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The two-mass nonlinear vocal cord vibration system (VCVS) serves as a
mechanical representation of the fundamental vocalization process.
Traditional models of the VCVS, which are based on integer-order dynamics,
often overlook the impact of memory effects. To address this limitation and
enhance the accuracy of simulations, this study incorporates the memory effects
of vocal cord vibrations by integrating the Grunwald–Letnikov fractional
derivative into the two-mass nonlinear VCVS framework. Initially, a high-
precision computational scheme is formulated for the two-mass nonlinear
fractional-order VCVS. Subsequently, the model undergoes a comprehensive
series of numerical simulations to investigate its dynamic characteristics. The
findings reveal that the dynamics of the fractional-order VCVS exhibit a
significantly higher complexity compared to the conventional integer-order
models, with the emergence of novel chaotic behaviors that were previously
unobserved.
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1 Introduction

With the continuous development and improvement of computer technology and
numerical simulation methods, the application of nonlinear vibration technology has been
widely used in many fields and has become one of the hot topics in various fields.

Nonlinear dynamics can not only be used to analyze and explore certain natural
phenomena and physical processes but can also be applied to other fields such as medicine,
acoustics, ecology, and economics. Nonlinear vibration is very important in the study of
MEMS oscillators [1, 2] and their interaction with structures. MEMS oscillators have a wide
range of applications, including consumer electronics, automotive, healthcare, industries,
aerospace, and many other fields. In recent years, vocal cord computer simulation
technology has been used in the diagnosis of laryngeal diseases, can use the vocal cord
pronunciation function [3], acoustic analysis to reflect the lesions of the vocal band. The
study of the vocal cord vibration model [4] can reveal the characteristics of vocal band
vibration and help understand the mechanism of vocal cord vibration. This study provides
theoretical guidance for laryngeal pathology, artificial organs, voice therapy, and other
medical fields and has practical application value. Researchers have also been trying to
mimic human sound production by not only developing mechanical and mathematical
models to describe the human organs associated with sound production but also studying
the process of producing sound.
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Vocal cord vibration can be simplified into various physical
models, and the mass model represented by the spring mass block
is a typical physical model of the vocal cord. These vocal cord
vibration models represent vocal cord and polyp vibration with
different numbers of spring mass blocks, such as the single-mass

block model [5], the two-mass vocal cord model [6], three-mass
vocal cord model, and H-C model. Latest research on the vocal
cord vibration model involves the single-mass block model [5].
One of the simplest models is the single-degree-of-freedom single-
mass model, which was first proposed by Dr. Flanagan and has

FIGURE 1
Numerical simulation of time series plots at α � [1, 1, 1, 1], and α � [0.99, 1.01,0.95,0.95], h � 0.01,T � 1000, r1 � 0.01, r2 � 0.5, k1 � 0.9, k2 �
0.1, kc � 0.5, c � 0.2,B � 0.2.

FIGURE 2
Numerical simulation of phase diagrams at α � [1, 1, 1, 1],T � 1000, r1 � 0.01, r2 � 0.5, k1 � 0.9, k2 � 0.1, kc � 0.5, c � 0.2,B � 0.2.
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since been studied by many researchers in related fields. Dr.
Flanagan uses electricity acoustic analysis [7] which describes
the dynamic knowledge of vocal cords and proposes a vocal
cord model of a single-mass vibration system, in which self-
excited vibration is caused by air flow that changes with

pressure. [6] introduced the nonlinear properties of vocal cord
organization into the two-mass model of vocal cords and proposed
an improved nonlinear two-mass model of symmetrical vocal
cords. In this model, the two vocal cords are assumed to be
identical and move symmetrically relative to the glottic midline.

FIGURE 3
Numerical simulation of phase diagrams at α � [0.99, 1.01,0.95,0.95],T � 1000, r1 � 0.01, r2 � 0.5, k1 � 0.9, k2 � 0.1, kc � 0.5, c � 0.2,B � 0.2.

