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In the digital era, the significance of cryptographic algorithms has grown
significantly within the realm of cybersecurity. This research presents an
innovative approach to image encryption that eliminates the security
limitations of the conventional one-dimensional logistic mapping. This
approach relies on an enhanced two-dimensional logistic-fraction hybrid
chaotic mapping (2D-LFHCM) and deoxyribonucleic acid (DNA) computing.
Initially, the improved 2D-LFHCM is utilized to effectively scramble the image
by incorporating chaotic sequences. Then, two novel algebraic DNA computing
rules are introduced to enhance diffusion encryption. Experimental findings show
that this approach offers superior security performance, even with renowned
attacks.
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1 Introduction

Chaos, which refers to complex and unpredictable behavior displayed by nonlinear
dynamic systems, is a phenomenon characterized by the inherent unpredictability of
deterministic nonlinear systems. The slightest change in the initial state can lead to
unforeseen results. Chaos is not restricted to a particular domain but can be observed
in various aspects of human society. The profound exploration of chaos has given rise to a
natural problem: what are the potential applications of chaos? This query stands as a
paramount concern not only in the present world but also in the future. As fundamental and
applied sciences progress, chaos theory has evolved into a crucial focal point within the
realm of nonlinear science, blossoming into a discipline that has thrived over the past few
decades. Contemporary electronic engineering and image processing heavily draw upon
chaos theory, utilizing its principles to yield numerous innovative and advantageous
advancements in these fields.

The characteristics of chaos systems include nonlinearity, ergodicity, pseudo-random
behavior, and a high sensitivity to initial conditions. As a result, chaos theory serves as a
solid foundation for the development of excellent image encryption algorithms. However, it
has been observed that employing a single chaotic system often leads to a limited range of
possible encryption keys, thereby rendering the algorithm susceptible to attacks from
malicious entities. Consequently, to ensure the creation of a robust and efficient image
encryption algorithm, researchers frequently integrate chaotic systems with other
disciplines, including the analysis of deoxyribonucleic acid (DNA) sequences [1–4], the
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utilization of optical maps [5,6] or cellular automata (CA) [7,8], the
application of compressed sensing [9,10], and chaotic
circuits [11–17].

Therefore, chaos theory holds immense potential for research
and practical significance in the domain of image encryption. Ever
since R. Matthews [18] introduced a broader logistic map and relied
on it in the data encryption domain, a new era of chaotic systems
generating pseudo-random numbers is beginning. Thus, fresh
impetus is provided to cryptography. Consequently, chaos and
cryptography became intertwined. Subsequently, Alvarez [19]
formulated the fundamental requisites and rules of chaotic
cryptosystems, gaining recognition from experts in the field of
cryptography. Since then, there has been a robust development
regarding chaotic digital image encryption. In 2012, Wang [20]
invented a novel technique employing a traditional logistic map for
the encryption of color images. Nevertheless, the key space induced
by one-dimensional chaos is limited, and the algorithm’s handling of
chaotic sequences is not sufficient, resulting in unsatisfactory
robustness of the algorithm. In an attempt to address this issue,
Wang [21] put the latest method for creating high-dimensional
digital chaotic systems, but the drawback lies in the complexity of
the system structure and the inefficiency of the algorithms. More
recently, Huang [22] proposed a fine-tuned cubic color image
encryption scheme that operates jointly by chaos and hyperchaos.
Its core idea is based on an improved logistic-fraction hybrid chaotic
mapping (LFHCM) proposed to address the limitations of one-
dimensional chaotic mapping and expand the key space. This
mapping is then linked with a four-dimensional hyperchaotic
system to generate the key stream, which is used to rotate and
shift the rows and columns of each component in the red (R), green
(G), and blue (B) channels of the color image. Wang [23] attempted
to accomplish global scrambling by creating a chaotic sequence
using the Lorenz system for binary and Gray code translation.
Remarkably, this algorithm exhibits a favorable encryption effect
on grayscale images. Building upon these advancements, Gao [24]
introduced a multi-image encryption technique founded on single-
channel scrambling, diffusion, and chaotic systems. Performance
investigation validates that this technique demonstrates exceptional
capabilities in ensuring security and achieving efficient encryption
speed. Furthermore, in his study [25], Alexan proposes a method for
encrypting color images. This approach effectively combines KAA
mapping with various chaotic mappings in a synergistic manner.
Notably, this approach maximizes the utilization of Shannon’s
security idea and encrypts the image through bit obfuscation
and diffusion.

However, amidst a plethora of algorithms, our specific interest
lies in encryption methods rooted in chaotic dynamics and
deoxyribonucleic acid (DNA) sequences. The encryption
performance of this algorithm, proposed by Chai [26], is not
only exceptional but also demonstrates the ability to withstand
a range of conventional attacks. In 2018, an image encryption
algorithm was introduced by Wu [27], which employed a
combination of DNA coding and Henon-Sine mapping. To
increase the complexity of the encryption process and
strengthen the algorithm’s security, XOR operations and DNA
coding were added to the diffusion process. In 2020, Patel [28]
introduced a novel algorithm for encrypting images, which
combined DNA coding and a three-dimensional chaotic

mapping technique. In addition to utilizing the idea of eight
complementary encodings for picture encryption, this approach
employed a chaotic sequence to jumble the image. Both of these
algorithms are applicable for encrypting grayscale and color
images. Liu [29] then applies an improved Arnold
transformation to scramble the three components and uses the
DNA sequence generated through the chaotic sequence to conduct
diffusion encryption of the color image. Hua [30] presented an
innovative dynamic image encryption technique that enhanced the
security of image data by utilizing quantum walk and chaos-
induced DNA. Inspired by them, a plagiarism detection method
is presented utilizing an improved two-dimensional logistic-
fraction hybrid chaotic mapping (2D-LFHCM) and DNA
computation. This method incorporates DNA chaotic diffusion
and scrambling techniques.

