a function of inverse
temperature β for different lattice sizes L. At low temperatures, the
combined weight of the two largest clusters increases with L.
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