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The holographic duality (also known as AdS/CFT correspondence or gauge/
gravity duality) postulates that strongly coupled quantum field theories can be
described in a dual way in asymptotically anti-de Sitter space. One of the
cornerstones of this duality is the description of thermal states as black holes
with asymptotically anti-de Sitter boundary conditions. This idea has led to
valuable insights into fields such as transport theory and relativistic
hydrodynamics. In this context, the quasinormal modes of such black holes
play a decisive role, and therefore their stability properties are of utmost interest
for the holographic duality. We review recent results using the method of
pseudospectra.
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1 Introduction

1.1 Blitz review of holographic duality

Before discussing the role of quasinormal modes, we first need to understand the basics
of the AdS/CFT correspondence. Gauge/gravity duality has its roots in Maldacena’s
conjecture that type IIB string theory on AdS5 × S5 is dual to N � 4 supersymmetric
gauge theory [1, 2].1 Let us quickly unpack this statement. N � 4 supersymmetric gauge
theory is a non-abelian, four-dimensional quantum field theory whose field content consists
of six scalars, four Majorana fermions, and a gauge field. They all transform under the
adjoint representation of the gauge group SU(N). It features four supersymmetries, and this
fixes all the couplings between the different fields. As it is a gauge theory, physical
observables are gauge-invariant operators such as tr(Fμ]Fμ]). The global symmetry
group SO(6) acts on the scalars and fermions (in the SU(4) spin representation of
SO(6)). In addition, the theory has conformal symmetry and 32 supercharges.

The dual theory is a theory of gravity (type IIB string theory) but exists in
10 dimensions. Five of these are a geometric realization of the internal SO(6)
symmetry as the isometry of the five-dimensional sphere S5. Supersymmetry is
generated by two ten-dimensional spinors of equal chirality, which also results in
32 supercharges. Conformal symmetry arises as the isometry group on AdS5.
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1 Both descriptions arise from the low energy limit of a stack of N D3-branes in string theory in flat 10-

dimensional spacetime [2].
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The field theory gauge coupling gYM and rank of the gauge
groupN are related to the dual string theory string coupling gs (the
amplitude for a string to split in two) and to the ratio of the AdS5
curvature scale R � −20/L and string scale ls in the following way:

g2
YMN∝

L4

l4s
,

1/N∝gs.

Gauge/gravity duality is therefore a strong–weak coupling duality;
for weak curvature, we have large L and therefore also large ’t-Hooft
coupling g2

YMN. In this regime of weak curvature, stringy effects are
negligible, and we can approximate the string theory by type IIB
supergravity. If we furthermore take the rank of the gauge group N
to be very large, we can also neglect quantum loop effects and end up
with classical supergravity. This is the form of the correspondence
most useful for the applications to many body physics. Classical
(super)gravity on (d + 1)-dimensional anti-de Sitter space is the
infinite coupling and infinite rank limit of a gauge theory in d
dimensions.

This is now promoted to a principle that (quantum-)gravity in
asymptotically (d + 1)-dimensional anti-de Sitter space can be
understood as a strong coupling version of a dual quantum field
theory in d dimensions [3, 4]. For applications to quantum field
theory, the most useful coordinate system is the so-called
Poincaré patch.

ds2 � r2

L2
−dt2 + d �x2( ) + L2

r2
dr2. (1)

The space on which the dual quantum field theory exists is recovered
by taking the limit ds2QFT � limr→∞r−2ds2.

Since the correspondence relates a (d + 1)-dimensional theory
to a d-dimensional theory, it is also called “holographic” duality. The
radial coordinate has a physical interpretation as energy scale. The
high-energy or UV limit in the field theory is identified with the
r → ∞ limit in the AdS geometry, whereas the low-energy IR limit
is r → 0.

On shell, the asymptotic behavior of the fields in AdS in a large r
expansion is

Φ r, x( ) � r−Δ− Φ0 x( ) + O r−2( )( ) + r−Δ+ Φ1 x( ) + O r−2( )( ). (2)
The exponents Δ± obey Δ− <Δ+ and depend on the nature of the
field, e.g., for a scalar field of mass m, they are
Δ± � 1

2 (d ±
����������
d2 + 4m2L2

√ ). We note that for the scalar field in
asymptotically AdS, masses in the range −d2/4<m2 < 0 are
perfectly regular and do not imply any acausality or instability [5].