FIGURE 4
Numerical simulation of 3D phase diagrams at α1 � [1, 1, 1, 1], andα � [0.99, 1, 1, 1],T � 1000, r1 � 0.01, r2 � 1, k1 � 1.5, k2 � 0.1, c � 0.2,B � 0.2.
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When the glottis is open, the equation for vocal cord movement
can be written as follows:

m1 €x1 + b1 x1, _x1( ) + s1 x1( ) + kc x1 − x2( ) � f1,
m2 €x1 + b2 x2, _x2( ) + s2 x1( ) + kc x2 − x1( ) � f2,

{ (1)

where xi is the displacement andmi is the quality of the Equation
1. bi(xi, _xi) is the damping force, and si(xi) is the elastic force. In this
model (1), Lucero and Koenig introduced the cubic characteristics of
biological tissue elasticity [8], as shown in Equation 2:

si xi( ) � kixi 1 + 100x2
i( ), i � 1, 2. (2)

On the other hand, for damping forces, instead of using the usual
linear term rixi, nonlinear properties are used:

bi xi, _xi( ) � ri 1 + 150|xi|( ) _xi, i � 1, 2. (3)
ri represents the damping coefficient, and ki, kc represent all

coefficients in Equation 3.
The nonlinear term is used because when the width of the glottis

increases, it is necessary to limit the amplitude of vocal cord
vibration to ensure the effectiveness of the simulation.

As is known, there are many kinds of fractional derivatives, such
as the Caputo fractional derivative, Caputo fractional derivative,
Gr€unwald–Letnikov fractional derivative, and two-scale fractal
derivative [9, 10] [11–13]. Fractional derivatives are widely used
in many fields, such as engineering, physics, signal processing, and

biomathematics. Some fractional derivatives have memory and
nonlocality. In the VCVS, memory refers to the ability of the
system to retain information about past events and use it to
influence future behavior. Because of the memory of vocal cord
vibration, the integer-order VCVS ignores the influence of memory.
Therefore, in order to ensure the effectiveness of the simulation, the
following fractional-order VCVS is considered in this paper:

m1D
α1+α3
t x1 + b1 x1, D

α1
t x1( ) + s1 x1( ) + kc x1 − x2( ) � f1,

m2D
α2+α4
t x1 + b2 x2, D

α2
t x2( ) + s2 x1( ) + kc x2 − x1( ) � f2,

{
(4)

where Dα
t x1 is the Grünwald–Letnikov differential derivative.

α � 1; the fractional-order model (4) is the integer-order model (1).
The Gr€unwald–Letnikov fractional calculus is named after the

Czech mathematician Anton Karl Gr€unwald and Russian
mathematician Aleksey Vasilievich. They defined Gr€unwald–Letnikov
fractional calculus in 1867 and 1868, respectively. In the finite difference
scheme of integer derivative, when calculating the derivative value of a
node, the function value at the first few nodes is needed, or the function
value at the next few nodes is needed. In contrast, the calculation of
fractional derivatives requires the function values at all nodes before or
after a certain point in time, so fractional calculus is assumed to have
memory properties.

Some scholars have applied the fractional microproduct tomemory
modeling damping vibration systems. [14] focused on investigating the

FIGURE 5
Poincare surface of section at α � [1, 1, 1, 1],T � 2000π/c, r1 � 0.01, r2 � 0.5, k1 � 0.9, k2 � 0.1, kc � 0.5, c � 0.2,B � 0.2.

FIGURE 6
Poincare surface of section at α � [1, 1, 1, 1],T � 2000π/c, r1 � 0.01, r2 � 0.5, k1 � 0.9, k2 � 0.1, kc � 0.5, c � 0.2,B � 0.2, c1 � 10, c2 � 0,d1 � 0,d2 � 15.
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chaotic behavior of a 2-D vocal dynamical system using fractional-order
Caputo difference operators, both commensurate and incommensurate.
The methodology involves a dynamical analysis of the discrete
fractional-order system, employing bifurcation theory, Lyapunov
exponents, and coexisting attractors to understand the dynamical
behavior. [15] gave a high-precision numerical approach to solving
the space fractional Gray–Scott model. [16] gave some novel patterns
for a class of fractional reaction–diffusion models with the Riesz

fractional derivative. [17] researched on the pattern dynamics
behavior of a fractional vegetation-water model in an arid flat
environment. [18] researched the chaotic dynamic behavior of
fractional-order financial systems with constant inelastic demand.
[19] solved two-sided fractional super-diffusive partial differential
equations with variable coefficients in a class of new reproducing
kernel spaces. [20] studied the low frequency property of a fractal
vibrationmodel for a concrete beam. The fractal dimension formulation

