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We show that the notion of critical droplets is central to an understanding of
the nature of ground states in the Edwards–Anderson–Ising model of a spin
glass in arbitrary dimensions. Given a specific ground state, we suppose that
the coupling value for a given edge is varied with all other couplings held fixed.
Beyond some specific value of the coupling, a droplet will flip, leading to a new
ground state; we refer to this as the critical droplet for that edge and ground
state. We show that the distribution of sizes and energies over all edges for a
specific ground state can be used to determine which of the leading scenarios
for the spin glass phase is correct. In particular, the existence of low-energy
interfaces between incongruent ground states, as predicted by replica symmetry
breaking, is equivalent to the presence of critical droplets, whose boundaries
comprise a positive fraction of edges in the infinite lattice.
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1 Introduction

The nature of the low-temperature phase of the Edwards–Anderson (EA)
Hamiltonian [1] in finite dimensions

HJ = − ∑
<x,y>

Jxyσxσy (1)

remains unresolved. Here, σx = ± 1 is the Ising spin at site x, and ⟨x,y⟩ denotes a nearest-
neighbor edge in the edge set𝔼d of the d-dimensional cubic latticeℤd. The couplings Jxy are
taken to be independent, identically distributed continuous random variables chosen from
a distribution ν(dJxy), with random variable Jxy assigned to the edge ⟨x,y⟩. Our requirements
on ν are that it be supported on the entire real line, distributed symmetrically about 0, and
has finite variance; e.g., a Gaussian with mean 0 and variance 1. We denote a particular
realization of the couplings by J.

There are, at present, four scenarios for the spin glass phase that are consistent both
with numerical results and, as far as is currently known, mathematically consistent: replica
symmetry breaking (RSB) [2–12], droplet-scaling [13–17], trivial–non-trivial spin overlap
(TNT) [18, 19], and chaotic pairs [10, 20–22]. One of the central open questions in spin
glass theory is which (if any) of these scenarios is correct and for which dimensions and
temperatures.
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Thedifferences among the four scenarios at positive temperature
are described elsewhere [12, 23, 24]; here, we are concerned with
their different predictions at zero temperature, i.e., for the ground-
state structure of the EA Hamiltonian. Of the four, two (RSB and
chaotic pairs) predict the existence of many ground states, and the
other two (droplet-scaling and TNT) predict the existence of only
a single pair [17, 25, 26]. Although important, these differences are
less fundamental than the nature of the interfaces that separate their
ground states from their lowest-lying long-wavelength excitations.
The presence or absence of multiplicity of ground states follows as a
consequence of the nature of these excitations.

In this paper, we focus on the nature of low-energy long-
wavelength excitations above the ground state and how they relate
to ground state stability, with a view toward distinguishing different
predictions of the four scenarios. Aside from elucidating the
different (and potentially testable) predictions of these scenarios,
determining the stability properties of the ground state is crucial in
determining the low-temperature properties of the spin glass phase,
including central questions such as multiplicity of pure states and
the presence or absence of an Almeida-Thouless (AT) line [27]. We
begin by defining the parameters of the study.

A finite volume ΛL was chosen corresponding to a cube of side L
centered at the origin. A finite-volume ground state σL is the lowest-
energy spin configuration in ΛL, which is subject to a specified
boundary condition. An infinite-volume ground state σ is a spin
configuration on all of ℤd, which is defined by the condition that
its energy cannot be lowered by flipping any finite subset of spins.
(σ is always defined with respect to a specific J, but we suppress its
dependence for notational convenience.) The condition for σ to be a
ground state is then

ES = ∑
⟨x,y⟩∈S

Jxyσxσy > 0, (2)

where S is any closed surface (or contour in two dimensions)
in the dual lattice. The surface S encloses a connected set of
spins (a “droplet”), and ⟨x,y⟩ ∈ S is the set of edges connecting
spins in the interior of S to spins outside S. The inequality in
Equation 2 is strict because, by the continuity of ν(dJxy), there is
zero probability of any closed surface having exactly zero energy
in σ. The condition in Equation 2 must also hold for finite-volume
ground states for any closed surface completely inside ΛL. It is then
not hard to show that an alternative (and equivalent) definition,
which we also use sometimes, is that an infinite-volume ground
state is any convergent limit of an infinite sequence of finite-volume
ground states. Given the spin-flip symmetry of the Hamiltonian, a
ground state, whether of finite or infinite volume, generated by a
spin-symmetric boundary condition, such as free or periodic, will
appear as one part of a globally spin-reversed pair; we therefore
refer generally to ground state pairs (GSPs) rather than individual
ground states.