It turns out that the leading solution given by Φ0(x) is non-
normalizable and thus non-dynamical. It is interpreted as a
boundary condition Φ0(x) � J(x) on the AdS field Φ(r, x). The
classical on-shell action becomes a functional of these boundary
conditions Scl[J]. In the (super)gravity limit, the on-shell action is
interpreted as the generating functional of (connected) Green’s
functions Zc[J] � Scl[J] in the dual field theory. The boundary
condition J is now interpreted as a source for an operator O in the
dual field theory whose correlation functions can be obtained from

〈O1 x1( ) . . .On xn( )〉 � δnScl
δJ1 x1( ) . . . δJn xn( ). (3)

More specifically, the expectation value of the operatorO is given by

〈O x( )〉∝Φ1 x( ).
In this way, the leading and subleading terms in the asymptotic
expansion Equation 2 have dual field theory interpretations. The
mass range −d2/4≤m2 ≤ 0 corresponds to renormalizable
operators.2

Generically, the equation of motion forΦ(r, x) is a second-order
partial differential equation. In order to solve it, one needs to supply
additional boundary conditions. The metric shown in Equation 1
has a (degenerate) horizon at r � 0, and it was argued in [7] that for
time-dependent solutions, retarded Green’s functions of the dual
quantum field theory

GR t, �x( ) � −iΘ t( )〈 O t, �x( ),O 0, 0( )[ ]〉, (4)
are obtained by imposing infalling boundary conditions.

The infalling boundary condition is, of course, the main
constituent for the existence of quasinormal modes. In anti-de
Sitter space, it does, however, not lead to quasinormal modes
because the horizon is degenerate. The corresponding
(holographic) retarded Green’s function does not have poles but
rather a branch cut along the positive real axis [7]. This changes as
soon as we consider a black hole with asymptotic AdS boundary
conditions and planar horizon topology (AdS black brane). Its line
element for d � 4 is

ds2/L2 � r2 −f r( )dt2 + d �x2( ) + dr2

r2f r( ), (5)

f r( ) � 1 − r4h
r4
.

This metric has a non-degenerate horizon at r � rh. The Hawking
temperature is πTL2 � rh. The holographic (or gauge/gravity)
interpretation is that the dual field theory is now in a thermal
state with the temperature given by the Hawking temperature [8, 9].

The field Φ is expanded in (boundary) plane waves as

Φ r, t, �x( ) � ∫ dωd3k

2π( )4
~Φ0 ω, �k( )e−iωt+i �k �x Fω, �k r( ).

For every fixed ω, �k, the linearized equation of motion for the
fluctuation boils down then to an ordinary second-order
differential equation for Fω, �k. The point at infinity is a regular
singular point with characteristic exponents Δ±. We impose
infalling boundary conditions by demanding that Fω, �k ~ e−iω(t+r*)

on the horizon (we use a tortoise coordinate here drp � dr/f(r)
such that the horizon sits at rp → −∞). The asymptotic expansion
of Fω, �k(r) is

Fω, �k � A ω, �k( ) r−Δ− 1 + O 1/r( )[ ] + B ω, �k( ) r−Δ+ 1 + O 1/r( )[ ],

2 We note that this is the so-called standard quantization scheme and allows

only for operators of dimensions larger than d/2. In order to describe

operators of smaller dimensions, one needs to exchange the role of the

source and operator (“alternative quantization”). For further details on

that, see [6].
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where A(ω, �k) and B(ω, �k) are the Fourier transforms of Φ0(x) and
Φ1(x), respectively. The Fourier transform of the retarded two-
point Green’s function Equation 4 can now be calculated as

~GR ω, �k( ) � K
B ω, �k( )
A ω, �k( ),

where K is some normalization constant [7].

1.2 Holographic quasinormal modes

The definition of the holographic retarded Green’s function
depends on a subtlety. It is impossible to calculate a retarded (or
advanced) Green’s function from an action, as is indicated in
Equation 3. In thermal field theory, one needs to use the
Schwinger–Keldysh formalism in which the time coordinate
exists on a (complex) contour [10]. It turns out that the
Schwinger–Keldysh contour is naturally implemented on the
maximally analytic extension of the AdS black brane metric. In
that case, one has a second boundary on which the direction of the
time-like Killing vector is reversed in comparison to the direction
covered by the coordinate patch Equation 5. Strictly speaking,
retarded holographic Green’s functions can only be defined on
this maximally analytically continued double-sided Kruskal-type
manifold [11]. Infalling boundary conditions then correspond to
the analytic continuation of the solution to the whole Kruskal
manifold. For all practical purposes, the retarded Green’s
function can however be computed on the patch Equation 5 by
the simple method. The quasinormal modes describe the return to
the thermal equilibrium [12]. Their frequencies are the poles of the
holographic Green’s function in the complexified ω plane [13, 14].

