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Fossil fuels remain indispensable energy resources despite their non-renewable
nature. Understanding the patterns of global fossil fuel consumption is essential
for energy security and policy-making. This study employs complex network
theory and fractal time series analysis to explore the underlying dynamics and
patterns of fossil fuel consumption globally, with a focus on coal, oil, and gas
consumption.The study applies the Hurst index to raw fossil fuel consumption
data to identify fractal characteristics. Additionally, the visibility graph method is
used to convert time series data into complex networks, allowing further analysis
of consumption patterns. The study examines fossil fuel consumption in 38
countries to assess global trends and differences. The analysis reveals that global
fossil fuel consumption follows a fractal time series pattern, with Hurst index
values exceeding 0.9, indicating long-term memory characteristics. The
application of the visibility graph method demonstrates variations in the Hurst
index of degree distribution, enabling the differentiation of consumption patterns
across regions. The method also uncovers distinct features of coal, oil, and gas
consumptionwhen viewed from a network perspective. The findings suggest that
fossil fuel consumption has predictable long-term patterns, which are crucial for
assessing future energy demands. The study highlights the importance of
legislative measures to safeguard fossil fuel resources, especially for countries
like China, where energy security and international competitiveness are
paramount. Understanding these consumption patterns could guide future
energy policies aimed at managing non-renewable resources more effectively.
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1 Introduction

Fossil fuel is a type of hydrocarbon or its derivatives, and it is a critical energy resource
supporting the development of the global economy [1]. Especially, in modern society, fossil
energy is still the most important part of energy consumption, which accounts for more than
80% of global disposable energy consumption. Many studies have focused on fossil fuels in
recent decades. In the past half-century, the consumption of fossil fuels has increased
substantially, about eight times since 1950. However, the type of fuel we rely on has also
changed over time, from simple coal to a combination of oil and natural gas. Today, coal
consumption is declining over the world, but oil and gas are still multiplying. Friedemann a J [2].
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found that about 500 million tons of oil and its derivatives were used in
the past year, indicating that fossil fuels have already become
indispensable in human life.

A plethora of studies have been conducted on fossil fuels in
recent decades. For example, the relationship between fossil fuel
consumption and economic development has attracted much
attention. Especially, COVID-19 has a significant impact on
energy transportation [3], i.e., there is a strong relationship
between freight and shipping routes and coronavirus cases, which
affects the cost of oil transportation. By exploiting the data of fossil
fuel consumption, equity price output, and exchange rates, S. L
Vanessa [4] revealed the spatial relationship between COVID-19
and the national economy through the global vector autoregressive
(GVAR) model. Some other studies [5–8] have also found that fossil
fuel consumption directly affects economic development.

Fossil fuel consumption affects not only economic development but
also environmental changes. For instance, FMartins [9] found that there
is high dependence on fossil fuels in 29 European countries. SA Asongu
[10] investigated fossil fuel energy consumption and other indicators of
emissions from natural resources in Africa from 1980 to 2014. By
applying LMDI and MRCI decomposition methods, it was found that
global population growth is the most critical factor driving increased
consumption of fossil products, and this varies from country to country
[11]. Based on econometric models, Li [12] analyzed the relationship
between carbon dioxide and China’s emissions, real GDP, clean energy,
fossil fuel consumption, and trade opening from 1992 to 2020.

Given that fossil fuels have a significant impact on economic
development and environmental protection, it is of great significance
to regulate and protect the rational extraction and utilization of fossil
fuels from a legal perspective. C. Judith [13] believe that the natural gas
power generation industry urgently needs legislation to promote and
protect it. G. Fang [14] discussed the legal regulations on the safety of
offshore oil and gas exploration and development operations in the
EuropeanUnion, and based on this, proposed legislative implications of
the relevant legal regulation of the EU for the safety rules of offshore oil
and gas operations in China. PA Valeryevna [15] advocated that in
order to promote the construction of ecological civilization, it is
necessary to provide legal guarantees for the rational use of
resources. In addition, in combating fossil fuel crimes, practice has

proven that the role of relevant special actions is phased. It is important
to establish the legal relationship of fossil fuel mining rights and the
mining order through law, and establish a sound long-termmechanism
for security prevention.