The organization of this paper is outlined below. Section 2
delves into the 2D-LFHCM and analyzes its chaotic
characteristics. The fundamental principles of encryption and
decoding are covered in Section 3. Section 4 presents the devised
method for key creation as well as the encryption and decryption
methods for DNA images. Section 5 elucidates the numerical
simulation findings of the proposed cryptosystem, supplemented
by a comprehensive exploration of its security analysis.
Ultimately, Section 6 furnishes a thorough recapitulation of
the study’s content and outlines potential directions for
future research.

The main contributions of this paper are highlighted below:

(i) Development of an enhanced two-dimensional logistic-
fraction hybrid chaotic mapping (2D-LFHCM) for image
encryption.

(ii) Design and implementation of novel deoxyribonucleic acid
(DNA) computing techniques in the proposed encryption
method, including right shift addition, right shift subtraction,
right shift XOR, and other DNA computing methods.

(iii) A comprehensive performance analysis of the encryption
algorithm was conducted, including aspects such as
encryption speed, key space, histograms, information
entropy, and correlation coefficients.

2 An improved 2D-LFHCM

2.1 The definition of 2D-LFHCM

Parabolic mapping is a generic term used to describe a kind of
chaotic maps. The classical insect population model (or logistic
mapping, shortly, LM) is represented as Equation 1.

xn+1 � rxn 1 − xn( ), (1)
where r ∈ (0, 4), with initial value x0 ∈ (0, 1). Another classic 2D-
LMM (two-dimensional logistic mixing mapping) [31], is a discrete
chaotic map in two dimensions derived from the traditional logistic
map. The difference equation’s mathematical model is represented
as Equation 2.

xn+1 � t 3yn + 1( )xn 1 − xn( );
yn+1 � t 3xn+1 + 1( )yn 1 − yn( ),{ (2)
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where t is a control parameter, xn and yn denote the state variables
within the iterative process of the difference equation. Compared
with the traditional 2D-LMM, the newly proposed 2D-LM (two-
dimensional logistic mapping) by Ye [32] is a two-dimensional
chaotic mapping with a simpler equation structure. Its model is
described below.

xn+1 � uxn 1 − xn( );
yn+1 � vxn 1 − yn( ).{ (3)

In Equation 3, u and v are the control parameters of the proposed
2D-LM, xn and yn are the state variables, and n is the number of
iteration steps. When u � 3.99 and v � 1.4, starting from (0.1, 0.1),
the 2D-LM demonstrates chaotic behavior.

Based on the original one-dimensional logistic map, the LFHCM
(logistic-fraction hybrid chaotic mapping) derived from the logistic
map and fraction map is proposed by Huang [22]. The fraction
mapping is proposed by Lu et al. [33] to address the practical needs
of multi-objective optimization and multi-model issues. The
definition equation of fraction mapping is Equation 4.

zn+1 � F c, zn( ) � 1
z2n + 0.1

− czn, (4)

where c ∈ (0, 1] is a control parameter, and the output range of all
chaotic sequences zn ∈ [−10.0025, 10.0025]. The definition equation
of LFHCM constructed by combining logistic mapping and fraction
mapping is Equation 5.

xn+1 � L a, xn( ) � axn 1 − xn( )2 × 1
x2
n + 1

, (5)

where a ∈ (0, 11.5] is a control parameter, and the sequence output
value xn ∈ [0, 1.56].

Thanks to their excellent chaotic performance, LM, 2D-LM, 2D-
LMM, and LFHCM are often used as pseudo-random signal
generators in engineering fields such as cryptography and
dynamics. However, LFHCM has not yet been extended to two-
dimensional. The traditional logistic-fraction mapping serves as the
fundamental basis for the 2D-LFHCM described in this study, and
its difference equation is

xn+1 � λxn 1 − xn( )2 × 1
x2
n + 1

;

yn+1 � μxn 1 − yn( )2 × 1
x2
n + 1

,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (6)

where, λ and μ serve as the control parameters, and xn and yn stand
for the state variables. When u � 3.99 and v � 1.4, starting from the
initial point (0.1, 0.1), chaotic behavior is observed in the
2D-LFHCM.

2.2 Analysis and comparison of chaotic
properties of 2D-LFHCM

In the preceding section, different classical maps were defined,
and enhancements were made to the two-dimensional map, referred
to as 2D-LFHCM. This section assesses and compares the chaotic
properties of the following chaotic maps: 2D-LM, 2D-LFHCM, 2D-
LMM, and LFHCM. The study is done from the perspectives of the

phase trajectory diagrams, Lyapunov exponents, bifurcation
diagrams, and chaotic analysis of the iterative sequences. It will
be shown that the improved two-dimensional chaotic map 2D-
LFHCM has better chaotic characteristics.