FIGURE 7
Numerical simulation of time series plots at α � [1, 1, 1, 1], α � [0.95,0.95,0.95,0.95], α � [1.01, 1.01, 1.01, 1.01], r1 � 0.01, r2 � 1, k1 � 1.5, k2 � 0.1,
kc � 1.5, si(xi) � kixi(1 + 100x2i ), bi(xi, _xi) � ri(1 + 150|xi|) _xi, i � 1, 2.
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[21] made the fractal theory accessible to porous media and
discontinuous time. [22] implemented the homotopy perturbation
method for fractal duffing oscillators with arbitrary conditions. [23,
24] applied Li–He’s modified homotopy perturbation method for the
doubly clamped electrically actuated microbeam-based micro-
electromechanical system and the dropping shock response of a
tangent nonlinear packaging system. [25] studied autonomous
ordinary differential systems. [26] studied the Kaup–Newell system.
[27] studied the nanobeam-based N/MEMS system, and [28] studied
the fractal pull-in motion of electrostatic MEMS resonators. This paper
introduces a numerical approach for the fractional-order vocal cord
vibration model. [29] used the discontinuous Galerkin finite element
method for the Caputo-type nonlinear conservation law. [30] used
nonuniform L1/discontinuous Galerkin approximation for the time-
fractional convection equation with a weak regular solution and the
time fractional convection-diffusion-reaction Equation [31], and so on
fractional systems [32, 33].

Fractional calculus has become a fundamental tool for modeling
memory phenomena. However, due to the complexity and the
nonlocality of fractional calculus, numerical methods are often used
to approximate solutions to fractional differential equations, especially
when analytical solutions are not feasible. The numerical computation
of solving fractional differential equations is both cumbersome and
time-consuming. Developing numerical and analytical methods for
solving nonlinear fractional differential equations is currently a hot
research topic. This paper introduces a high-precisionmethod to study a
class of fractional-order vocal cord vibration model.

2 Numerical method

Definition 2.1: [34] The Grünwald–Letnikov fractional derivative
for the function x(t) with respect to t ∈ [0, T] of order α is defined
as follows:

Dα
t x t( ) � lim

h→0

1
hα

∑m
j�0

−1( )jΓ α + 1( )
Γ j + 1( )Γ α − j + 1( ) x t − jh( ), (5)

where h � T/m is the step size.
Let

Ψ α( )
j � −1( )j(αj ) �

−1( )jΓ α + 1( )
Γ j + 1( )Γ α − j + 1( ), j � 0, 1, . . . , m. (6)

Using Newton’s binomial theorem, get

(1 − z)n � ∑n
j�0

(−1)j(nj )zj � ∑n
j�0

Ψ(n)
j zj, and ∑∞

j�0
Ψ(α)

j zj � (1 − z)α.

Combining Equations 5, 6, we obtain the following Theorem 2.2.

Theorem 2.2: [34] The Grünwald–Letnikov fractional derivative
for the function x(t) with respect to t ∈ [0, T] of order α can be
calculated directly by the following formula:

Dα
t x t( ) � lim

h→0

1
hα

∑m
j�0

Ψ α( )
j x t − jh( ), (7)

where Ψ(α)
j � (1 − α+1

j )Ψ(α)
j−1,Ψ(α)

0 � 1.
According to Equation 7, let Dα

t x1 � x3, Dα
t x2 � x4, then

Equation 4 can be converted to Equation 8

Dα1
t x1 � x3,

Dα2
t x2 � x4,

Dα3
t x3 � f1 − b1 x1, x3( ) − s1 x1( ) − kc x1 − x2( )

m1
,

Dα4
t x4 � f2 − b2 x2, x4( ) − s2 x2( ) − kc x2 − x1( )

m2
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

Using Theorem (2.2), we can obtain the numerical calculation
scheme for Equation 8, which is Equation 9:

FIGURE 8
C0 and spectral entropy complexity at r1 ∈ [0.02,0.3], α ∈ [0.95, 1.5], r2 � 1, k1 � 1.5, k2 � 0.1, kc � 0.5, c � 0.8,B � 0.8,T � 20π/c, si(xi) � kixi(1 +
100x2i ),bi(xi , _xi) � ri(1 + 150|xi|) _xi , i � 1,2.
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x1 tk( ) � hα1x3 tk−1( ) + x1 0( ) −∑m
j�1