2 Interfaces and critical droplets

An interface between two infinite-volume spin configurations
α and β comprises the set of edges whose associated couplings are
satisfied in α and unsatisfied in β, or vice versa; they separate regions
in which the spins in α agree with those in β from regions in which

their spins disagree. An interface may consist of a single connected
component ormultiple disjoint ones, but (again using the continuity
of the coupling distribution) if α and β are ground states, any such
connected component must be infinite in extent.

Interfaces can be characterized by their geometry and energy.
They can either be “space-filling,” meaning they comprise a
positive density of all edges in 𝔼d, or zero-density, in which the
dimensionality of the interface is strictly less than the dimension d.
Ground states are called incongruent if they differ by a space-filling
interface [28, 29].

Interfaces can also differ by how their energies scale with
volume. The energy might diverge (though not monotonically)
as one examines interfaces contained within increasingly larger
volumes, or it might remain O(1), independent of the volume
considered. We will denote the former as a “high-energy interface”
and the latter as a “low-energy interface.”

An excitation above the ground state is any spin configuration
obtained by overturning one or more spins in the ground state
(while leaving an infinite subset of spins in the original ground
state intact); therefore, an interface is the boundary of an excitation.
We are primarily interested in excitations consisting of overturning
droplets of large, or possibly infinite, size; because an interface is
the boundary of such an excitation, the energy of the excitation is
simply twice the interface energy. An excitation above a ground state
may itself be a new ground state (this would require the excitation to
involve overturning an infinite number of spins such that Equation 2
remains satisfied). Indeed, as proven elsewhere [9], an excitation
having a space-filling interface with the original ground state may
generate a new ground state entirely.

With this in mind, we present the four low-temperature
spin glass scenarios in Table 1, which illustrates their various
relationships (and clarifies why we consider these four scenarios
together).

As shown elsewhere [9], the existence of space-filling interfaces
in the first row scenarios (RSB and chaotic pairs) implies the
presence of multiple GSPs, whereas droplet-scaling and TNT both
predict a single GSP [9, 25, 26, 28, 29].

Remarks on Table 1. The droplet-scaling scenario predicts a
broad distribution of (free) energies for a minimal energy compact
droplet of diameter O(L), with a characteristic energy growing as Lθ

with θ > 0 in dimensions where a low-temperature spin glass phase
is present. The distribution is such that there exist droplets of O(1)
energy on large length scales, but these appear with a probability
falling off as L−θ as L→∞. In contrast, both the RSB and TNT
scenarios require droplets with O(1) energy to appear with positive
probability bounded away from 0 on all length scales. Thus, the
droplet-scaling scenario is shown in the second column of Table 1.

We now focus on the concepts of flexibility and critical droplets,
which were introduced by Newman et al. [30, 31] and whose
properties were described extensively in [24] (see also [26, 32]).
Here, we only summarize their main features. We first provide some
definitions (all with respect to some fixed coupling realization J):

Definition 2.1: (Newman et al. [24]) Consider the GSP σL for
the EA Hamiltonian (Equation 1) on a finite-volume ΛL with
boundary conditions chosen independently of J (for specificity, we
always use periodic boundary conditions (PBCs) in this paper).
Choose an edge bxy = ⟨x,y⟩ with x,y ∈ ΛL, and consider all closed
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TABLE 1 Four scenarios described in the text for the low-temperature
phase of the EAmodel, categorized in terms of interface geometry (rows)
and energetics (columns). The column headings describe the energy
scaling along the interface of the minimal long-wavelength excitations
above the ground state predicted by each. Adapted from Figure 1 of [23].

Low-energy High-energy

Space-filling RSB Chaotic pairs

Zero-density TNT Droplet-scaling

surfaces in the dual-edge lattice 𝔼
∗
L , which includes the dual edge

b
∗
xy. From Equation 2 and the continuity of the couplings, these all

have distinct positive energies. There then exists a closed-surface
∂D(bxy,σL), passing through b

∗
xy, with least energy in σL. We call

∂D(bxy,σL) the critical droplet boundary of bxy in σL and the set of
spins D(bxy,σL) enclosed by ∂D(bxy,σL) the critical droplet of bxy in
σL.

Remarks. Critical droplets are defined with respect to edges
rather than associated couplings to avoid confusion, given that we
often vary the coupling value associated with specific edges, while
the edges themselves are fixed, geometric objects.

We define the energy E(D(bxy,σL)) of the critical droplet of bxy
in σL to be the energy of its boundary as given by Equation 2:

E(D(bxy,σL)) = ∑
<x,y>∈∂D(bxy,σL)

Jxyσxσy. (3)

Definition 2.2: (Newman et al. [24]) The critical value of the
coupling Jxy associated with bxy in σL is the value of Jxy, where
E(D(bxy,σL)) = 0, while all other couplings in J are held fixed.