Retarded two-point functions are the central objects in the linear
response theory. The response in the operator O under a
perturbation (source) J(t, x) with Fourier transform ~J(ω, �k) is

〈O t, �x( )〉 � ∫ dωd3k

2π( )4 e−iωt+i �k �xGR ω, �k( )~J ω, �k( )
� −iΘ t( )∫ d3k

2π( )3 ∑n Rn k( )~J ωn
�k( ), �k( )e−iωnt+i �k �x,

where Rn is the residue of GR at the pole ωn
3. As long as all the

quasinormal frequencies lie in the lower half of the complexω-plane,
the response decays exponentially fast. A mode in the upper half
indicates an instability, leading eventually to a phase transition.

A special role is played by linearized perturbations of gauge
fields and the metric. In this case, the dual operator corresponds to a
conserved current, and the quasinormal mode spectrum contains
the so-called hydrodynamic modes [15], i.e., those fulfilling

lim
k→0

ωH
�k( ) � 0.

For a gauge field, one finds in this way a diffusive mode that obeys in
the small | �k| limit ωdiffusive � −iD �k

2
, where the diffusion constant

D � 1
2πT. The metric fluctuations contain a shear-channel with a

similar diffusive law ωshear � −i η
ϵ+p �k

2
, where ϵ + p � sT are the

energy density ϵ, pressure p, and entropy density s of the dual
field theory. Famously, one finds η

s � 1
4π [16].

In some exceptional cases, exact solutions for the holographic
Green’s function can be found. If there are only three regular
singular points of the differential equation, it can then be
mapped to the hypergeometric differential equation. This
happens for the case of a gauge field in the five-dimensional AdS
black brane background at vanishing momentum �k � 0. The
holographic retarded Green’s function is [17]

GR ω( ) � K 2iω + ω2ψ
1 − i( )ω
4

( ) + ω2ψ − 1 + i( )ω
4

( )[ ],
where ψ(z) is the digamma function. The poles are at4

ωn � 2n (± 1 − i). More generally, the corresponding differential
equation has more than three regular singular points and cannot
be solved exactly. In these cases, one needs to resort to numerical
approximations.

2 Pseudospectra of holographic
quasinormal modes

The infalling boundary conditions on the horizon of the AdS
black brane have the consequence that the differential operator is a
non-Hermitian and non-normal operator. Its eigenvalues are
complex numbers, precisely the quasinormal frequencies. It is a
well-known fact that eigenvalues of non-normal operators suffer
from spectral instability. This means that a small perturbation of the
operator can change the value of the eigenvalues dramatically. In
fact, it is this spectral instability that makes the prediction and
calculation of quasinormal frequencies challenging. The method of
pseudospectra has emerged as an ideal tool to assess the spectral
instability of non-normal operators in a quantitative (and also
qualitative) way [18].

The calculation of the pseudospectra of quasinormal modes was
pioneered in [19] and further explored in [20–36] in various
astrophysical and cosmological contexts. We will concentrate
here on the simple case of pseudospectra for a gauge field in the
AdS black brane [33]. Pseudospectra answer the question of how far
a quasinormal frequency can be displaced by a given perturbation of
size ϵ. This means, of course, that we need a way to measure the size
of an operator that can be added as a perturbation. Consequently, we
need to define an appropriate measure on a function space that
contains the quasinormal modes. On physical grounds, it is
generally suggested to use a suitable norm based on the energy
functional. Only in certain coordinate systems the quasinormal
modes have “nice” or regular behavior on the horizon. It turns
out that in the coordinates shown in Equation 5, the energy
functional is not well-defined. There are two strategies to deal
with this problem. One is to use infalling Eddington–Finkelstein
coordinates. These are often used in the literature on holographic

3 We assume here that there are no contributions from the integral along the

large radius half circle in the lower complex ω half-plane.

4 We have rescaled the frequency such that the physical values are

ωphys � πTω. We further note that the surface gravity is κ � 2πT .
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quasinormal modes, and the energy functional is indeed well-
defined. Another approach is to use the so-called regular
coordinates that interpolate between the Schwarzschild-type
coordinates near the boundary and infalling
Eddington–Finkelstein coordinates near the horizon [37].
Figure 1 shows the Penrose diagram, which illustrates the
geometrical nature of this slicing.

