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With the continuous progress of information acquisition technology, the volume
of LiDAR point cloud data is also expanding rapidly, which greatly hinders the
subsequent point cloud processing and engineering applications. In this study, we
propose a point cloud simplification strategy utilizing probabilisticmembership to
address this challenge. The methodology initially develops a feature extraction
scheme based on curvature to identify the set of feature points. Subsequently, a
combination of k-means clustering and Possibilistic C-Means is employed to
partition the point cloud into subsets, and to simultaneously acquire the
probabilistic membership information of the point cloud. This information is
then utilized to establish a rational and efficient simplification scheme. Finally, the
simplification results of the feature point set and the remaining point set are
merged to obtain the ultimate simplification outcome. This simplificationmethod
not only effectively preserves the features of the point cloud while maintaining
uniformity in the simplified results but also offers flexibility in balancing feature
retention and the degree of simplification. Through comprehensive comparative
analysis across multiple point cloud models and benchmarking against various
simplification methods, the proposed approach demonstrates superior
performance. Finally, the proposed algorithm was critically discussed in light
of the experimental results.
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1 Introduction

In modern robotics applications, the utilization of 3-Dimensional (3D) maps of
environments is widespread. However, the substantial storage demands inherent in
dense 3D maps necessitate point cloud simplification for efficient storage and
transmission [1]. This process involves condensing intricate LiDAR point clouds while
retaining essential spatial information, enabling streamlined data handling and facilitating
seamless integration into various robotic applications.

Moreover, beyond mere storage considerations, point cloud simplification offers
significant advantages for subsequent data processing endeavors. By reducing the
complexity of the point cloud representation, computational tasks such as object
recognition, path planning, and navigation become more expedient and resource-
efficient. This streamlined data structure not only enhances the operational efficiency of
robots but also contributes to the overall robustness and reliability of autonomous systems
in dynamic environments [2].
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In essence, LiDAR point cloud simplification stands as a
fundamental technique in modern robotics, bridging the gap
between the rich spatial information captured by sensors and the
practical constraints of computational resources and real-world
application demands [3]. Its role in facilitating efficient storage,
seamless data processing, and enhanced robotic performance
underscores its indispensability in advancing the capabilities and
applicability of robotic technologies across diverse domains.
Therefore, there is an urgent need for various effective point
cloud simplification solutions to address this issue.

From a topological perspective, solutions for point cloud
simplification can be broadly classified into two categories: grid-
based and point-based methods. Historically, grid-based methods
[4] had been widely preferred; however, these approaches require
grid reconstruction, resulting in significant computational resource
utilization. As a result, point-based simplification techniques have
gradually gained popularity, particularly for handling large-volume
point cloud data in contemporary scenarios. In point-based
simplification methods, preserving the geometric features of the
point cloud is of utmost importance. Martin et al. [5] proposed a
uniform grid down-sampling method; however, this approach does
not consider the retention of feature points. Consequently, the
simplified point cloud may lose the intricate details of the
surface. To address this limitation, Lee et al. [6] introduced the
use of normal deviation as feature information based on uniform
meshing. Similarly, Alexa et al. [7] presented a simplified method
that relies on moving least squares fitting, but it also falls short in
retaining surface feature points. Song et al. [8] improved Alexa’s
method by introducing surface feature detection. In addition, there
are several clustering-based simplification methods [9–12]. These
methods mostly combine one or more feature information, such as
normal, curvature, and information entropy, to effectively preserve
the geometric features of point clouds.

In recent years, researchers have introduced methods
utilizing Laplacian graphs [13–15] to streamline point clouds.
While these approaches achieve effective simplification, they
often come with high computational complexity. Additionally,
several deep learning-based methods for point cloud
simplification or sampling have been proposed [16–18] for
specific tasks such as classification, registration, and
recognition. For instance, a recent study introduced an
innovative sampling method based on skeleton-aware learning
[19], which employs the object’s skeletal information as prior
knowledge to better preserve its geometric shape and topological
structure during the sampling process. However, these methods
continue to face challenges in balancing uniformity with feature
preservation.