2.3 Bifurcation diagrams

Assume that the initial conditions of the following four
mappings are (0.1, 0.1), and their control parameters are a, t, u,
and λ, respectively. Then, their bifurcation diagrams are shown in
Figure 1. The bifurcation diagram of 2D-LM is shown in Figure 1A.
When u � 2.99, the system transitions from a period-1 to a period-2
state. At u � 3.464, the system enters a period-4 orbit. When
u � 3.554, the system enters a period-8 orbit and then transitions
into a chaotic orbit. The maximum amplitude of 2D-LM is 2.491.
The bifurcation diagram for the 2D-LMM is presented in Figure 1B.
As the control parameter t increases from 0.9 to 1.19, the trajectory
of point y of 2D-LMM undergoes a transition, shifting from a
periodic orbit to a chaotic orbit, and the maximum amplitude is
0.995. The bifurcation diagram for LFHCM is displayed in
Figure 1C. When a � 5.9, LFHCM enters a chaotic state. The
2D-LFHCM model proposed in this paper, as shown in
Figure 1D, when the control parameters λ � 5.206 and λ � 5.509,
the tangent bifurcation of the mapping occurs, and the obvious
period-2 window and period-4 window are formed, respectively.
Then the mapping forms the period-8 window, and then enters the
chaotic state. Changing the parameter λ, it can be observed that the
mapping has rich nonlinear dynamic phenomena such as period-
doubling bifurcation, tangent bifurcation, periodic window, chaos,
and so on. In addition, it can be seen that whether 2D-LMM or 2D-
LM, the length of the chaotic interval is less than 1, and there are
some glaringly visible blank windows even inside the narrow chaotic
region. It is evident from a comparison of the newly proposed 2D-
LFHCM with the above chaotic maps that it has a broader chaotic
region, a longer chaotic interval, and fewer blank windows. The
comparison of their chaotic intervals is shown in Table 1.Where, the
chaotic region area of 2D-LM is regarded as unit 1.

2.4 Lyapunov exponents spectrum

In general, the Lyapunov exponent is a very important statistical
feature. It characterizes the stability of dynamic systems and can be
used to judge whether the system presents chaotic behavior and the
degree of chaos. The Lyapunov exponent describes the exponential
growth rate of the system under small changes in initial conditions,
which reflects the sensitivity and predictability of the system. To
rephrase, determining the Lyapunov exponent spectrum can aid in
our comprehension of the system’s dynamic behavior, as well as in
determining whether or not chaos exists inside the system and to
what extent. For a discrete chaotic mapping L(x) of dimension m
(see Equation 7),

L x( ):
x1
n+1 � L1 x1

n, . . .x
m
n( );

x2
n+1 � L2 x1

n, . . .x
m
n( );

..

.

xm
n+1 � Lm x1

n, . . .x
m
n( ),

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (7)
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the Lyapunov exponent can be expressed as Equation 8.

LEj � lim
n→∞

1
n
∑n
i�1

ln |λj|, (8)

where j � 1, 2, . . . , m, and λ1, λ2, . . . , λm are them eigenvalues of the
Jacobian matrix of L(x) at the n-th iteration.

Two Lyapunov exponents, LE1 and LE2, correspond to a two-
dimensional discrete chaos mapping. In terms of the Lyapunov
exponent, a system will only exhibit chaotic properties when it has a
positive number of states. Furthermore, the system performs more
chaotically the higher the Lyapunov exponent. Selecting the control

parameters v � μ � 4, the initial point is (0.1, 0.1), Figure 2 shows
the Lyapunov exponents spectrum of three two-dimensional chaotic
maps. The largest Lyapunov exponent (LE1) is shown by the red
line, while the second Lyapunov exponent (LE2) is represented by
the blue line. The comparative analysis reveals that the average
Lyapunov exponent of the 2D-LFHCM introduced in this study
surpasses that of both the 2D-LMM and 2D-LM. Consequently, the
2D-LFHCM exhibits superior chaotic performance. Moreover, the
Lyapunov exponent values within the parameter range of λ for the
2D-LFHCM are predominantly positive, confirming its heightened
suitability for image encryption.

FIGURE 1
The bifurcation diagrams of 2D-LM (A), 2D-LMM (B), LFHCM (C), and 2D-LFHCM (D).

TABLE 1 Comparison of chaotic regions of four chaotic maps.

Chaotic map Chaotic interval Chaotic region area ratio

2D-LM [3.567, 3.738] ∪ [3.749, 3.828] ∪ [3.848, 4] 1

2D-LMM [0.999, 1.089] ∪ [1.089, 1.113] ∪ [1.128, 1.152] ∪ [1.172, 1.189] 1.374

LFHCM [5.569, 6.464] ∪ [6.577, 8.123] ∪ [8.214, 9.274] ∪ [9.461, 11] 1.921

2D-LFHCM [5.583, 6.454] ∪ [6.565, 9.274] ∪ [9.481, 11] 2.441
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2.5 Iteration sequence and phase diagram

For the 2D-LFHCM, with fixed parameters λ � 4.5, μ � 1.4 and
λ � 6, μ � 1.4, the chaotic sequence is obtained after 300 iterations,
as shown in Figure 3. The black curve S1 represents the trajectory
starting from the initial value (0.1, 0.1). The green curve S2
represents the trajectory starting from the initial value
(0.1,−0.1). To make the image clear, the curve of S1 is
intentionally translated upward. From Figure 3B, it becomes
apparent that upon reaching a specific iteration count, the two
running paths become indistinguishable. Indeed, this phenomenon
arises when certain conditions are met by the initial value.

Based on diverse parameters, maps in the specified interval can
generate chaotic effects, resulting in a chaotic phase diagram.
Figure 4 illustrates the chaotic phase portraits of 2D-LMM, 2D-
LM, and 2D-LFHCM under specific conditions (t � 1.19, u � 3.99,
v � 1.4, and λ � 9, μ � 1.4, respectively).

