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We present a collection of simulations of the Edwards–Anderson lattice spin glass
at T � 0 to elucidate the nature of low-energy excitations over a range of
dimensions that reach from physically realizable systems to the mean-field
limit. Using heuristic methods, we sample the ground states of instances to
determine their energies while eliciting excitations through manipulating
boundary conditions. We exploit the universality of the phase diagram of
bond-diluted lattices to make such a study in higher dimensions
computationally feasible. As a result, we obtain a variety of accurate
exponents for domain wall stiffness and finite-size corrections, which allow us
to examine their dimensional behavior and their connection with predictions
frommean-field theory. We also provide an experimentally testable prediction for
the thermal-to-percolative crossover exponent in dilute lattice Ising spin glasses.
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1 Introduction

Imagining physical systems in non-integer dimensions, such as through ε-expansion [1]
or dimensional regulation [2], to name but two, has provided many important results for the
understanding of physics in realistic dimensions. For example, the goal of the ε-expansion is
to establish a connection between the (technically, infinite-dimensional) mean-field
solution of a field theory and its real-space behavior. For a disordered system such as a
spin glass [3–6], this playbook has proved rather difficult to follow theoretically [7–9]. In
contrast, we endeavor to explore the transition between the often well-known mean-field
properties and their modifications in real space using numerical means, free of any
theoretical preconceptions. In this task, on top of the computationally extensive
disorder averages, the complexity of spin glasses reveals itself through increasingly
slower convergence in thermal simulations, while the deeper one pushes into the glassy
regime. Going all the way to T � 0 then makes thermal explorations impossible and renders
the problem of finding the ground-state NP-hard in general [10]. However, simulations at
T � 0 also avail us considerable conceptual clarity and an entirely new suit of techniques,
albeit for just a few, yet important, observables. Some equilibrium properties of spin glasses
below Tc can be obtained from merely determining ground-state energies, such as domain
wall stiffness, finite-size corrections, and thermal–percolative crossover exponents. To keep
systematic errors low while also creating enough statistics for the disorder average, we need
to use fast but ultimately inexact heuristic methods to overcome NP-hardness. To reach a
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sensible scaling regime in system sizes, N, especially in higher
dimensions, requires clever exploitation of the phase diagram of
a spin glass. In this study, we discuss the results obtained from large-
scale simulations conducted over several years and spread over a
number of papers [11–15].1

To be specific, we simulate the Ising spin glass model due to
Edwards and Anderson (EA) with the Hamiltonian [16].

H � − ∑
<i,j>

Ji,j σ i σj. (1)

The dynamic variables are binary (Ising) spins σ i � ±1 placed on a
hypercubic lattice in the integer d dimension with couplings
between nearest neighbors < i, j> via random bonds Jij drawn
from some distribution P(J) of zero mean and unit variance. The
lattices are periodic with base length L in all directions, i.e., each such
instance has N � Ld spins. To relate real-world behavior in d � 3
(which is explored experimentally and theoretically in other articles
in this collection) with mean-field behavior, which manifests itself
above the upper critical dimension du � 6 [3], we found ground
states of EA on lattices in d � 3, . . . , 8. In each d, we need to simulate
instances over a wide range of L to extrapolate our results to the
thermodynamic limit (L → ∞). At each size L, we further need to
measure a large number of instances with independently drawn
random bonds for the disorder average inherent to obtain
observables in spin glasses. Each instance entails approximating
its ground state, which is an NP-hard combinatorial problem.