Fractal time series is a type of time series of Brownian motion.
Fractal Brownian motion is statistically self-similar and has long-
term memory, i.e., a memory effect makes the changing trend in the
future the same as that at present. The Hurst index can characterize
this long-term correlation. N. Dimitrios [16] analyzed the time series
of PM10 in Athens, and it was found that PM10 in Athens had
chaotic and long-term memory. C. Oscar [17] introduced a hybrid
intelligent method that combines fractal theory and fuzzy logic to
predict the COVID-19 time series.

As the field of network science develops, its areas of application
are becoming increasingly broad [18–23]. The visibility graph model
has been used in many fields, including economy, finance,
environment, climate, medicine, psychology, etc. Thomas [24]
applied the visibility graph to analyze the time series of PM10.
Based on the deep learning and the visibility graph, X. Zhang [25]
analyzed the time series of sleep and obtained different classes of
sleep states. Additionally, many studies exploited visibility models to
analyze brain wave data [26–29]. Other studies also applied the
visibility graph to the environment and economic field [30–33].
J. Hu [34] and X. fan [35] employed this model to analyze the U.S.
electricity market and China’s carbon trading market, respectively.

By leveraging the visibility graph, we provide a novel analytical
framework that enhances the ability to detect, interpret, and predict
complex dynamics in fossil fuel consumption. This has significant
implications for network analysis, ultimately contributing to the
advancement of knowledge and technology in this area. This paper
mainly analyzes the internal characteristics of fossil fuel consumption,
excavates much information on fossil fuel consumption, and provides a
research basis for investigating the relationship between fossil fuel
consumption and the economic environment in the future. Compared
with previous research on fossil fuel consumption, this study has three
obvious advantages: 1) Mapping time series to the complex network to
find more hidden information of the series data, which helps to better
understand the characteristics of this sequence; 2) the characteristics of
the time series is represented by the fractal characteristics.However, when

FIGURE 1
The visibility graph and its associated graph.
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the time series are positively correlated, by mapping the time series data
into a network and analyzing it through the Hurst index of the degree
distribution of the network, it can be determined whether the impact of
the time nodes on the future is random; 3) Complex network theory has
high calculation efficiency and is suitable for big data applications. When
applied to time series, complex networks can provide direct results
compared with multi-fractal formalism.

The rest of this paper is organized as follows: Section 2
introduces the model that maps time series to a complex
network, the complex network theory, and the data description
of fossil fuel consumption based on the fractal time series theory.
Then, in Section 3, the topography measles and the Hurst index of
fossil fuel consumption are analyzed. Finally, the results and
conclusion are presented in Section 4.

2 Model and data

2.1 Visibility graph

In this paper, the visibility graph method of time series proposed
by Lacasa et al. [36] was utilized to construct the complex network
for characterization. First, the discrete time series data x(t) was
mapped into one node in the network, and then the link between the
nodes was built according to the visibility rule: any two points
(ta, xa) and (tc, xc) within the series data will have the visibility if
any other data (tb, xb) interpolating between them satisfies the
following condition (Equation 1):

xb <xa + xc − xa( ) tb − ta
tc − ta

(1)

That is, these two points (ta, xa) and (tc, xc) can be connected
by a link in the resulting network. In Figure 1, the height of each

vertical bar in the histogram of panel (a) denotes the data for each
time series, and each bar represents one node in the corresponding
graph in panel (b). Thus, two nodes in panel (b) will be connected,
and a link should be added between them if the top indicated by the
2 bars can be seen in panel (a).