For the optimal simplification solution, we believe it needs to
meet several key requirements [20]: controllability of simplification
ratio, preservation of geometric features, and uniform distribution of
the results. Upon reviewing the aforementioned methods, we found
that earlier approaches focused primarily on achieving uniform
point distribution after simplification, whereas more recent
methods tended to emphasize the preservation of point cloud
geometric features. The controllability of the simplification ratio
determines the method’s versatility. Therefore, our goal is to develop
a simplification technique that balances these three critical
requirements.

To meet these requirements, this paper proposes a point cloud
simplification strategy based on probabilistic membership. This
approach employs the Z-score model to standardize the
curvature of the point cloud, facilitating the assessment of the
feature information. Following the scoring process, the point
cloud is categorized into feature and non-feature subsets.
Subsequently, the two point clouds are subclustered using
k-means and Possibilistic C-Means (PCM) [21], and probabilistic
membership is obtained. Based on probabilistic membership, we
develop a hierarchical subcluster simplification scheme. The
simplified results of all subclusters are combined to produce the
final output. While maintaining the detailed features of the point
cloud and the uniformity of simplification outcomes, the proposed
algorithm allows users to adjust the level of point cloud reduction
and geometric feature retention.

In summary, the main contributions of this study are as follows:

1. We developed a feature selection scheme based on curvature
and Z-score models, effectively isolating feature points within
the point cloud to facilitate subsequent processing.

2. We proposed a hierarchical subcluster simplification approach
based on probabilistic membership. By integrating
probabilistic membership into subcluster division, this
method ensures reasonable and uniform simplification
results while offering flexible control over the
simplification ratio.

Additionally, we validated the feasibility and effectiveness of the
proposed approach through theoretical analysis and
experimental results.

The paper is organized as follows: Section 2 presents the
proposed algorithm and related theory. Section 3 discusses the
algorithm’s parameter settings and presents the experimental
comparison analysis. Lastly, Section 4 provides a summary of
the paper.

2 Simplification strategy utilizing
probabilistic membership

In this section, we focus on two key components of the proposed
point cloud reduction strategy: the extraction of feature point clouds
from the original point cloud, and the point cloud reduction
algorithm based on probabilistic membership. After that, we will
explain how the simplification scheme can achieve complete point
cloud simplification around these two core parts. The detailed
contents are as follows.

2.1 Feature extraction of the point cloud

To preserve the geometric characteristics of the point cloud, it is
essential to extract the feature point cloud from the original point
cloud. We opted to utilize the curvature metric as it is a commonly
used method. Considering the tight computing resources during
large-scale point cloud processing, we employed the K-Nearest
Neighbors (KNN) [22] search to obtain neighborhood
information. By integrating this neighborhood information with
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principal component analysis (PCA) [23], we were able to efficiently
estimate the curvature of the point cloud. Subsequently, based on the
curvature information, feature points were selected based on their
deviation from the neighborhood’s average curvature, which was
quantified using the Z-score model [24]:

Z � C − μ

δ

where C represents the curvature of a 3D point, μ is the average
curvature in the neighborhood of this point, and δ is the standard
deviation of curvature in this neighborhood. The aim of applying
z-score is to measure how many standard deviations the original
data differs from the overall mean of the data. After calculating the
Z-score for each point in the point cloud, a suitable deviation
threshold Zth is chosen. Points with scores exceeding this
threshold and high curvature are then identified as feature
points. We set a proportion of high curvature points to
determine high curvature points.

2.2 A point cloud hierarchical simplification
algorithm based on probabilistic
membership

At this stage, we introduce the PCM clustering method for
decomposing point clouds into subclusters and emphasize the
acquisition of probabilistic membership for each subcluster.
Then, a hierarchical subcluster simplification scheme is proposed.
The ultimate result is the aggregate of the simplified outcomes of
each subcluster.

2.2.1 Acquisition of probabilistic membership
Probabilistic membership is a key concept in the context of the

PCM clustering algorithm, which represents an advancement of the
classic Fuzzy C-Means (FCM) [25] clustering algorithm. The PCM
algorithm aims to cluster a given point cloud P (P ∈ RN×3) by
optimizing the following objective function:

J μ, v( ) � ∑
N

i�1
∑
C

j�1
μij pi − vj

���� ����2

+∑
C

j�1
ηj∑

N

i�1
μij log μij − μij( )2

s.t.
0≤ μij ≤ 1

where vj denotes the prototype for the jth cluster, μij is the
probabilistic membership degree of the point pi (pi ∈ P)
belonging to the jth cluster, ‖•‖ denotes the Euclidean distance.
Furthermore, ηj is a customizable constant, which can generally be
expressed as:

ηj �
∑N
i�1
μij pi − vj

���� ����2

∑N
i�1
μij

In the iterative process of objective function minimization, the
update formulas for the prototype and probabilistic membership are
as follows:

vj �
∑N
i�1
μijpi

∑N
i�1
μij

μij � exp − pi − vj
���� ����2

ηj

⎧⎨
⎩

⎫⎬
⎭

In order to minimize computational expense, we employ
minibatch k-means [26] clustering to derive the ultimate
prototype matrix. Subsequently, we utilize the formula in PCM
to compute the probabilistic membership. Concurrently, the point
cloud is partitioned into numerous subclusters, with the maximum

FIGURE 1
An overall model: main processing phases.
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probabilistic membership degree of each point serving as an index.
To simplify the subcluster simplification task, parallelization with
multiple threads can be implemented to enhance the
algorithm efficiency.

2.2.2 Subcluster simplification based on maximum
probabilistic membership

For established subclusters, we have developed a hierarchical
simplification scheme. This scheme applies the maximum
probabilistic membership of subcluster members to the prototype
to systematically obtain the outermost member points of the
subcluster. The specific operations are as follows:

1) The data points are arranged based on their maximum
probabilistic membership.

2) A threshold percentage rout is set, and data points within this
threshold are identified as outer points.

3) The k-means clustering method is applied to the outer points,
and the nearest point to the cluster center is selected as
the output.

4) The same operations are repeated for non-outer points within
the subcluster until a specified number of subcluster members
(Nth) is reached.

5) The results from each iteration are consolidated to obtain the
simplified output of the subcluster.

In the above process, we opted to persist with k-means clustering
due to its high efficiency and reliable performance. Moreover, prior
to initiating each iteration, it is imperative to pre-calculate the
quantity of output points in order to effectively regulate the
simplification ratio.

2.3 The overall structure of the proposed
simplified solution

The overall structure of the proposed simplification scheme is
shown in Figure 1. The feature point extraction and main
simplification processes correspond to the parts 2.1 and
2.2 mentioned earlier in Section 2. The simplification scheme
divides the final output into two parts: the simplified results of
the feature point cloud and the simplified results of the remaining
point cloud. The remaining points refer to the points in the original
point cloud that are left after the feature point cloud is simplified.

The input parameters of the algorithm mainly consist of the
original point cloud, the simplification ratio, and the feature
preservation ratio rf. By adjusting rf, users can effectively
control the degree of feature preservation. Additionally, the
simplification ratio of the remaining point cloud can be
calculated based on the simplification ratio and the feature
preservation ratio.

3 Experimental studies

In this study, we applied the proposed methodology, conducted
data visualization, and estimated errors, all of which were
programmed using MATLAB. All experimental datasets are

sourced from the point cloud dataset built by Stanford University
[27]. In the following content, the parameter settings and result
images of each stage of the proposed algorithm will be displayed, as
well as the final comparative experiment.

3.1 Experimental parameter settings

In our experiments, the proposed algorithm involves multiple
stages, each involving specific parameter values. These parameters
and their experimental values are listed in Table 1.

3.2 Comparison of the experimental results

In this section, we present a simplified example that illustrates
the proposed method. We also conducted a comparative analysis of
various down-sampling methods to assess the effectiveness of the
proposed algorithm. The compared methods included random
down-sampling (RD), uniform grid down-sampling (UG) [5],
Laplacian graphs (LG) [2], and a simplification algorithm based
on a partitioning strategy (PS) [28]. Next, we analyzed the
performance of the proposed method from two aspects of
simplified results: the surface reconstruction model [29] and
average geometric error [30].

In Figure 2, we show the original point cloud and the extracted
feature point cloud of the rabbit model. When the simplification

TABLE 1 Simulation parameters.

Parameter Value

Number of neighbors in KNN search (K) 15

Z-score threshold in feature extraction (Zth) 0.6

Proportion of high curvature points 30%

Number of clusters (C) 5–150

Proportion of outer subclusters (rout) 60%

Number of subcluster members before iteration terminates (Nth) 80

Default feature point reduction ratio (rf) 40%

FIGURE 2
Original point cloud and the extracted feature point cloud of the
bunny model.
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rate is 10%, we compared the simplification results of different
rf. In Figure 3, the value of rf on the left is 0.4, and the value
of rf on the right is 0.1. Upon analysis of Figure 3, it is evident
that the image on the left, with a higher rf value, exhibits a
greater number of details, particularly in the depiction of ears.
The image on the right describes more of the overall

distribution. Users can freely set the rf value according to
their needs.