By analyzing the numerical simulation results presented in
Figure 4, it becomes evident that the 2D-LFHCM proposed in
this research exhibits a larger chaotic range in the phase plane
compared to 2D-LMM and 2D-LM. This observation indicates

that the 2D-LFHCM can generate a more diverse range of chaotic
pseudo-random outcomes, thereby enhancing ergodicity. This
improvement is valuable for potential applications, including signal
generation and the utilization of chaotic systems in image encryption.

3 The basic principles of encryption and
decryption

In the field of biology, deoxyribonucleic acid (DNA) stands as a
fundamental biomolecule present within the cells of all organisms,
serving as the genetic material for the majority of living entities. It is
gratifying that DNA also plays an indispensable role in cryptography
[34]. If the nucleotide bases in DNA information are matched to the
binary digits 00, 01, 10, and 11, there are a total of 8 DNA coding
rules [35], each corresponding to its own rules for addition,
subtraction, and XOR operations. DNA primarily achieves the
genetic code through the arbitrary combination of four bases:
adenine (A), cytosine (C), guanine (G), and thymine (T), where
A and T are complementary, C and G are complementary. The
binary numerals 0 and 1, which complement each other, also serve a

FIGURE 2
Lyapunov exponents spectrum of 2d-LMM (A), 2D-LM (B), 2D-LFHCM (C).
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purpose in computers to store information. By leveraging these
characteristics, when implementing DNA’s quaternary encoding
with four bases, there can be a total of eight pairing rules. The
coding table is shown in Table 2.

In a computer, the quaternary system is a digital system based on
the number 4. The four numbers 0, 1, 2, 3, and A, T, C, G one-to-one
mapping. If four bases in DNA are used for four-image coding, there
are a total of eight rules that can be paired with each other. The
coding table is shown in Table 2. Following the rules provided in
Table 2, a 4-digit quaternary number can be directly represented by a
4-length DNA sequence. As an example, the quaternary number
“1320” can be used to represent the decimal 120 Gy value. Since the
numbers 0, 1, 2, and 3 are mapped one by one with A, T, C, and G,
they are eventually converted into TGCA.

The cryptosystem in modern cryptography can be succinctly
denoted as a five-tuple P, C, K, Enc, Dec, where P denotes the
plaintext sequence, C represents the ciphertext sequence, K
embodies the key system, Enc signifies the encryption
algorithm, and Dec denotes the decryption algorithm. The core
idea of modern cryptography involves encrypting a sequence of
plaintext using a designated encryption algorithm. Subsequently,
the encrypted file can be decrypted by the recipient, using a specific
decryption key, to retrieve the original plaintext sequence. Table 3
displays the DNA operation rules, when A = 0, C = 1, G = 2, and
T = 3, of addition “+,” subtraction “−”, exclusive or “xor,” right
shift ‘→’, and left shift “←”.

Mathematically, the well-known technique of the right cyclic
shift involves rearranging a collection of data sequences. The specific
procedure entails relocating the final number to the initial position
and shifting all the remaining elements to the right, aligning them
with their corresponding positions. On the other hand, the left
circulation shift is similar. Throughout the shifting process, the
cyclicity is maintained, ensuring that the removed element reappears
at the opposite end of the sequence.

Let R((s0, s1, . . . , sn−1), k) represents the k-th right cyclic shift,
that is, the right cyclic shift k times. Then,

R s0, s1, . . . , sn−1( ), k( ) � smod 0−k,n( ), smod 0−k,n( )+1 . . . , smod n−1−k,n( )( ).
Correspondingly, L((s0, s1, . . . , sn−1), k) represents the kth left

cyclic shift. Then,

L s0, s1, . . . , sn−1( ), k( ) � smod 0+k,n( ), smod 0−k,n( )+1 . . . , smod n−1+k,n( )( ).
As per the operational guidelines provided in Table 3, DNA left

shift and DNA right shift algebraic operators, grounded in DNA
sequences, facilitate the definition of six DNA algebraic operations.
These include DNA right (left) shift addition, DNA right (left) shift
subtraction, and DNA right (left) shift XOR.

As an illustration, for the DNA operation before the shift and the
DNA right shift XOR, one can get

A, C, G, T( ), A( )4( ) � A,C, G, T( ), 0( ) → A, C, G, T( ) → A,A, A,A( ),
A, C, G, T( ), C( )4( ) � A, C, G, T( ), 1( ) → T,A, C, G( ) → T,C, T, C( ),
A, C, G, T( ), G( )4( ) � A, C, G, T( ), 2( ) → G, T,A, C( ) → G,G, G, G( ),
A, C, G, T( ), T( )4( ) � A,C, G, T( ), 3( ) → C,G, T, A( ) → C, T, C, T( ).

The DNA right shift addition fr+ is expressed as

fr+ �
R+ A,C, G, T( ), A( )4( )
R+ A,C, G, T( ), C( )4( )
R+ A,C, G, T( ), G( )4( )
R+ A,C, G, T( ), T( )4( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
R+ A,C, G, T( ), 0( )
R+ A,C, G, T( ), 1( )
R+ A,C, G, T( ), 2( )
R+ A,C, G, T( ), 3( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ →
A A C C
T C T A
G G G G
C T A T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The DNA right shift subtraction fr− is expressed as

fr− �
R− A,C, G, T( ), A( )4( )
R− A,C, G, T( ), C( )4( )
R− A,C, G, T( ), G( )4( )
R− A,C, G, T( ), T( )4( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
R− A,C, G, T( ), 0( )
R− A,C, G, T( ), 1( )
R− A,C, G, T( ), 2( )
R− A,C, G, T( ), 3( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ →
A A A A
T C G C
G G T T
C T C G