We next define the flexibility f(Jxy,σL):

Definition 2.3: (Newman et al. [24]) Let Jxy be the value of the
coupling assigned to the edge bxy in coupling realization J and
Jc(bxy,σL) be the critical value of bxy in σL. We define the flexibility
f(bxy,σL) of bxy in σL to be f(bxy,σL) = |Jxy − Jc(bxy)|.

Remarks. The critical value Jc of an edge bxy with coupling value
Jxy is determined by all couplings in J, except Jxy. Because couplings
are chosen independently from ν(dJxy), it follows that the value Jxy is
independent of Jc. Therefore, given the continuity of ν(dJxy), there is
zero probability in a ground state that any coupling has exactly zero
flexibility.

It follows from the definitions above and Equation 3 that

f (bxy,σL) = E(D(bxy,σL)) .

Therefore, couplings which share the same critical droplet have
the same (strictly positive) flexibility.

A rigorous definition of critical droplets and flexibilities
within infinite-volume ground states requires use of the excitation
metastate, whose definition and properties are presented in [26, 30,
31, 33]. Here, we simply note that finite-volume critical droplets and
their associated flexibilities converge with their properties preserved
in the infinite-volume limit, for reasons presented in [24]. This
result would be trivial if all critical droplets in infinite-volume
ground states were finite. However, it could also be that critical
droplets can be infinite in extent in one or more directions, in

which case metastates can be used to define such unbounded
critical droplets which enclose an infinite subset of spins: they
are the infinite-volume limits of critical droplets in finite-volume
ground states.

3 Classification of critical droplets

In [24], critical droplets in infinite-volume ground states were
classified according to the size of their boundary ∂D(bxy,σ), which
is the relevant factor in associating the presence of a given type of
critical droplet with one of the scenarios in Table 1. We simplify
the nomenclature used in that paper by focusing on three different
kinds of critical droplets. Let |∂D(bxy,σ)| denote the number of edges
in the critical droplet boundary. A finite critical droplet is one in
which |∂D(bxy,σ)| < ∞; in two and more dimensions, this implies
that the critical droplet D(bxy,σ) itself consists of a finite set of spins
and thus can be completely contained within some finite volume.
(A 1D chain is an exception: here, the critical droplet boundary
of any edge consists of that edge alone, but the associated critical
droplet consists of a semi-infinite chain of spins.) If these are the only
type of critical droplets present, then the distribution of their sizes
becomes important in answering fundamental questions involving
edge disorder chaos and ground-state structure [26]. It is not hard
to show that in any dimension, an EA ground state must contain at
least a positive density of edges with finite critical droplets (whereas
in 1D, this is the case for all edges).

There are two kinds of critical droplets with |∂D(bxy,σ)| = ∞.
The first class includes those with infinite boundary ∂D(bxy,σ)
having a lower dimensionality than the space dimension d; that is,
the critical droplet boundary is infinite but zero-density in 𝔼d. We
refer to these as zero− density critical droplets (ZDCDs). (a finite
critical droplet boundary also has zero density in 𝔼d, but we reserve
the term “ZDCD” to apply only to critical droplets with an infinite
boundary.)

Finally, there is the possibility that there exist infinite number
of critical droplets whose boundary has dimension d, i.e., ∂D(bxy,σ)
comprises a positive density of edges in 𝔼d. We refer to these as
space-filling critical droplets (SFCDs). These critical droplets have
boundaries that pass within a distance O(1) of any site in ℤd; i.e.,
the closest distance from any site in ℤd to ∂D(bxy,σ) is essentially
independent of the location of the site.

Because our ground states are chosen from the zero-temperature
PBC metastate (denoted κJ), we can adapt a result from [25, 34, 35],
which is described below:

Theorem 3.1: Let σ denote an infinite-volume spin configuration.
Then, for almost every (J,σ) pair at zero temperature (which restricts
the set of σs to ground states corresponding to particular coupling
realizations J), and for any type of critical droplet (finite, zero-
density, or positive-density), either a positive density of edges in σ
has a critical droplet of that type or else no edges do.