Figure 1 shows how to link the data. If one data bar (e.g., the fifth
bar) is the highest, there are 3 bars between the fifth and the first bar,
and these 2 bars are sheltering from the third bar. In this case, there
is no edge linking nodes 1 and 5; Meanwhile, there are 4 bars
between the fifth and 10th bars, but there is no bar to occlusion these
2 bars, so there is an edge to link them.

FIGURE 2
The flow chart of fossil fuel computation.

FIGURE 3
The line chart of global fossil fuel consumption.
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2.2 The topological characteristics of
visbility graph

2.2.1 Degree
In a graph structure, the number of edges connected to a node is

the degree of the node, and the degree distribution of each node in
the graph is the degree distribution [37].

2.2.2 Average path length
The average path length [38] of a visibility graph is to form

one time node to time node will take an average of L time nodes.
The definition of average short path length is given in
Equation 2.

L � 1
N N − 1( ) ∑i∈V ∑

i≠j∈V
dij, (2)

where N is the total number of nodes for this visibility graph, dij is
the shortest path between the time nodes i and j.

2.2.3 Cluster coefficient
The cluster coefficient is given by Newman [39]. Intuitively, if we

have two friends, they may be friends with each other. Similarly, for
the visibility graph, if time nodes i and j have edges with time node
k, time node i establishes a connection with j, thus the definition of
cluster coefficient (Equation 3) is given below:

Ci � Ei

C2
ki

(3)

if Ei denotes the edges between the neighbors of time node i, and all
the neighbors of time node i have edges, then the total number of
edges is C2

ki
.

For a visibility graph, the average cluster coefficient is the average of
all time-node cluster coefficients. As shown in the Equation 4

C � 1
N

∑N
i�1

Ci, (4)

where N is the number of time nodes in this visibility graph.

FIGURE 4
The map of global fossil fuel consumption in 1965 and 2020.
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2.3 Fractal time series

For a time series T � {t1, t2, . . . , tn}, if T has fractal
characteristics, then T has fractal characteristics of long
correlation and self-similarity. The Hurst index can determine
whether T is fractal time series.

The Hurst index can reflect the auto-correlation of time series,
especially the hidden long-term trend, which is called the long-term
memory in statistics. Many computational approaches can be
adopted for the Hurst index, and this paper used R/S for
calculation. For a time-node degree series x � {x1, . . . , xi}:

(1) Let en(m) be the average error of n time-node degrees. As
shown in the Equation 5

en m( ) � ∑n
i

xi − �x( ); (5)

where, �x is the average degree, 1≤m≤M, and M is the length of
this series.

(2) R(n) as shown in the Equation 6 can be obtained according to
the difference between the maximum and minimum error of
the time-node degree,

Rn m( ) � max1≤n≤men m( ) −min1≤n≤men m( ); (6)

(3) Based on the standard deviation S(m), the ange analysis can
be realized

R m( )
S n( ) � max1≤n≤men m( ) −min1≤n≤men m( )�������������

1
m∑m

n�1 xn − �x( )2
√ ; (7)

(4) Through the exponential relationship between Equation 7
and the first m data nodes,

R m( )
S n( ) � a × mH; (8)

the following results can be obtained. As shown in the
Equation 9:

FIGURE 5
The coal, oil, gas, and fossil fuel consumption from 1965 to 2020 in some countries.
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H m( ) � logm
R m( )
aS n( ), m � 1, 2, . . . ,M. (9)

where,H is the Hurst index, a is the coefficient, and the value ofH is
between 0 − 1.

When H � 0.5, the time nodes have random degree series,
which indicates that the current trends will not affect future
trends; when 0.5<H≤ 1, the time nodes have positively
correlated degree series, which indicates that the current trends
will affect future trends; when 0≤H< 0.5, the time nodes have
negatively correlated degree series, which indicates that the current
trends will affect future trends;

As illustrated in Figure 2, the time series data is mapped to an
adjacencymatrix by the visibility graph,with the calculated degree, cluster
coefficients, diameter, and average path length of the complex network.