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

FIGURE 3
Two iterative sequences of the 2D-LFHCM for μ � 1.4 (λ � 4.5 (A) and λ � 6 (B), respectively).
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The DNA right shift XOR frX is expressed as

frX �
RX A, C, G, T( ), A( )4( )
RX A, C, G, T( ), C( )4( )
RX A, C, G, T( ), G( )4( )
RX A, C, G, T( ), T( )4( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
RX A, C, G, T( ), 0( )
RX A, C, G, T( ), 1( )
RX A, C, G, T( ), 2( )
RX A, C, G, T( ), 3( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ →
A A A A
T C T C
G G G G
C T C T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

4 Proposed image encryption scheme

This section includes a thorough overview of the important parts
of the encryption mechanism, such as key creation, chaotic DNA
scrambling, and diffusion. Specifically, the scrambling operation
exchanges the position and interference of pixels in the ordinary
image, minimizing the strong correlation between adjacent pixel
values. The pixel data diffusion serves as a critical measure to
enhance security. By integrating scrambling and diffusion, both

FIGURE 4
The phase diagram of 2D-LMM (A), 2D-LM (B), 2D-LFHCM (C) in the x − y plane.

TABLE 2 DNA code table.

Quaternary number Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Rule 7 Rule 8

0 A A T T C C G G

1 C G C G A T A T

2 G C G C T A T A

3 T T A A G G C C
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the position and grayscale value of the pixel are simultaneously
altered, ensuring that the grayscale information of any pixel is
concealed within numerous other pixels.

Let I1 denote a grayscale image of size M × N, where N
represents the number of columns and M is the number of rows.
The encryption and decryption process based on the principles
outlined in Section 3 is detailed below, and the flow chart of the
entire encryption process is shown in Figure 5.

Step 1. Key stream generation.

(i) Let (x1
0, y

1
0) � (0.1, 0.1), (x2

0, y
2
0) � (0.2, 0.2), (x3

0, y
3
0) �

(0.3, 0.3), λ � 6 and μ � 1.4 serve as the initial conditions
and control parameters employed for iterating Equation 6.

(ii) After iterating n0 + 4MN times, three pseudo-random
generated sequences {y1

n0+4MN}, {y2
n0+4MN}, and {y3

n0+4MN}
are obtained separately.

(iii) To eliminate transient effects for increased security, the first
n0 or n0 + 3MN iterations of sequences {y1

n0+4MN},
{y2

n0+4MN}, and {y3
n0+4MN} (where n0 � 800) are discarded.

New sequences y1, y2, and y3, respectively, of length 4MN,
MN, and 4MN are obtained.

(iv) The encrypted chaotic sequence s1 is produced by Equation 9.
The y1 elements are sorted in ascending order,ynew is the newly
formed sequence after sorting, and s1 is the index value of ynew.

ynew, s1[ ] � sort y1( ), (9)
where, the function sort is employed to arrange the data and provide
the corresponding index values.

(v) Generation of the encrypted chaotic sequence s2. By applying
the following Equation 10 to compute the obtained pseudo-
random sequence y2, ensuring that the values of y2 are within
{0, 1, 2, 3}, a new sequence s2 is obtained.

s2 i( ) � floor mod y2 i( ) × 103, 4( )( ), (10)
where i � 1, 2, 3, . . . ,MN, and floor(x) denotes the function that
outputs the largest integer less than x.

(vi) The generation of an encrypted chaotic sequence, referred to
as s3, involves several steps. First, the sequence y3 is
processed using Equation 11 to ensure that the resulting
sequence, denoted as y3*, only consists of values within the
range {0, 1, 2, 3}. Second, the processed sequence y3*
undergoes encoding into a DNA sequence following rule

1 presented in Table 2. Finally, Equation 12 is applied to the
encoded sequence to obtain the desired chaotic sequence,
referred to as s3. In other words, sequence s3 is generated
sequentially from sequence y3*, taking groups of four.

y3* i( ) � mod floor y3 i( ) + 100( )*103( ), 4( ), i � 1, 2, 3, . . . , 4MN,

(11)
s3 j( ) � y3* 4j − 3: 4j( ), j � 1, 2, 3, . . . ,MN. (12)

Step 2. DNA encoding of the original image.

(i) Let I1 be a grayscale image with dimensions M × N.
(ii) Reshape the original image I1 of size M × N into a 1 × MN

vector I2.
(iii) Encode each pixel value of I2 into a 4-bit quaternary number,

transforming vector I2 into a quaternary matrix I3 of size
1 × 4MN.

(iv) The DNA image I4, with a size of 1 × 4MN, is produced by
encoding each element of the image I3 into quaternary,
which corresponds to the four nucleotides A, C, G, and T
depending on rule 1 in Table 2.

Step 3. DNA chaotic confusion and diffusion.

(i) To initiate the initial chaotic confusion, the following
Equation 13 is employed to disrupt the positions of I4.

I5 i( ) � I4 s i( )( ), i � 1, 2, 3, . . . , 4MN. (13)

(ii) The sequence I5 is extracted and grouped consecutively into
sets of four. This new sequence is then denoted as I6, as
illustrated in Equation 14.

I6 i( ) � I5 4i − 3: 4i( ), i � 1, 2, 3, . . . , 4MN. (14)

(iii) The implementation of the DNA diffusion operation
between the DNA sequence I6 and the key DNA
sequences s2 and s3 are conducted using Equation 15.