In both infalling Eddington–Finkelstein and regular
coordinates, the infalling boundary condition is replaced by the
condition of regularity at the horizon. There is, however, a
difference between the coordinate systems concerning the
resulting eigenvalue problem. In infalling

Eddington–Finkelstein coordinates, one ends up with a
generalized eigenvalue problem, whereas regular coordinates
result in a standard eigenvalue problem. We chose the latter
approach and briefly review the findings of [33].

A particular choice of regular coordinates for the black brane is

τ � t − 1 − 1
r

( ) + ∫ dr

f r( )
1
r

( )2

, (6)

ρ � 1 − 1
r
,

in which the line element takes the form

ds2 � 1

1 − ρ( )2 −f ρ( )dτ2 + d �x( )2 + 2 1 − f ρ( )( )dτdρ(
+ 2 − f ρ( )( )dρ2). (7)

Here, we have set the AdS curvature scale L � 1 and re-scaled
coordinates such as to absorb the scale set by the horizon
(rh � πT). In these coordinates, the boundary is at ρ � 1 and the
horizon at ρ � 0.

It is instructive to concentrate on a case in which we have actually
exact analytic results about the spectrum of quasinormal frequencies,
and therefore we only consider the (transverse) gauge field at zero
momentum. This means that we consider a gauge field of the form
A1(ρ, τ, �x) � a(ρ) exp(−iωτ). The equation of motion for this gauge
field ansatz in the metric Equation 7 is second order in ∂τ . It can be
reduced to a first-order system by introducing the auxiliary field α and
the additional equation α � −iωa. The energy functional takes the form:

E a, α[ ] � ∫1

0

dρ

1 − ρ
f|∂ρa|2 + 2 − f( ) |α|2( ), (8)

where we have discarded an overall volume factor stemming from
the integration over the x coordinates. Furthermore, we have taken
into account that a(ρ) and α(ρ) are Fourier modes and therefore
complex valued. The equation of motion is given by

ωΨ � LΨ � i
0 1
L1 L2.

( )Ψ,

L1 � 1
f − 2

− 1 − ρ( ) f

1 − ρ
( )′ ∂ρ − f∂2ρ[ ], .

L2 � 1
f − 2

1 − ρ( ) f − 1
1 − ρ

( )′ + 2 f − 1( )∂ρ[ ],
where Ψ � (a, α)T.

Quasinormal modes can now be defined as the eigenvalues of the
operator L with Dirichlet boundary conditions at ρ � 1 and
regularity at the horizon ρ � 0. The energy can be promoted to
an inner product

〈Ψ1,Ψ2〉 � ∫1

0

dρ

1 − ρ
f ∂ρa2( )* ∂ρa1( ) + 2 − f( ) α2*α1[ ]. (9)

The operator L is self-adjoint up to a boundary term with respect to
this inner product:

L† � L + 0 0
0 −iδ ρ( )( ),

which nicely reflects the fact that dissipation stems from the
boundary condition at the horizon.

FIGURE 1
Penrose diagram of the exterior region of SAdS4+1. The AdS
boundary is denoted by J , H+ (H−) represents the future (past)
horizon, and i+ (i−) denotes the future (past) time-like infinity. The red
lines correspond to constant τ hypersurfaces (Equation 6), and
the blue lines represent constant t hypersurfaces (Equation 5).
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We note that the inner product Equation 9 induces a norm on
the space of linear operators acting onΨ. This operator norm can be
used to define the ϵ-pseudospectrum ofL as the set in the complex ω
plane where

σϵ � ω ∈ C: ‖ L − ω( )−1‖> 1
ϵ{ }.

We refer to [38] for comprehensive information about the
pseudospectrum. For our purpose, the most useful interpretation
is that for any operator δL of operator norm ‖δL‖< ϵ; the spectrum
of L + δL lies inside σϵ.

It is convenient and informative to present the pseudospectra as
a contour plot in which the contour lines correspond to different
values of ϵ. In the case of a normal operator, these contour lines are
concentric circles around the eigenvalues. In particular, for
sufficiently small ϵ, the radius of the circle is also given by ϵ.
This situation can be referred to as spectral stability. For non-
normal operators, however, the contour lines are not necessarily
circles. They can be much larger than circles of radius ϵ or even open
lines in the complex ω plane. This indicates that small perturbations
can displace the eigenvalues of the operator by large amounts.