2.3.1 Data
Since energy consumption keeps changes, it needs to be

quantified. The quotient between the use of fossil fuels (oil, coal,
and gas) and the inland energy consumption is referred to as fossil
energy consumption [9] (FFC), as shown in Equation 10

FFC � Ecoal+Eoil+Egas

inlandenergyconsumption
. (10)

where Ecoal, Eoil, and EGas are the energy consumption from solid
fuels, oil, and gas, respectively.

The coal, oil, and gas consumption were obtained from the Our
World in Data [40]. Due to the insufficient data in some countries,
this study did not involve the countries with missing data and
obtained the fossil fuel consumption data of 38 countries finally.
From Figure 3, it can be seen that fossil fuel (coal, oil, and gas)
consumption in the world has increased gradually in the given
period. However, in 2020, all fossil fuel consumption decreased
significantly. Meanwhile, as global awareness of environmental
protection increases, more and more countries have begun using
clean energy and replacing oil with natural gases. Besides, coal
consumption is always between oil consumption and natural gas
consumption.

3 Analysis

3.1 Fossil fuel consumption in
different countries

By comparing the total fuel consumption of various countries in
1968 and 2020 in Figure 4, it can be found that Venezuela’s total fuel
consumption decreased from the first in the world to almost no fossil
fuel consumption, while China’s total fossil fuel consumption
ranked from the last in 1968 to the top in 2020. These two maps
show that the consumption of fossil fuels is closely related to
economic development.

FIGURE 6
The characteristic of the visibility graph of coal consumption.
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Figure 5 presents the time series of coal, oil, and gas
consumption from 1986 to 2020 of 13 countries. The coal, oil,
and gas consumption has increased in these 13 countries. Due to the
differences in economy, policies, and resource reserves among these
countries, there are significant variations in fuel consumption.
Specifically, the growth of coal consumption in China is the most
in the world. Since 2000, China’s oil and coal consumption has
increased substantially, becoming our country a major coal
consumer. Meanwhile, the United States is the largest consumer
of oil and gas. However, Figure 5D indicates that China has a high
growth rate in energy consumption, and in 2004, China’s total
energy consumption exceeded the total energy consumption of the
United States, which is highly related to the rapid development of
China’s economy.

3.2 Visibility graph of fossil fuel consumption

Network science provides a new tool for analyzing fossil fuel
consumption data. The visibility network structure can be
exploited to reveal the practical significance of fossil fuel
consumption, and more hidden information about fossil fuel
consumption can be obtained from the degree, degree
distribution, cluster coefficient, average short length, and
diameter of the network structure.

Through the definition of the visibility graph, it can be known
that the degree is the number of other time nodes connected to one
time node, and the average degree is the degree of all nodes on
average. The more significant the average degree, the stronger the
correlation between these data.

The average path length is the number of time nodes to pass
between two time nodes to establish a connection. The average path
length is the average number of time nodes to pass between two
nodes to establish a connection. The diameter is the longest path
among all the shortest paths, indicating the number of time nodes to
pass to establish an edge connection with the weakest correlation
between these two time nodes. A large average path length indicates
a strong correlation between these data.

The clustering coefficient describes the relationship between two
nodes with familiar neighbors, which reflects the relationship
between two time nodes connected to the same time node. A
larger clustering coefficient indicates a stronger attraction of one
node to other nodes.

Figure 6 shows the visibility graph of coal consumption. These
four maps present the average degree, average cluster coefficient,
diameter, and average path length of coal consumption in the
38 countries, respectively. It can be found that India, Indonesia,
Malaysia, and Pakistan are the top four countries in terms of average
degree (all exceed 20). Meanwhile, the average path length in these
four countries is less than 2, indicating that the correlation between

FIGURE 7
The characteristic of the visibility graph of oil consumption.