I7 i( ) �
R+ I6 i( ), A( )4( ) � R+ I6 i( ), 0( ) if s2 i( ) � 0;
L− I6 i( ), C( )4( ) � L− I6 i( ), 1( ) if s2 i( ) � 1;
RX I6 i( ), G( )4( ) � RX I6 i( ), 2( ) if s2 i( ) � 2;
LX I6 i( ), T( )4( ) � LX I6 i( ), 3( ) if s2 i( ) � 3,

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (15)

(iv) To further scramble the positions, we employ the method
presented in (i), which is Equation 16 in this case, to disrupt

TABLE 3 DNA operation rules table.

Addition Subtraction Exclusive or Right shift Left shift

+ A C G T − A C G T xor A C G T A C G T → A C G T ←

A A C G T A A C T G A A C G T A C G T A A C G T A

C C A T G C C A G T C C A T G T A C G C T A C G C

G G T C A G G T A C G G T A C G T A C G G T A C G

T T G A C T T G C A T T G C A C G T A T C G T A T
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the position of I7, effectively achieving the second chaotic
scrambling.

I8 i( ) � I7 s i( )( ), i � 1, 2, 3, . . . , 4MN. (16)

(v) Following rule 1 in Table 2, every nucleotide A, C, G, and T in
the diffused DNA image I8 is decoded into a quaternary
number, resulting in an encrypted quaternary image I9 of size
1 × 4MN.

(vi) Encoded as integer values in the range of 0–255 for every
4 bits, these values are then transformed into a grayscale
cipher image I10 with dimensions 1 × MN.

Step 4. Cipher image.
The gray cipher image I10, which is 1 × MN in size, is reshaped

into a gray cipher image I11 with dimensions M × N.
The image decryption process closely mirrors the

encryption procedure, involving the sequential inversion of
steps utilized in encryption and relying on the application of
a cryptographic key. Similarly, if DNA right shift addition is

utilized in the encryption phase, it would be reversed in the
decryption phase.

5 Performance evaluation

In this section, various images (such as Lena, Onion, and
Cameraman) will be utilized to evaluate the performance of the
proposed cryptosystem based on image statistical performance and
security analysis. All experimental results were calculated using
MATLAB 2018b on a compatible computer with Windows 10,
8.00 GB RAM, and Intel (R) Core (TM) i5-7300HQ CPU @
2.50 GHz. Figure 6 displays the encryption performance of the
proposed cryptographic system. Each part begins with a row
displaying the plain image, followed by the encrypted image, and
concludes with the decrypted image, from left to right. The second
line exhibits histograms for both the plain and encrypted images.We
have documented all experimental data in a table, which provides
evidence of the outstanding capabilities of our cryptographic system
in effectively addressing various security and statistical risks.

FIGURE 5
Flowchart of the encryption process (where the picture of Lena is sourced from [38]).
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FIGURE 6
The original images, encrypted images, decrypted images, and histograms of the original and encrypted images of Lena (A), Onion (B), and
Cameraman (C), respectively (where the pictures of Lena, Onion, and Cameraman are sourced from [38], [43], and [27], respectively).
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5.1 Key space analysis

The extent of the key space in an image encryption scheme is a
pivotal factor in determining its security. The key space
encompasses all authorized keys for the scheme. Evidently, an
expanded key space augments the scheme’s resilience against
exhaustive attacks, thereby ensuring an elevated level of security
for the encrypted image algorithm. As a general rule, if the key space
exceeds 2100 ≈ 1030, the encryption mechanism becomes impervious
to brute force attempts. In this paper, the encryption scheme’s initial
key comprises two control parameters, namely, λ and μ, along with
two initial values, x0 and y0. By adhering to the Institute of Electrical
and Electronic Engineers’ (IEEE) recommendation of using 64-bit
double-precision numbers, the key space for this scheme can
amount to (1015)4 � 1060. This immense value far surpasses 1030,
thereby ensuring that the image encryption scheme presented in this
study possesses a suitably extensive key space, affording it robust
protection against severe attacks.

5.2 Time cost and speed analysis

A superior encryption scheme should not sacrifice encryption
time but instead strive to minimize it while ensuring security. In
certain application scenarios, such as image transmission, real-time
performance is paramount. This necessitates that encryption
algorithms be capable of completing data encryption within a
short timeframe to ensure real-time transmission. The average
encryption time for the aforementioned grayscale images of size
256 × 256 were calculated and compared with several established
encryption algorithms, including DNA encoding or S-box. The
amount of data of a gray image with a size of 256 × 256 is about
512 Kbit, so the encryption speed can be obtained. All results are
presented in Table 4. It can be observed from the table that the
proposed solution exhibits the shortest encryption duration,
indicating its superior encryption efficiency.

5.3 Histogram analysis

During everyday practical use, there is a potential risk of theft or
attack on encrypted images while they are being transmitted. Thus, it
becomes crucial to assess both the statistical properties and security
of these encrypted images. One of the most basic and intuitive
techniques for examining the frequency distribution in plaintext and
encrypted images is histogram analysis. Examining the histogram is
instrumental in assessing the performance of the encryption
algorithm. In case the histogram of the encrypted image exhibits

an even or irregular distribution, it indicates that the statistical
characteristics have been concealed or destroyed, suggesting that the
encryption algorithmmight be more efficient. If the histogram of the
ciphertext image displays noticeable characteristics or exhibits a
notably dissimilar distribution pattern compared to that of the
plaintext image, it could indicate potential vulnerabilities in
information leakage or the encryption algorithm. Such
observations are valuable in identifying encryption issues and
enhancing the encryption scheme. In Figure 6, the histograms for
various images (Lena, Onion, and Cameraman) can be observed.
From an intuitive perspective, it becomes apparent that encrypted
images exhibit a uniform histogram, while the histograms of
plaintext images vary. If the histogram of encrypted images
exhibits an approximately uniform distribution, indicating a lack
of discernible regularity in pixel value distribution, it signals the
heightened robustness of the encryption scheme against
statistical attacks.