To sample ground-state of the Hamiltonian in Equation 1 at
high throughput and with minimal systematic errors, heuristics can

only be relied on for systems with not more than N ≈ 1000 spins
coupled together. This would appear to limit the “dynamic range” in
size up to approximately L � 10 in d � 3 but limited to L � 6 in
d � 4, and even to L< 3 in d � 7, definitely insufficient to extract any
L → ∞ limit. However, the phase diagram for a bond-diluted EA
system (with d≥ 3 such that Tc > 0) shown in Figure 1 suggests that
universal scaling behavior extends across the entire spin-glass (SG)
phase down to the scaling window near the bond-percolation
threshold pc for low enough T, i.e., most definitely for T � 0.
Thus, our strategy is to find ground states for EA instances at
bond density p with sufficient dynamic ranges in L for p>pc just
above that scaling window to be within the SG phase, using exact
reduction methods [12, 17] (see Supplementary Appendix SA) to
remove a large number of spins, followed by heuristic optimization
of remainder systems with Nr ≤ 1000 [18, 19] (see Supplementary
Appendix SB). These reduction methods recursively trace out all
spins with fewer than four connected neighbors, at least, and are
particularly effective near pc since each spin in the EA system has at
most 2d potential neighbors while pc ~ 1/(2d) in large d such that
for p just above pc, lattices remain sparse, each spin being connected
to barely more than one other spin, on average, albeit with large
variations. For example, in d � 8 for p � 0.0735>pc ≈ 0.068 and
L � 6, an EA system withN � 68 ≈ 1.7 × 106 spins typically reduces
to a remainder graph with 〈Nr〉 ≈ 1000 spins, each connected to
5.3 neighbors, on average, to be optimized heuristically.

2 Domain wall stiffness exponents

A quantity of fundamental importance for the modeling of
amorphous magnetic materials through spin glasses [3, 20–23] is
the domain wall or “stiffness” exponent y, often also labeled θ. As
Hook’s law describes the response to increasing elastic energy
imparted to a system for increasing displacement L from its
equilibrium position, the stiffness of a spin configuration
describes the typical increase in magnetic energy ΔE due to an
induced defect interface of a domain of size L. However, unlike
uniform systems with a convex potential energy function over its
configuration space (say, a parabola for the single degree of freedom
in Hook’s law, or a high-dimensional funnel for an Ising
ferromagnet), an amorphous many-body system exhibits a
function more reminiscent of a high-dimensional mountain
landscape. Any defect-induced displacement of size L in such a
complicated energy landscape may move a system through
numerous undulations in energy ΔE. Averaging over many
incarnations of such a system results in a typical energy scale

σ ΔE( ) ~ Ly L → ∞( ) (2)
for the standard deviations of the domain wall energy ΔE.

The importance of this exponent for small excitations in
disordered spin systems has been discussed in many contexts [22,
24–28]. Spin systems with y> 0 provide resistance (“stiffness”)
against the spontaneous formation of defects at sufficiently low
temperatures T, an indication that a phase transition Tc > 0 to an
ordered state exists. For instance, in an Ising ferromagnet, the energy
ΔE is always proportional to the size of the interface, i.e., y � d − 1,
which is consistent with the fact that Tc > 0 only when d> 1. For
y< 0, the state of a system is unstable with respect to defects, and

FIGURE 1
Phase diagram for bond-diluted spin glasses (d>dl). The entire
spin-glass (SG) phase for T < Tc and p>pc has a universal positive
domain wall exponent, y >0. In our measurements, we therefore
utilize an interval of bond densities at T � 0 (red arrow) where p is
sufficiently above the scaling window near pc (at finite system size) but
small enough to asymptotically reach significant system sizes L. At p �
pc and T � Tc � 0, we define the domain wall exponent for a spin glass
on the percolating cluster as y � yP(<0). It allows us to extract the
thermal–percolative crossover exponent ϕ that describes the
behavior along the boundary Tc(p) ~ (p − pc)ϕ for papc (green
arrow). In the paramagnetic phase (PM) for p<pc or T > Tc , defect
energies due to domain walls decay exponentially.

1 http://www.physics.emory.edu/faculty/boettcher
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spontaneous fluctuations may proliferate, preventing any ordered
state. Thus, determining the exact “lower critical dimension” dl,
where y|d�dl � 0, is of singular importance, and understanding the
mechanism leading to dl, however unnatural its value, provides clues
to the origin of order [13, 29–33].