Frontiers in Physics frontiersin.org07

Zhang et al. 10.3389/fphy.2024.1457287

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1457287


the coal consumption data of these four countries is the strongest.
Besides, these five countries, including Algeria, Venezuela, France,
Pakistan, and Australia, are the top five countries in terms of cluster
coefficient, which indicates that these five countries are closely
related to their neighboring nodes in coal consumption.

Figure 7 presents the visibility graph of oil consumption. Similar
to Figure 6, this figure depicts the average degree, average cluster
coefficient, diameter, and average path length of oil consumption in
the 38 countries, respectively. It can be seen from these maps that the
average degree of China and India is over 20. Italy, Czechia, Slovakia,
and Mexico are the top four countries in terms of diameter (all
exceed 10). Besides, Iran, Taiwan (China), Argentina, Romania, and
Pakistan are the top four countries in terms of average cluster
coefficient (all exceeds 0.75), and the average cluster coefficient of
Iran is over 0.8, indicating that Iran is more strongly correlated with
its neighbors in oil consumption. Moreover, Italy, Mexico, Spain,
and Czechia are the top four countries in terms of the average path
length of oil consumption (all exceed 3.5).

Figure 8 depicts the visibility graph of natural gas consumption
in terms of average degree, average cluster coefficients, diameter, and
average path length. It can be seen that China, Iran, Egypt, and Brazil
are the top four countries in terms of average degree (all exceed 20).
Meanwhile, these four countries have the smallest average path
length, indicating that the correlation between the coal consumption
data of these four countries is the strongest. Besides, the diameter of
Austria, Hungary, Bulgaria, Netherlands, and Switzerland is over 9.

Moreover, the average cluster coefficient of Slovakia, Germany,
Hungary, Japan, Czechia, Romania, and Belgium is over 0.75.

3.3 Fractal analyze

Fractal is an essential feature of time series. In this section, the
fractal characteristics of three fossil fuels are analyzed. Through
Table 1, it can be found that the Hurst indices of coal, oil, and natural
gas consumption data are all greater than 0.5. Meanwhile, the Hurst
indices of most fossil fuel consumption exceed 0.9, indicating that
the consumption of these three types of fossil fuels has long-term
memory. When the Hurst index equals to 0.5, the sequence is the
randomized time series. The closer the Hurst index is to 0.5, the
stronger the stochasticity of the effect of the series on the future. In
this paper, when the Hurst index is between 0.4 and 0.6, the series
can be considered stochastic.

In Table 1, the Hurst index is marked in bold when it is between
0.4 and 0.5. The Hurst index of degree (HID) of 10 countries
including Austria, Egypt, India, Indonesia, Iran, Mexico,
Morocco, Poland, Switzerland, and the United States in coal
consumption is in bold, indicating that in coal consumption, the
current time nodes have a stochastic impact on future time nodes.
The HID of the oil consumption of Argentina, Belgium, Egypt,
Germany, Peru, Romania, Switzerland, and the United Kingdom are
the same as that of the 10 countries in coal consumption; the same as

FIGURE 8
The characteristic of the visibility graph of gas consumption.
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TABLE 1 The Hurst of fossil fuel consumption.