5.4 Chi-square analysis

Non-uniformly distributed pixel values can imply that there are
some specific features or structures in the image, which may make it
easier for the encrypted image to infer some information from the
histogram, thereby compromising the encryption’s security level.
On the contrary, when pixel values are uniformly distributed,
potential intruders are prevented from extracting reliable
information from the histogram, because the histogram lacks
discernible peaks or features, indicating that the image’s
statistical characteristics are to some extent concealed.
Consequently, inferring information about the original image
from the histogram becomes challenging.

The χ2 statistic (one-sided hypothesis test) is frequently
employed to quantify the difference between the two in terms of
quantity. Chi-square represents a statistical method utilized to
measure such differences. If the frequency distribution of a given
set of samples is denoted by fi, i � 1, 2, . . . , n, the theoretical
frequency distribution is assumed to be gi, i � 1, 2, . . . , n.
Assumption H0: The sample comes from the theoretical
distribution. When H0 is assumed to hold Equation 17,

χ2 � ∑n
i�1

fi − gi( )2
gi

, (17)

is called the Pearson χ2 statistic and obeys the χ2 distribution with
n − 1 degrees of freedom.

Given the image dimensions as M × N, we posit that the pixel
frequency fi associated with each gray value in the histogram

TABLE 4 Comparison of encryption time of different algorithms.

Encryption algorithm Time cost (units in s) Encryption speed (units in Kbit/s)

Proposed in this paper 0.4753 1077.2144

Reference [38] 0.4862 1053.0646

Reference [39] 3.6240 141.2804

Reference [40] 0.5683 900.9326
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conforms to a uniform distribution. At this time,
gi � g � MN/256, i � 0, 1, 2 . . . , 255, then,

χ2 � ∑255
i�0

fi − gi( )2
gi

� ∑255
i�0

fi − MN
256( )2

MN
256

� 1
256

∑255
i�0

256fi −MN( )2
MN

.

(18)
Equation 18 obeys the χ2 distribution with a degree of freedom of
255. The significance level α is given such that
P χ2 P χ2α(n − 1){ } � α, that is, the null hypothesis H0 is accepted
when χ2 < χ2α(n − 1). In instances where the level of significance
α � 0.01, α � 0.05, and α � 0.1, the degree of freedom is 255, the χ2

distribution value χ20.01(255) � 310.457, χ20.05(255) � 293.248, and
χ20.1(255) � 284.336.

The generally used significance level is α � 0.05. An
encrypted image with a chi-square score of χ20.05(255) �
293.248 indicates a highly uniform pixel distribution. Table 4
presents the chi-square scores for various encrypted images,
namely, Lena, Onion, and Cameraman, demonstrating that the
pixel values of our proposed encryption scheme are evenly
distributed between 0 and 255 in different rounds of
encryption. As a consequence, the ciphertext histogram
exhibits an even distribution, suggesting that the image

encryption method employed in this study demonstrates
increased resilience against statistical attacks. The outcomes
of the χ2 test can be found in the provided Table 5.

5.5 Information entropy

The unpredictability of image information is reflected in
information entropy. It is widely accepted that higher entropy
corresponds to increased uncertainty, greater disorder within the
information, and reduced visual information. The calculation
formula for information entropy can be expressed as
Equation 19.

H � −∑L
i�0

p i( )log2p i( ), (19)

where, L represents the gray level of the image, and p(i) denotes the
probability of gray level i.

For a randomly generated grayscale image with a gray level of
L � 256, the theoretical information entropy value H is 8. The
information entropy is computed for plain images of Lena,
Onion, Cameraman, and their corresponding encrypted

TABLE 5 The entropy values and scores of the original images and encrypted images of Lena, Onion, and Cameraman, respectively.

Images P/E Size Information entropy Chi-square score

Lena Plain 256 × 256 7.4508 4.0523 × 104

Lena Encrypted 256 × 256 7.9997 278.7568

Onion Plain 256 × 256 7.3426 6.8641 × 104

Onion Encrypted 256 × 256 7.9971 262.9375

Cameraman Plain 256 × 256 7.1048 9.8781 × 104

Cameraman Encrypted 256 × 256 7.9984 264.9377

TABLE 6 Results of the correlation coefficient between original and encrypted images of Lena, Onion, and cameraman in various directions.

Images Direction Plain image correlation Encrypted image correlation

Lena Horizontal 0.9757 0.0021

Lena Vertical 0.9552 0.0102

Lena Main diagonal 0.9229 0.0006

Lena Secondary diagonal 0.9372 −0.0148

Onion Horizontal 0.9926 0.0032

Onion Vertical 0.9934 −0.0179

Onion Main diagonal 0.9840 0.0056

Onion Secondary diagonal 0.9892 0.0228

Cameraman Horizontal 0.9596 0.0339

Cameraman Vertical 0.9284 0.0003

Cameraman Main diagonal 0.8921 −0.0164

Cameraman Secondary diagonal 0.9076 −0.0063
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versions. The results of the calculations are presented in Table 5,
revealing that the information entropies of encrypted images
closely approach 8. This suggests that encrypted images exhibit a

more advantageous random distribution. Therefore, the
encryption method proposed by us exhibits strong resistance
to entropy-based attacks.