We evaluated the proposed method and the aforementioned
methods using both bunny and horse models. Four reduction rates
(10%, 20%, 30%, and 40%) were employed for the comparative
analysis. Due to the limitations of UG and PS in controlling the
reduction rate, we had to consistently adjust the parameters to
approximate the desired reduction rate. The average geometric error
for each method is illustrated in Figure 4. After analyzing the figure,
we discovered that the average geometric error of the proposed
method is significantly lower than that of other methods under
different reduction rates. Specifically, when the reduction rate is low,
methods like PS and LG, which are able to retain features,
demonstrate poor performance. This can be attributed to their
inability to adequately control the proportion of feature points,
leading to an excess retention of feature points which subsequently
impacts the uniformity of the results. This observation indirectly
emphasizes the substantial advantages of our algorithm in achieving
uniform results. Similarly, the UGmethod focuses more on ensuring
the uniform distribution of the simplified point cloud. However,
when the simplification rate is high and the resulting point cloud
contains a sufficient number of points, the description of fine details
becomes more critical, and the advantages of UG become less
pronounced.

To assess the extent of feature retention, we employed the
aforementioned method to simplify the Armadillo model at a
20% reduction rate. Subsequently, the simplified point clouds
were used to reconstruct mesh models, with the results depicted
in Figure 5. Through comparative analysis of the reconstruction
models of the original point cloud, we discovered that the
reconstruction performance of RD was inadequate. This was
attributed to its emphasis on speed, which led to a lack of detail
and uniformity in the simplified results. In the case of UG, its focus
on ensuring uniformity in the simplified results produced a
relatively smooth reconstruction model, but the details of the
armadillo’s leg muscles appeared blurry. PS utilized curvature as
feature information, resulting in a reconstruction model better at
retaining sharp features, such as the curve of the armadillo’s
forehead. However, the details on the thighs remained
insufficiently clear. LG excelled in retaining detail, but exhibited
noticeable roughness in flat areas. The proposed method’s
reconstruction model outperforms other methods in terms of
feature retention. Moreover, it exhibits good smoothness in
flat areas.

In summary, the method described in this study offers a flexible
and controllable reduction rate and effectively ensures the uniform
distribution and retention of features in the reduction results.
Additionally, our approach allows for parameter adjustment to
modify the level of feature retention in the point cloud, catering
to varying requirements. These advantages are particularly evident
in the comparative experiments.

However, the superior performance comes at the cost of
increased computational complexity. Specifically, when processing
large-scale point clouds, the process of obtaining probabilistic
membership after clustering can result in substantial
computational costs. To mitigate this issue, specialized data
structures or parallel processing strategies can be employed to
reduce runtime and enhance the algorithm’s efficiency.

FIGURE 3
Simplification results of the bunny model.

FIGURE 4
Average geometric error for each method (A) bunny (B) horse.
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4 Conclusion

This study introduces a hierarchical point cloud simplification
strategy based on probabilistic membership. This scheme first
simplifies the feature point cloud independently to preserve
geometric features, and then simplifies the remaining points. In
this process, a neighborhood curvature deviation model was
designed to identify feature points, and probabilistic membership
was introduced in subsequent simplifications as the basis to divide
the point cloud into subclusters. For subclusters, we propose a
hierarchical simplification algorithm based on probabilistic

membership characteristics, aiming to control the number of
output points while achieving uniform distribution.

In the control experiments, the proposed method effectively
preserves geometric features while maintaining uniform distribution
of output points. Additionally, it offers flexibility in adjusting the
reduction rate and feature retention rate to cater to user preferences.
In future work, we plan to further investigate the adaptive
optimization of parameter selection, such as the number of
clusters, and explore strategies to reduce computational overhead.
We also welcome constructive feedback to help continuously refine
and improve our research.

FIGURE 5
Mesh models with the simplified point clouds (A) original data (B) RD (C) UG (D) PS (E) LG (F) proposed method.
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