Instead of waiting for a thermal fluctuation to spontaneously
induce a domain wall, it is expedient to directly impose domains
of size L through reversed boundary conditions on the system
and measure the energy needed to determine y. To wit, in a
system with periodic boundary conditions, we first obtain its
ground state E0 unaltered and obtain it again as E0′ after reversing
the signs on all bonds within a (d − 1)-dimensional hyperplane,
resulting in a complex domain of spins of size ~L that are
reversed between both ground states such that ΔE � E0 − E0′ is
the energy due to the interface of that domain. Since ΔE is equally
likely to be positive or negative, it is its deviation, σ(ΔE), which
sets the energy scale in Equation 2. Notably, this problem places
an even higher demand on the ground-state heuristic than
described in the introduction. Here, the domain wall energy
ΔE has a minute, sub-extensive difference between two almost
identical, extensive energies, E0 and E0′, each of which is NP-hard
to find. Thus, any systematic error would escalate rapidly with
Nr, the size of the remainder graph.

As shown in Figure 2, using bond-diluted lattices for the EA
system, in contrast, not only affords us a larger dynamic range in L
but also allows for an extended scaling regime due to the additional
parameter of p ranging over an entire interval. Instead of one set of
data for increasing L at a fixed p (typically, p � 1 [34]) leading to the
scaling in Equation 2, we can scale multiple independent sets for

such a range of p into a collective scaling variable, L � L(p − p*)],
which collapses the data according to σ(L, p) ~ Ly. Although the
extension to an interval in p makes simulations more laborious, it
typically yields an extra order of magnitude in scaling compared to
the prohibitive effort of confronting the NP-hard problem of
reaching large L at fixed p alone. For instance, in d � 3 at p � 1,
attainable sizes span 3≤L≤ 12, at best, while we obtain a perfect data
collapse for about 0.07≤L≤ 3 for 0.28≤p≤ 0.8 (note that while
p* ≈ pc and ] has some relation to the correlation-length exponent
in percolation [see below], it is necessary to allow these to be a free
parameter for the bimodal bonds used in these simulations, as was
argued by [12]). The fitted values for y for each d, as obtained from
Figure 2, are listed in Table 1.

The values for y are listed in Table 1 and plotted in Figure 4 as
1 − y

d. That quantity has been obtained in the mean-field case by
[35], yielding 1 − y

d � 5
6 above the upper critical dimension,

d≥du � 6. That value is clearly consistent with our high-
dimensional data, providing a rare direct comparison between
the mean field theory (RSB) and real-world spin glasses. As
shown in Figure 4, the exponent varies continuously with
dimension d and allows for a simple cubic fit of the numerical
data between 2≤ d≤ 6, weighted by the statistical errors [13]. The fit
independently reproduces the exact known result outside the fitted
domain at d � 1, y � −1, to less than 0.8% (not shown here). The fit
has a zero at dl ≈ 2.498 and yields y ≈ 0.001 at d � 5

2; there is strong
evidence that dl � 5/2, which has also been suggested by theory [30,
33] and is consistent with the experiment [32].

In the following section, we consider some other uses of the
domain wall excitations.

FIGURE 2
Data collapse for the domain wall scaling simulations of bond-diluted EA in d � 3, . . . ,8 of σ(L,p) ~ Ly in the scaling variable L � L(p − p*)] . For each
d, datasets are created over a range in p as listed in the respective legend, up to a size L such that remainder graphs are typically <〈Nr〉 ≈ 103. The original
data and the fitting parameters are listed in [11, 12]. The obtained domain wall scaling exponents yd are listed in Table 1. Note that for d≤6, transient data
for smaller L have been omitted for clarity.
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3 Ground-state finite-size
correction exponents