FIGURE 7
The first row of the three sets of images Lena (A), Onion (B), and Cameraman (C), from left to right, are the original images and the correlation of
adjacent pixels of the original images in the horizontal, vertical, and diagonal direction, respectively. The second row is the same, only for their encrypted
images. (The pictures of Lena, Onion, and Cameraman are sourced from [38], [43], and [27], respectively).
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5.6 Correlation

Evaluating the correlation properties of both the original and
encrypted images is essential, complementing the analysis of the
image’s histogram and information entropy. Neighboring pixels
in the horizontal, vertical, main diagonal, and sub-diagonal
directions exhibit a strong correlation in the original image.
The objective of image encryption algorithms is to minimize
the correlation between adjacent pixels in the encrypted image,
providing a defense against statistical attacks. A correlation value
of zero is ideal. This study randomly samples 2000 pairs of
neighboring pixels along the horizontal, vertical, main
diagonal, and secondary diagonal directions from both the
plain and encrypted images. In this study, 2000 pairs of
adjacent pixels are randomly selected from both the original
and encrypted images in the horizontal, vertical, main diagonal,
and secondary diagonal directions. The correlation coefficient
between the two adjacent pixels can be computed by applying
Equation 20.

E x( ) � 1
N

∑N
i�1

xi;

D x( ) � 1
N

∑N
i�1

xi − E x( )( )2;

cov x, y( ) � 1
N

∑N
i�1

xi − E x( )( ) yi − E y( )( );
rxy � cov x, y( )�����

D x( )√ �����
D y( )√ ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

whereN is the number of pixel pairs, x and y denote the gray values
of two adjacent pixels, E(x) is the mean value, D(x) represents
variance, cov(x, y) stands for covariance, and rxy is correlation
coefficient of x and y. The correlation coefficients for both plain and
encrypted images of Lena, Onion, and Cameraman in the
horizontal, vertical, main diagonal, and secondary diagonal
directions are presented in Table 6.

The correlation between adjacent pixels in the original and
encrypted images of Lena, Onion, and Cameraman is depicted in
Figure 7 for the horizontal, vertical, and main diagonal directions

(from left to right). The experimental results indicate a lack of
significant correlation between neighboring pixels in the encrypted
images, in contrast to the noticeable correlation present in the
original images. The efficacy of the encryption system described
in this study is highlighted by this conclusion. It’s important to note
that these results are obtained after only a single round of
encryption. If multiple encryptions are performed, the effect may
be more significant.

5.7 Comparison and analysis

The algorithm in this paper is used to encrypt and test the
performance of image Lena, and compared with other encryption
algorithms. The test results of other algorithms are directly quoted
from the corresponding papers. The comparison results are shown
in Table 7. It can be observed that the performance difference of
adjacent pixel correlation analysis of each algorithm is small. In
terms of information entropy and other resistance to statistical
attacks and encryption speed, the algorithm in this paper has
better performance, indicating that the algorithm in this paper
has better security.

6 Conclusion

The hybrid image encryption method described in this paper
integrates DNA computing theory with the improved 2D-LFHCM.
Furthermore, the security, histogram, correlation coefficient, and
information entropy aspects of the proposed scheme are examined
to demonstrate its rationality. Numerical simulations demonstrate
the notable efficacy of the image encryption technique introduced in
this study.

A feasible idea for future work is to apply the proposed
method to multi-image encryption [24,36], which can improve
efficiency while ensuring security. Another possibility is to
combine encryption with quantum technology. In light of the
advancements in quantum information technology, numerous
technologies have been proposed to enhance traditional image
encryption algorithms. The exponentially accelerating

TABLE 7 Comparison of encryption performance of different algorithms (Lena, and size: 256 × 256).

Algorithm Adjacent pixel correlation Information entropy Time cost Encryption speed

Horizontal Vertical Diagonal

Proposed in this paper 0.0021 0.0102 0.0006 7.9997 0.4753 1077.2144

Reference [25] −0.0017 −0.0009 −0.0019 7.9962 0.9170 558.3424

Reference [39] −0.0031 0.0084 −0.0007 7.9971 — —

Reference [38] 0.0068 −0.0054 0.0010 7.9967 0.4862 1053.0646

Reference [41] −0.0036 0.0026 0.0012 7.9995 0.9510 538.3807

Reference [42] −0.0006 −0.0057 0.0009 7.9938 — —

Reference [43] 0.0013 0.0002 0.0033 7.9972 — —

Reference [44] 0.0105 −0.0023 0.0052 7.9997 — —

Note: Bold font indicates the best result in each column. “-” indicates that the reference did not record this test result for the Lena image.
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capabilities of quantum technology, as opposed to traditional
computing, are critical for mitigating the vulnerability of
encryption algorithms to decipherment. To harness the
potential benefits of combining quantum computing with
conventional image encryption approaches, Hua Hua et al.
[30] came up with dynamic image encryption via quantum
walks and chaos-induced DNA to boost image security. Wen
Wen and Lin [37] analyzed the security of an existing image
encryption algorithm based on quantum chaotic map and DNA
coding (QCMDC-IEA), and proposed a low-complexity attack
method, which provides some theoretical tips and suggestions for
improving the security of the system based on DNA coding and
chaotic image encryption. Our upcoming study aims to
investigate the potential synergy between quantum walking
and the recently proposed DNA computing principles to
develop an innovative encryption method. This novel
approach is expected to enhance the security measures for
image encryption, thus carrying significant implications.
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