Ψα1
j x1 tk−j( ) − x1 0( )( ),

x2 tk( ) � hα2x4 tk−1( ) + x2 0( ) −∑m
j�1

Ψα2
j x2 tk−j( ) − x2 0( )( ),

x3 tk( ) � hα3
f1 tk( ) − b1 x1 tk( ), x3 tk−1( )( ) − s1 x1 tk( )( ) − kc x1 tk( ) − x2 tk( )( )

m1

+x3 0( ) −∑m
j�1

Ψα3
j x3 tk−j( ) − x3 0( )( ),

x4 tk( ) � hα4
f2 tk( ) − b2 x2 tk( ), x4 tk−1( )( ) − s2 x2 tk( )( ) − kc x2 tk( ) − x1 tk( )( )

m2

+x4 0( ) −∑m
j�1

Ψα4
j x4 tk−j( ) − x4 0( )( ).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(9)

In Ref. [35, 36] gave the construction method of generating function
of any order in order to obtain high accuracy, and then gave the
high-precision recursive formula of fractional derivative.

Theorem 2.3: [35] The Grünwald–Letnikov fractional derivative
for the function x(t) with respect to t ∈ [0, T] of order α of the
generating function for arbitrary p is shown in Equation 10:

Dα
t x t( ) � lim

h→0

1
hα

∑m
j�0

Ψ α,p( )
j x t − jh( ), (10)

where Ψ(α,p)
k is shown in Equation 11:

Ψ α,p( )
0 � g0, k � 0,

Ψ α,p( )
k � − 1

g0
∑k−1
i�0

1 − i
1 + α

k
( )giΨ α,p( )

k−i , k � 1, 2, . . . ., p − 1,

Ψ α,p( )
k � − 1

g0
∑p
i�0

1 − i
1 + α

k
( )giΨ α,p( )

k−i , k � p, p + 1, p + 2, . . . .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(11)

gk is shown in Equation 12:

1 1 1 / 1
1 2 3 / p + 1
1 22 32 / p + 1( )2
..
. ..

. ..
.

/ ..
.

1 2p 3p / p + 1( )p

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

g0
g1
g2
..
.

gp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � −

0
1
2
..
.

p

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (12)

Using Theorem (2.3), we can obtain the following the numerical
calculation scheme (Equation 13) of Equation 8:

x1 tk( ) � hα1x3 tk−1( ) + x1 0( ) −∑m
j�1

Ψ α1 ,p( )
j x1 tk−j( ) − x1 0( )( ),

x2 tk( ) � hα2x4 tk−1( ) + x2 0( ) −∑m
j�1

Ψ α2 ,p( )
j x2 tk−j( ) − x2 0( )( ),

x3 tk( ) � hα3
f1 tk( ) − b1 x1 tk( ), x3 tk−1( )( ) − s1 x1 tk( )( ) − kc x1 tk( ) − x2 tk( )( )

m1

+x3 0( ) −∑m
j�1

Ψ α3 ,p( )
j x3 tk−j( ) − x3 0( )( ),

x4 tk( ) � hα4
f2 tk( ) − b2 x2 tk( ), x4 tk−1( )( ) − s2 x2 tk( )( ) − kc x2 tk( ) − x1 tk( )( )

m2

+x4 0( ) −∑m
j�1

Ψ α4 ,p( )
j x4 tk−j( ) − x4 0( )( ).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(13)

3 Numerical simulation and
dynamics analysis

First, we consider the dynamic behavior of the VCVS with linear
elasticity and resistance. Then, the dynamic behavior of the VCVS
with nonlinear elasticity and resistance is considered. In numerical
simulations, we set mi � 1, i � 1, 2, initial values
x0 � [x1(0), x2(0), x3(0), x4(0)] � [−0.1,−0.1,−0.3,−0.3], the
time step h � 0.01, t ∈ [0, T], fi � B cos(ct), i � 1, 2, and α �
[α1, α2, α3, α4].

3.1 si(xi) � kixi,bi(xi, _xi) � ri _xi, i � 1,2

We consider the dynamic behavior of the VCVS with linear
elasticity and resistance si(xi) � kixi, bi(xi, _xi) � ri _xi, i � 1, 2.

We choose different fractional derivatives and different
parameters for numerical simulation. Figure 1 shows numerical
simulation results of time series plots at α � [1, 1, 1, 1], andα �
[0.99, 1.01, 0.95, 0.95] , T � 1000, r1 � 0.01, r2 � 0.5, k1 � 0.9, k2 �
0.1, kc � 0.5, c � 0.2, B � 0.2. From Figure 1, it can be seen that
the larger the derivative, the larger the amplitude of vocal cord
vibration. At this time, the system is in a chaotic state. Figures 2, 3
show numerical simulation results of phase diagrams. Figure 4
shows numerical simulation results of 3D phase diagrams in
different fractional derivatives.