Let us now consider the pseudospectrum shown in Figure 2. One
can see that the contour lines are open. The colors indicate the ϵ
values. Even tiny perturbations can completely destabilize the
spectrum of quasinormal modes. It is important to note that this
figure is obtained with a discretization of the differential operator L
using pseudospectral methods at a grid size of N � 120 points for
ρ ∈ [0, 1]. It turns out that the spectral instability gets stronger as the
grid size increases. In fact, one can argue that the resolvent does not

converge to a finite value for N → ∞ [35]. The reason is that the
energy norm cannot effectively exclude the modes which are
outgoing from the horizon. These behave like a∝ ρiω/2 near the
horizon. The energy norm, however, only demands integrability on
the horizon. In fact, all functions which behave like the outgoing
modes with I(ω)< 0 have an integrable energy Equation 8.
Furthermore, the domain on which the operator L is defined
contains the outgoing modes with I(ω)< − 1. Therefore, in the
continuum limit, all points with I(ω)< − 1 belong to the spectrum
of the operator L. For an in-depth mathematical discussion, see [37,
39]. We note that hydrodynamic modes for small enough
momentum k obey I(ω)≥ − 1, and thus they lie in the
convergent region of the pseudospectrum in the energy
norm [34, 35].

3 Discussion

This finding on the spectral instability of quasinormal modes is
somewhat puzzling. After all, we can construct the holographic
Green’s function exactly, and it does have a discrete set of poles in
the complex ω plane. In contrast, the spectrum of L is continuous if
it acts on functions with the finite energy norm.

We note that, as we have emphasized, the definition of the
holographic Green’s function implicitly relies on analytic
continuation across the horizon. This analyticity requirement is
much stronger than the requirement of the existence of the energy
norm. A way to circumvent this has been suggested in [37] and
consists in replacing the energy norm with a Sobolev norm. In

FIGURE 2
Pseudospectra of a vector field in the AdS black brane background. The color code indicates the values of log10ϵ.
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physicist terms, this corresponds to higher-order derivative terms in
the norm. Higher-order derivative terms up to |∂nρa|2 amount to
lowering the limit for integrability to I(ω)< 1 − 2n. In order to
recover the exact spectrum, one would, of course, have to take a limit
with infinitely many derivatives. From the physics point of view, the
significance of such higher-order derivative terms is not clear.

Another line of thought could be that one considers the
underlying theory (being it a scalar field, a Maxwell field, or the
metric itself) as an effective field theory valid down to a finite cutoff
length scaleΛ. Then, we would necessarily have some huge but finite
value for N determined, e.g., by the criterion that the minimal
distance between points of the discretization is larger than Λ.
Alternatively, one could also impose the boundary conditions not
directly at the horizon but slightly outside at a sort of
“stretched” horizon [40].

Let us now emphasize the importance of the pseudospectra in
the context of holography. From the gravitational side,
pseudospectra probe how much the quasinormal frequencies
change if the background is slightly modified in some way (e.g.,
by the change in the geometry and/or the background value of the
fields). Consequently, in the dual quantum field theory,
pseudospectra help us estimate how much the poles of the
retarded Green’s functions might change if the theory is slightly
perturbed. In both cases, these perturbations should be understood
as perturbations to the Lagrangian, leading to the change in the
spectrum of excitations. Then, spectral instability suggests that
holographic models might not be able to accurately capture the
actual spectra of real physical systems such as quark–gluon plasma.
However, valuable information, such as transient dynamics, can still
be obtained by studying pseudospectra [24, 38].

We shall now point to additional results on quasinormal modes
in anti-de Sitter space. The pseudospectrum in infalling
Eddingtion–Finkelstein coordinates has been investigated in [34].
One of the main findings was that in certain cases, the
pseudospectrum can significantly reach up into the upper half-
plane, giving rise to possible transient behavior. The structural
aspects of the pseudospectrum of quasinormal modes for AdS
black holes have been pointed out and further investigated in
[35]. In particular, the results in infalling Eddington–Finkelstein
and regular coordinates have been contrasted. The dependence of
pseudospectra on the choice of coordinates still needs further
investigation. The properties of the pseudospectrum of black hole
metrics have also been shown to give rise to transient behavior for
which a sum of M quasinormal modes can be long lived of order
log(M) in [41]. The stability of complex linear momenta (CLMs) in
anti-de Sitter space is studied in [42]. Remarkably, the
pseudospectrum of CLMs was observed to be convergent,
allowing for quantitative results.

In this paper, we have reviewed the holographic perspective on
the quasinormal modes and quasinormal frequencies of AdS black

holes. In this context, the pseudospectrum analysis offers an
invaluable tool for assessing the stability and investigating the
existence of transient dynamics. Numerically computed
pseudospectra do not converge in the energy norm because
outgoing modes can still have finite energy. We believe that the
lack of convergence is not a flaw of the construction but rather a
fundamental feature that needs to be addressed using a physics-
motivated regulator.
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