The method of proof of this theorem is essentially identical to
that used in [25, 35] and so will be omitted here. The conclusion is
that there is zero probability that a ground state σ chosen from κJ
has a (finite or infinite) set of edges with zero density in 𝔼d and has
SFCDs (or finite critical droplets or ZDCDs).
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4 Critical droplets and replica
symmetry breaking

In [24], it was shown that there is a close connection between
critical droplets and the four scenarios shown in Table 1. However,
the results obtained were incomplete for the most prominent of the
four scenarios, namely, replica symmetry breaking. In particular,
it was proven there that the existence of SFCDs was a sufficient
condition for some pairs of incongruent ground states to be
separated by space-filling low-energy interfaces, hereafter referred to
simply as “RSB interfaces” in accordancewith Table 1.However, they
were not shown to be necessary. This paper aimed to complete the
correspondence between critical droplets and spin glass scenarios by
demonstrating that the presence of SFCDs is not only sufficient but
also a necessary condition for RSB interfaces to be present.

4.1 Sufficient condition

We first discuss the sufficient condition, which was
derived in [24] as Theorem 8.2.

Theorem 4.1: (Newman et al. [24]). If a GSP σ chosen from κJ has
a positive fraction of edges with SFCDs, then σ will have an RSB
interface with one or more other GSPs in κJ.

We reproduce the proof from reference [24] below.
Proof. In each finite-volume ΛL, an arbitrary edge was chosen

uniformly at random within 𝔼L (the edge set restricted to ΛL), and
the excited-state τL generated by flipping its critical droplet was
considered (with J remaining fixed).

By assumption, the procedure defined above has a positive
probability of generating a positive-density critical droplet, in which
case the size of the interface boundary between τL and σL scales as Ld.
By the usual compactness arguments, the set of interfaces between
the τLs and σLs will converge to limiting space-filling interfaces
between σ and τ, the infinite-volume spin configurations to which
σL and τL converge along one or more subsequences of ΛLs. By
construction, the energy of the interface in any volume is twice the
flexibility of the chosen edge and must decrease with L, so in the
infinite-volume limit, the energy of the generated interface between
τ and σ remains O(1) in any finite-volume subset of ℤd.

Using this procedure, one such edge b1 was chosen in 𝔼L,
which has an SFCD in σL. By definition, the critical droplet is the
lowest-energy droplet generated by changing an edge’s coupling
value past its critical value. Then, Equation 2 is satisfied in τL for
all closed contours or surfaces, except those passing through b1.
Next, a fixed cube (a “window”) centered at the origin whose edgew
satisfies 1≪ w≪ L was considered. Because b1 is chosen uniformly
at random within ΛL, it will move outside any fixed window with
probability approaching one as L→∞; therefore, Equation 2 will
be satisfied within any fixed window for τ itself. Consequently, τ is
also an infinite-volume GSP of the Hamiltonian (Equation 1) with a
positive-density low-energy interface with σ. ⋄

4.2 Necessary condition

In [24], it was shown that a necessary condition for the existence
of RSB interfaces was the presence of at least one of two kinds of

edges. The first of these consists of edges having SFCDs, and the
second includes edges without SFCDs, but which lie in the critical
droplet boundary of a positive density (in 𝔼d) of other edges. Next,
we show that the second kind of edge is not needed and the presence
of SFCDs is by itself a necessary condition. To do this, we use
the concept of a metastate; an extensive introduction and review
can be found in [12]. Here, we simply note that a metastate is a
probabilitymeasure on the thermodynamic states of the system. Two
different constructions can be found in [20, 36]. Without reference
to various constructions, a metastate satisfies three properties: first,
it is supported solely on the thermodynamic states of a given
Hamiltonian generated through an infinite sequence of volumes
with prespecified boundary conditions (such as periodic, free, or
fixed). Second, it satisfies the property of coupling covariance,
meaning that the set of thermodynamic states in the support of
the metastate does not change when any finite set of couplings
are varied. That is, correlations in the thermodynamic states
may change, but every thermodynamic state in the metastate is
mapped continuously to a new one as the couplings vary; no
thermodynamic states flow into or out of the metastate under a
finite change in couplings. Third, the metastate satisfies translation
covariance, that is, a uniform lattice shift does not affect the
metastate properties.

Using the properties of metastates, Arguin et al. [37] proved the
following result for the EA Ising model:

Theorem 4.2: [37]. An edge correlation function ⟨σxσy⟩, which
differs with positive probability in two distinct metastates κ1 and
κ2 was assumed. A thermodynamic state Γ1 with the support of κ1
and similarly a thermodynamic state Γ2 with the support ofκ2 was
chosen. FL(Γ1,Γ2) denoted the free energy difference between Γ1 and
Γ2 within the restricted volume ΛL ∈ ℤd. Then, there is a constant
c > 0 such that the variance of FL(Γ,Γ′) with respect to varying the
couplings inside ΛL satisfies

Var(FL (Γ,Γ′)) ≥ c|ΛL|. (4)