From numerical simulation results in Figure 1, we can
observe the fractional derivative can control the amplitude of
vocal cord vibration, which will lead to different sounds in the
larynx, so as to ensure the effectiveness of the simulation. Figures
2–4 show the chaotic dynamic behavior of the fractional-order
VCVS. Unstable and irregular movements of the vocal cords can
indicate disease or abnormalities. The dynamic behavior of the
fractional-order VCVS is much more complex than that of the
integer-order model.

Figure 5 shows the Poincare surface of section at α � [1, 1, 1, 1], T �
2000π/c, tn � 1000, r1 � 0.01, r2 � 0.5, k1 � 0.9, k2 � 0.1, kc � 0.5,
c � 0.2, B � 0.2.

3.2 si(xi) � kixi(1 + cix2i ), bi(xi, _xi) � ri(1 +
di|xi|) _xi, i � 1, 2

The nonlinear term is used because it is necessary to limit the
amplitude and chaotic behavior of vocal cord vibration as the width
of the glottis increases. ci, di are all coefficients.

Figure 6 shows the Poincare surface of section at α � [1, 1, 1, 1], T �
2000π/c, tn � 1000, r1 � 0.01, r2 � 0.5, k1 � 0.9, k2 � 0.1, kc �
0.5, c � 0.2, B � 0.2, c1 � 10, c2 � 0, d1 � 0, d2 � 15. From Figures
5, 6, we can see that the chaotic behavior of vocal cord vibration can be
controlled by adding a nonlinear term to the system.

When there is only one fixed point and a few discrete points on
the Poincare section, the system can be judged to be periodically
vibrating. When the Poincare section is a closed curve, it can be
determined that the system is quasi-periodic vibration. When the
Poincare section is a dense piece of points and there is a hierarchical
structure, the system motion can be determined to be in a
chaotic state.
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Figure 7 shows time series plots at different fractional
derivatives (α � [1, 1, 1, 1], α � [0.95, 0.95, 0.95, 0.95], α � [1.01,
1.01, 1.01, 1.01]), r1 � 0.01, r2�1, k1 � 1.5, k2�0.1, kc�1.5, si(xi) �
kixi (1 + 100x2i ), bi(xi, _xi) � ri(1 + 150|xi|) _xi, i � 1, 2. From
Figure 8, we can see the fractional derivative can control the
amplitude and chaotic behavior of vocal cord vibration.

Figure 8 shows C0 and spectral entropy complexity at r1 ∈
[0.02, 0.3], α ∈ [0.95, 1.5] and r2 � 1, k1 � 1.5, k2 � 0.1, kc � 0.5, c �
0.8, B � 0.8, T � 20π/c, [−0.1,−0.1,−0.3,−0.3], si(xi) � kixi(1 +
100x2

i ), bi(xi, _xi) � ri(1 + 150|xi|) _xi, i � 1, 2. From Figure 8, we
show the effect of parameter r1 and fractional derivative α on the
complexity of the system. The chaotic behavior of vocal cord vibration
cannot be completely controlled by nonlinear dynamics, where
α � α1 � α2 � α3α4. The chaotic and periodic regions of the system
can be seen more clearly by using C0 and spectral entropy complexity.

The dynamic behavior of the system under fractional-order
influence is analyzed, and the advantages of introducing
fractional-order operators into the vocal cord vibration system
are demonstrated. In this paper, a series of numerical simulations
are carried out to explore the dynamic behavior of the model. The
results show that it is very different from the traditional whole-order
model, showing a richer and more complex dynamic landscape.
Notably, the introduction of fractional derivatives reveals chaotic
behavior in the system that was not previously observed.

4 Conclusion

This paper delves into the study of a two-mass nonlinear
fractional-order VCVS, proposing a high-precision control
scheme. The incorporation of nonlinear elements and fractional
derivatives is motivated by their ability to regulate the amplitude and
chaotic tendencies of vocal cord vibrations as the glottis widens. This
regulation is essential for producing distinct vocal sounds in the
throat, thereby enhancing the efficacy of the simulation. Numerical
simulations reveal the system’s dynamic behavior and highlight
intriguing novel chaotic dynamics. These findings offer innovative
insights into the mechanical aspects of the vocal articulation process.
In the future, we will study the multi-mass block model of the
asymmetric vocal cord vibration system.
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