Since simulations of statistical systems are bound to be
conducted at system sizes N typically quite far from the
thermodynamic limit N → ∞, it becomes essential to understand
the corrections entailed by such limitations. This is especially
pertinent for spin glasses beset with extra complexities such as
NP-hardness at T � 0 (or, similarly, the lack of equilibration at low
but finite T) or the additional burden of disorder averaging over
many random samples severely limiting N. Only rarely do such
corrections decay fast enough to reveal the thermodynamic behavior
of an observable in a simulation at a single, “large enough” N.
Instead, as already observed for the stiffness in Section 2, typically,
sets of data need to be generated to glean the asymptotic behavior for
large sizes. To extrapolate the value of an intensive observable (like
the ground-state energy density), it is then necessary to have a
handle on the nature of the finite-size corrections (FSCs) that have to
be expected for the generated data [25, 40, 41]. However, FSCs are
not only a technical necessity. Their behavior is often closely related
to other physical properties in the thermodynamic limit via scaling
relations [27]. They can also be instrumentalized, for instance, to
assess the scalability of optimization heuristics [42, 43].

For the ground-state energy densities in the EA system, [27]
argued that such FSCs should be due to locked-in domain walls of
energy ~Ly, which would lead to the scaling correction for the
extensive energies of EL ~ e∞Ld + ϒLy for large L, defining e∞ as
the L → ∞ limit of the average ground-state energy density
eL � 〈EL

Ld〉. This is consistent with Equation 2, where we
purposefully created such a domain wall because the same
system freed from that domain wall (or locked into another one)
would have EL′ ~ e∞Ld + ϒ′Ly and, thus, ΔEL ~ ΔϒLy. Dividing EL

by system size, we obtain

eL ~ e∞ + A

Ld( )ω, L → ∞( ), (3)

where the FSC exponent is conjectured to be

ω � 1 − y

d
. (4)

Indeed, our direct evaluation of ground-state energy densities at
some fixed bond density p in dimensions d � 3, . . . , 7, as shown in
Figure 3, is convincingly in agreement with this picture for the
dominant contributions to FSCs. However, that leaves us with
somewhat of a conundrum when compared with mean-field
simulations, where FSCs for the Sherrington–Kirkpatrick (SK)
spin glass model [44–46] appear to yield ω ≈ 2

3 for d → ∞,
which is not close to 1 − y/d → 5

6 from RSB theory [35].
We conducted a corresponding ground-state study at the edge of the

SG regime (see Figure 1) by choosing the percolation point p � pc

exactly. Since the fractal percolation cluster cannot sustain an ordered
state, we found that the stiffness exponent defined in Equation 2 is
negative there, y|p�pc

� yP < 0. Numerical studies of ground states at pc

(usingGaussian bonds Jij in this case) are computationally quite efficient
since the fractals embedded in the lattice often reduce completely or so

TABLE 1 Stiffness exponents for Edwards–Anderson spin glasses [11, 12] for dimensions d � 2, . . . ,8 obtained numerically from domain wall excitations of
ground states, as shown in Figure 2. The next column contains the measured values for finite-size corrections, denoted as ω, from the fit of the data shown
in Figure 3. The stiffness exponents yP obtained by [14] refer to EA at the bond–percolation threshold pc, with values of pc obtained from [36] for d � 3 and
[37] for d ≥4. The correlation–length exponents ν for percolation are from [38] in d � 3 and from [39] for d ≥4, where ν � 1/2 is exactly above the upper
critical dimension, d ≥6.

d y 1 − y/d ω yP 1 − yP/d pc ] ϕ � −]yP
2 −0.282(2) 1.141(1) −0.993(3) 1.497(2) 1

2
4
3

1.323(4)

3 0.24(1) 0.920(4) 0.915(4) −1.289(6) 1.429(3) 0.2488126 0.87436(46) 1.127(5)