In [34, 35], the authors extended these ideas to a new kind of
metastate called the restricted metastate. The idea behind restricted
metastates is to start with a conventional metastate, which was
constructed using an infinite sequence of volumes with PBCs (κJ).
Next, a pure state (call it ω) randomly from κJ was chosen, and
then only those pure states in κJ whose edge overlap falls within a
narrow prespecified range were retained. The edge overlap between
two Gibbs states α and α′ is defined to be

q(e)αα′ = lim
L→∞

1
d|ΛL|
∑
⟨xy⟩∈EL

⟨σxσy⟩α⟨σxσy⟩α′ . (5)

where EL denotes the edge set within ΛL. This will generate a
non-trivial metastate if κJ contains multiple “incongruent” pure
states as predicted by RSB, i.e., pairs of pure states whose edge
overlap is strictly smaller than their self-overlap. By choosing
different prespecified overlaps, one can construct different restricted
metastates that satisfy the conditions of Theorem 4.2, leading to the
conclusion that the variance of free energy fluctuations increases
linearly with the volume considered.

However, this can be done (so far) only at positive temperature
because of the requirement of coupling covariance. It was shown
in [35] (Lemma 4.1) that at positive temperature q(e)αα′ was invariant
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with respect to a finite change in couplings. However, it is not
necessarily the case that this is true for ground states because of
the possibility of the existence of SFCDs. But it is also clear from
Equation 5 that if SFCDs do not exist, then any finite change
in couplings can affect only a zero density of edge correlations
σxσy (with x and y nearest neighbors) in either α or α′, now
understood to refer to infinite-volume ground states. In this case,
q(e)αα′ again remains invariant under any finite change in couplings,
coupling covariance is satisfied, and Theorem 4.2 can now be
applied.

Now if RSB interfaces exist, then there must be ground states in
the support of κJ, which are mutually incongruent. Moreover, the
magnitude of the energy of an interface (as measured from either α
or α′) in ΛL equals half the energy difference between α and α′ inside
ΛL. But, as shown in Equation 4, the interface energy between α and
α′—or any other pair of ground states chosen from κJ—scales with
L (typically as Ld/2); see also Proposition 6.1 in [36]. The conclusion
is that no pair of ground states in the support of κJ can differ by an
RSB interface if SFCDs exist.We have therefore proved themain new
result of this paper:

Theorem4.3: If ground states in the support of the PBCmetastate κJ
have no edges with SFCDs, then RSB interfaces between two ground
states are absent in the metastate.

Following the discussion in Section 12 of [35], we also have the
following corollary:

Corollary 4.4: If ground states in the support of the two-
dimensional zero-temperature PBC metastate κJ have no edges with
SFCDs, then the metastate is supported on a single pair of spin-
reversed ground states.

5 Discussion

Replica symmetry breaking predicts that there exist space-
filling, low-energy interfaces between ground states in three and
higher dimensions.We have shown that this prediction is equivalent
to the presence of SFCDs for a positive density of edges in 𝔼d

in a typical ground state; that is, the presence of SFCDs is both
a necessary and sufficient condition for the appearance of RSB
interfaces. A stronger conclusion can be drawn in two dimensions,
where ground state multiplicity relies on SFCDs: if they are absent,
the zero-temperature PBC metastate κJ is supported on a single pair
of spin-reversed ground states.

Where does this leave the other three scenarios appearing
in Table 1? Like RSB, the chaotic pair scenario also predicts the
appearance of multiple incongruent ground states separated by
space-filling interfaces, but unlike RSB, the interface energy in
chaotic pairs scales with L. To address this scenario, we require
the following quantities, introduced in [24]. Let K

∗
(b,σ) denote the

number of edges in𝔼d whose critical droplet boundaries in ground-
state σ pass through the edge b. Then, for k = 1,2,3,…, P(k,σ)
is defined to be the fraction of edges b ∈ 𝔼d such that K

∗
(b,σ) =

k, and let

Eσ [K∗] =
∞

∑
k=1

k P (k,σ) . (6)

That is, Eσ[K
∗
] is the average number of edges whose critical

droplet boundaries a typical edge belongs to in the GSP σ. Using
results from this paper, Equation 6, and [24], we conclude that
if SFCDs are absent and (a positive fraction of) ground states
in κJ are characterized by Eσ[K

∗
] =∞, then the chaotic pair

scenario should hold.
It follows that neither RSB nor chaotic pairs will hold if Eσ[K

∗
] <

∞, which follows if P(k,σ) falls off faster than k−(2+ε) for any ε > 0
as k→∞. If this is the case, then κJ is supported on a single pair
of spin-reversed ground states and either droplet-scaling or TNT
should hold.
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