Country Coal Oil Gas

Hurst Degree
Hurst

Hurst Degree
Hurst

Hurst Degree
Hurst

Algeria 0.975 0.110 0.981 0.753 0.940 0.461

Argentina 0.845 0.699 0.952 0.550 1.000 0.476

Australia 1.000 0.773 0.976 0.705 0.982 0.622

Austria 0.866 0.513 0.959 0.658 1.000 0.650

Belgium 0.975 0.379 0.962 0.582 0.999 0.661

Brazil 1.000 0.367 1.000 0.701 0.980 0.494

Bulgaria 0.867 0.047 1.000 0.681 1.000 0.627

Canada 0.972 0.239 0.976 0.744 0.987 0.613

Chile 0.942 0.170 1.000 0.731 0.985 0.739

China 0.989 0.657 0.945 0.804 0.826 0.896

Colombia 0.909 0.333 0.978 0.771 0.931 0.387

Czechia 1.000 0.737 0.897 0.730 1.000 0.774

Egypt 0.674 0.508 1.000 0.560 0.969 0.706

France 1.000 0.323 0.886 0.744 1.000 0.422

Germany 0.986 0.677 0.919 0.577 1.000 0.515

Hungary 1.000 0.687 0.978 0.609 1.000 0.469

India 0.948 0.588 0.955 0.653 0.987 0.664

Indonesia 0.911 0.420 1.000 0.656 1.000 0.625

Iran 0.897 0.435 1.000 0.281 0.940 0.555

Italy 0.890 0.621 0.917 0.761 1.000 0.689

Japan 1.000 0.712 0.845 0.692 1.000 0.180

Malaysia 0.903 0.699 1.000 0.796 1.000 0.692

Mexico 1.000 0.494 1.000 0.713 0.965 0.334

Morocco 0.922 0.474 0.995 0.386 0.966 0.552

Netherlands 0.995 0.732 0.969 0.624 0.902 0.574

New Zealand 0.963 0.619 0.985 0.630 1.000 0.506

Pakistan 0.698 0.825 1.000 0.938 0.980 0.745

Peru 1.006 0.657 0.912 0.551 0.940 0.685

Poland 0.988 0.523 0.942 0.632 0.937 0.683

Romania 0.940 0.660 0.995 0.538 1.000 0.546

Russia 1.000 0.702 1.000 0.717 0.987 0.599

Slovakia 0.990 0.614 1.000 0.719 1.000 0.488

Spain 0.917 0.650 1.000 0.720 1.000 0.843

Switzerland 0.927 0.582 0.736 0.423 1.000 0.591

Taiwan (China) 1.000 0.878 1.000 0.723 0.936 0.535

United Kingdom 0.946 0.347 0.944 0.480 1.000 0.772

(Continued on following page)
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the previously mentioned, the countries in natural gas consumption
are Algeria, Argentina, Brazil, France, Germany, Hungary, Iran,
Morocco, Netherlands, New Zealand, Romania, Russia, Slovakia,
Switzerland, Taiwan (China), and Venezuela, respectively.

Since the coal, oil, and gas consumption in these 38 countries are
long-termmemory time series, only analyzing the Hurst index of the
primary data cannot discover new features in the original data.
However, as shown in Figure 9, with the assistance of the Hurst of
degree, new characteristics of fossil fuel consumption can be
obtained. There are fuel consumption differences between
different countries and in the same country.

4 Conclusion

This paper utilizes the Hurst index to analyze fossil fuel
consumption time series data for 38 countries. The analysis reveals
that all fossil fuel consumption data in these countries exhibit long-term
memory characteristics, indicating a significant relationship between
fossil fuel consumption and economic development.

The visibility graph method is employed to uncover hidden
features (such as average degree, average clustering coefficient, and
diameter) of the fossil fuel consumption data. These features help
identify differences in fuel consumption between countries.
Furthermore, fractal and complex network theory are applied to

analyze fossil fuel consumption, revealing significant differences
among the 38 countries. By using the Hurst index of the degree
distribution, this study distinguishes global fossil fuel consumption
patterns and determines whether current fuel consumption affects
future consumption randomly. Additionally, the stable supply and
economic security of national fossil fuel resources depend on the
formulation and improvement of relevant resource protection laws.
Without legal protection, the security of energy resources cannot be
ensured, economic development needs cannot be met, and people’s
needs for survival and development cannot be satisfied.
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TABLE 1 (Continued) The Hurst of fossil fuel consumption.

Country Coal Oil Gas

Hurst Degree
Hurst

Hurst Degree
Hurst

Hurst Degree
Hurst

United States 0.981 0.546 0.935 0.725 0.882 0.318

Venezuela 0.745 0.662 1.000 0.341 1.000 0.524

Bold value means the Hurst index is between 0.4 and 0.6, the series can be considered stochastic.

FIGURE 9
The Hurst of degree.
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