4 0.61(1) 0.847(3) 0.82(1) −1.574(6) 1.393(2) 0.1601314 0.70(3) 1.1(1)

5 0.88(5) 0.824(10) 0.81(1) −1.84(2) 1.37(1) 0.118172 0.571(3) 1.05(2)

6 1.1(1) 0.82(2) 0.82(2) −2.01(4) 1.34(1) 0.0942019 1
2

1.00(2)

7 1.24(5) 0.823(7) 0.91(5) −2.28(6) 1.33(1) 0.0786752 1
2

1.14(3)

8 1.2(1) 0.85(2)

∞ ~ d
6

5
6 � 0.8333 4

3 � 1.333 ~ 1
2d

1
2 ~ d

6 (?)

FIGURE 3
Plot of finite-size corrections to ground-state energies in bond-
diluted lattice spin glasses (EA). For each dimension d, ground-state
averages eL at increasing system sizes Lwere obtained at a convenient
bond density p. An asymptotic fit (dashed lines) of those data
according to Equation 3 was obtained. The resulting values for the
finite-size correction exponent ω are listed in Table 1 and plotted as
shown in Figure 4, suggesting that Equation 4 holds.
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substantially that heuristics produce little systemic error. Large lattice
sizes L can be achieved, limited only by rare large remainder graphs or
the lack of memory needed to build the original, unreduced EA lattice.
The values for yP thus obtained [14] are also listed in Table 1. Although
the hypothesis for FSCs from Equation 4, ω � 1 − yP/d, leads to large
values for ω when yP < 0 and it becomes hard to test numerically, the
corrections found are well consistent with the hypothesis [15]. In
particular, it appears that 1 − yP/d → 4

3 for d≥ du � 6, which would
be consistent with FSCs in percolating random graphs [47]. Although
this provides an argument that Equation 4 should also hold in themean-
field limit for the EA system in the spin glass phase, the SKmodel might
be a poor representation of that limit for the EA system. In the EA
system, we first let L → ∞ for a fixed number of neighbors 2dp before
d → ∞, while in the SK model, both system size and neighborhood
diverge simultaneously. Unfortunately, sparse mean-field spin glasses on
regular graphs (“Bethe lattices”) appear to have FSCswithω � 2

3 [48], but
those results might depend, to some extent, on the structural details of
the mean-field networks [45, 49, 50], and which structure most closely
resembles a mean-field version of EA at d → ∞ remains unclear.

4 Thermal–percolative
crossover exponents

Having already determined the percolative stiffness exponents
yP in the previous section, we can utilize it to make an
interesting—and potentially experimentally testable—prediction
about the behavior of the phase transition line, as shown in
Figure 1. For diluted lattices at variable bond density p → pc,
Equation 2 generalizes to [51, 52]

σ ΔE( )L,p ~ Y p( )Lyf L/ξ p( )( ). (5)

Here, we assume that Y(p) ~ (p − pc)t ~ ξ−t/] for the surface tension
and ξ(p) ~ (p − pc)−] is the conventional correlation length for
percolation. The scaling function f is defined to be constant for
L≫ ξ(p)≫ 1, where percolation (and hence, ξ) plays no role, and
we regain Equation 2 for p>pc. For ξ≫L≫ 1, Equation 5 requires
f(x) ~ xμ for x → 0 to satisfy σ → 0 with some power of L, needed to
cancel the ξ dependence at p � pc. Thus, μ � −t/], and we obtain yP �
y + μ � y − t/] tomark the L dependence of σ atp � pc, asmentioned
before, which yields t � ](y − yP). Finally, at the crossover ξ ~ L,
where the range L of the excitations σ(ΔE) reaches the percolation
length beyond which spin glass order ensues, Equation 5 provides

σ ΔE( )ξ p( ),p ~ p − pc( )tξ p( )yf 1( ) ~ p − pc( )−]yP . (6)

Associating a temperature with the energy scale of the crossover in
Equation 6 by σ(ΔE)ξ(p),p ~ Tc (since, for T>Tc, thermal
fluctuations destroy order at a length-scale ≪ ξ) leads to

Tg p( ) ~ p − pc( )ϕ, with ϕ � −]yP, (7)

defining [51] the “thermal–percolative crossover exponent”ϕ. All data for
d � 2, . . . , 7 are listed in Table 1, and the results for ϕ are also shown in
Figure 4. It appears that ϕ decreases with increasing d for d≤du � 6, has
a minimum of ϕ � 1 at du � 6, and increases as ϕ � d/6 above du.

Of particular experimental interest is the result for d � 3,
yP � −1.289(6), predicting ϕ � 1.127(5) with ] � 0.87436(46)
[38]. This exponent provides a non-trivial, experimentally

testable prediction derived from scaling arguments of equilibrium
theory at low temperatures (since bond and site percolation are
typically in the same universality class, it should make little
difference whether an experiment varies the site concentration of
atoms with dipolar spin or the bonds between them). Such tests are
few as disordered materials by their very nature fall out of
equilibrium when entering the glassy state. The phase boundary
itself provides the perfect object for such a study. It can be
approached by theory from below and by experiments from
above where equilibration is possible. [53] already provided
highly accurate results for the freezing temperature TM as a
function of dilution x for a doped, crystalline glass,
(La1−xGdx)80Au20, proposing a linear dependence, TM ~ x. The
tabulated data are equally well fitted using Equation 7 in that
regime. [54] determined a phase diagram for
(FexNi1−x)75P16B6Al4, an amorphous alloy, for a wide range of
temperatures T and site concentrations x but did not discuss its
near-linear behavior at low x. A similar phase diagram for the
insulator CdCr2xIn2(1-x)S4 is shown in Figure 1A of [55]. New
experiments dedicated to the limit xaxc should provide the
results of sufficient accuracy to test our prediction for ϕ.

FIGURE 4
Plot summarizing the data for the exponents in Table 1, here
plotted as a function of inverse dimension, 1/d, to highlight the
connection with themean field limit for d≥du � 6 (left vertical line). (B)
refers to the stiffness exponents y in the spin-glass regime (SG in
Figure 1) or yP at pc and T � 0, each presented as 1 − y/d. Included are
also the measured FSC exponents ω, which appear to be consistent
with the conjecture in Equation 4. For stiffness, the y data are quite
consistent with 1 − y/d � 5/6 predicted for d≥du [35] but not with the
FSC ωSK � 2/3 found for SK [44]. The fit of this data (solid line) yields a
lower critical dimension dl ≈ 5

2, where y � 0 (right vertical line). At pc ,
the yP data appear to approach a value of ω � 4/3 expected for the
FSCs of percolating random graphs. In (A), yP is multiplied with the
independent percolation exponent ]to form the thermal–percolative
crossover exponent ϕ that characterizes the behavior of the phase
boundary near pc in Equation 7, see green arrows in Figure 1. It seems
to show a minimum of ϕ ≈ 1 at d � du � 6.
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5 Conclusions

We summarized a collection of simulation data pertaining to
the lattice spin glass EA over a range of dimensions, providing a
comprehensive description of low-energy excitations from
experimentally accessible systems to the mean-field level,
where exact results can be compared with. Putting all those
results side-by-side paints a self-consistent picture of domain
wall excitations, their role in the stability of the ordered glass
state, and their role for finite-size corrections. Extending to the
very physical concept of bond density made simulations in high
dimensions feasible, added accuracy, and opened up the spin-
glass phase diagram, which makes new observables
experimentally accessible, such as the thermal–percolative
crossover exponent.

Going forward, the methods developed here could be extended
to study, say, ground-state entropy and their overlaps [56] or the
fractal nature of domain walls [57, 58]. Our method might also
inspire new ways of using dilution as a gadget to make simulations
more efficient [59].
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