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An environment interacting with a quantum system can enhance transport
through the suppression of quantum effects responsible for localization. In
this paper, we study the interplay between bulk dephasing and a linear
potential in a boundary-driven tight-binding chain. A linear potential induces
Wannier-Stark localization in the absence of noise, while dephasing induces
diffusive transport in the absence of a tilt. We derive an approximate expression
for the steady-state current as a function of both dephasing and tilt which closely
matches the exact solution for a wide range of parameters. From it, we find that
the maximum current occurs for a dephasing rate equal to the period of Bloch
oscillations in the Wannier-Stark localized system. We also find that the current
displays a maximum as a function of the system size, provided that the total
potential tilt across the chain remains constant. Our results can be verified in
current experimental platforms and represents a step forward in analytical studies
of environment-assisted transport.
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1 Introduction

The quantum features of an open system interacting with a macroscopic environment
are inevitably destroyed in a process known as decoherence [1–3]. However, the notion that
the environment is always detrimental for quantum processes–such as information
processing and transport–has been challenged for more than a decade, prompted by
investigations of quantum effects in biological systems [4–7]. It is now understood that the
environment can assist energy transport in non-interacting quantum systems [4–12], an
effect which has been experimentally verified in quantum networks of photons [13, 14],
trapped ions [15, 16] and superconducting circuits [17]. Although several mechanisms for
environment-assisted quantum transport have been proposed and debated [6, 7, 9], a clear
mechanism is at play in localized quantum systems–when destructive interference
responsible for localization and transport suppression is destroyed by the environment,
quantum transport is enhanced. This is indeed the expected impact of environmental
coupling on Anderson and Wannier-Stark localization. In Anderson localized systems,
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quantum transport is suppressed as a consequence of lattice disorder
[18]. On the other hand, Wannier-Stark localization occurs in the
presence of a linear lattice potential such as an electric field [19–21];
in this case, coherent (Bloch) oscillations take place within the
region of localization [19, 22–24]. Despite the fact that Wannier-
Stark localized systems subject to noise have been investigated
[25–28], the literature on this subject is still scarce.

Environment-assisted transport can also affect the non-
equilibrium transport properties of many-body quantum systems.
A common approach to evidence this effect is to drive the quantum
system to a non-equilibrium steady state by high temperature
reservoirs located at the boundaries [29, 30]. The dephasing
effect of the environment renders the transport diffusive, which
has been shown to enhance the steady-state current in boundary-
driven systems with disorder [31–33] or quasi-periodicity [34] and
to modify the transport properties of systems with long-range
hopping [35]. Moreover, Markovian boundary-driven non-
interacting systems are amenable to analytical treatment even in
the presence of dephasing, with exact and approximate solutions of
steady-state quantities available for tight-binding chains [31, 32,
36, 37].

In this paper, we study dephasing-assisted transport in a
boundary-driven, tight-binding chain with a linear potential. We
make use of a steady-state ansatz elaborated in Refs. Žnidarič [31];
Žnidarič and Horvat [32]; Žnidarič [36] to numerically access the
relevant steady-state quantities for up to one thousand chain sites.
By performing a minimal approximation, we derive an analytical
expression for the steady-state current which matches the exact
dynamics for a vast range of parameters. From it, we find that the
current is maximized at a dephasing rate equal to the period of Bloch
oscillations in a Wannier-Stark localized system. We also find that
the current displays a maximum as a function of the system size,
provided that the total potential tilt across the chain is kept constant.
Our results present a significant contribution in the analytics of
environment-assisted transport and can be experimentally verified
in several platforms.

The paper is organized as follows. In Sec. 2 we introduce the
model and the steady-state ansatz used in our study. In Sec. 3 we
present and discuss our results for dephasing-assisted transport. In
Sec. 4 we present the conclusion and outlook of our work. The
Supplementary Material contains technical details referenced
throughout the main text.

2 Setup

2.1 The model

We study a non-interacting, one-dimensional lattice of L sites
with Hamiltonian given by the XX model

H � J∑L−1
j�1

σxj σ
x
j+1 + σyj σ

y
j+1( ) +∑L

j�1
εjσ

z
j . (1)

In Equation 1 {σxj , σyj , σzj }Lj�1 are Pauli matrices, J is the hopping

term and εj is a local field which will be specified shortly. In order to
induce a non-equilibrium state in the system, we couple the
boundary sites to high-temperature reservoirs with different

chemical potentials; in addition, each site is also exposed to its
own local reservoir which induces dephasing. All the reservoirs are
assumed to be ideal and couple weakly to the system. The dynamics
of the system’s density operator ρ(t) at time t is given by the
Lindblad master equation [2, 3, 30].

dρ t( )
dt

� − i

Z
H, ρ t( )[ ] + ∑

α�l,r,d
Lα ρ t( )[ ]. (2)

Here the superoperator Lα describes dissipation induced by the
reservoirs α � l, r, d corresponding to left boundary, right boundary
and dephasing, respectively. It is a sum of local Lindblad jump
operators of the form

Lα ·[ ] � ∑
j,β

Lαβ
j · Lαβ†

j − 1
2

Lαβ†
j Lαβ

j , ·{ }, (3)

where j in Equation 3 labels the site acted on by the reservoir α and β
labels different jump operators on that same site. The effect of each
boundary reservoir (α � l, r) is represented by two jump operators

Ll±
1 �

								
Γ 1 ± f( )

2

√
σ±1 , Lr±

L �
								
Γ 1 ∓ f( )

2

√
σ±L, (4)

where Γ in Equation 4 is the coupling rate at the boundaries, f is the
chemical potential bias and σ±j � (σxj ± iσyj )/2. For forward bias
(0≤f≤ 1) excitations are mostly created on the first site and
annihilated on the last site; the opposite reasoning applies for
reverse bias (−1≤f≤ 0). In order to describe the effects of
dephasing, we consider L jump operators acting on individual
sites as if each of them were coupled to its own reservoir

Ld
j �

	
γ

2

√
σzj , j � 1, 2, . . . , L, (5)

where γ in Equation 5 is the dephasing rate.
The key observables in the system are the magnetization and its

associated current. We denote by 〈A〉(t) ≡ Tr[Aρ(t)] the
expectation value of an observable A at time t. Differentiating
with respect to time and using Equation 2 yields a continuity
equation (see Supplementary Material for more details)

d〈σzj〉 t( )
dt

� 〈Ij−1〉 t( ) − 〈Ij〉 t( ) + δj,1Γ f − 〈σzj〉 t( )[ ]
− δj,LΓ f + 〈σzj〉 t( )[ ], (6)

involving the expectation value of the magnetization current 〈Ij〉(t)
flowing from j to j + 1, where Equation 7

Ij � 2J
Z

σxjσ
y
j+1 − σyj σ

x
j+1( ) (7)

defines the corresponding current operator. Note that the dephasing
reservoir does not change the average magnetization and therefore
does not contribute explicitly to Equation 6, although it still affects
the average magnetization and currents implicitly. Moreover, the
boundary reservoirs do not contribute to the expression of the
current in the bulk of the chain.

When the steady state is reached, the left-hand side of Equations
2, 6 vanishes. We denote by 〈A〉∞ ≡ Tr[Aρ(∞)] the expectation
value of A at the steady state ρ(∞). From Equation 6 we obtain
Equations 8–10 for the steady-state current:
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〈I1〉∞ � Γ f − 〈σz1〉∞( ), (8)
〈Ij−1〉∞ � 〈Ij〉∞, j � 2, 3, . . . , L − 1 (9)

〈IL−1〉∞ � −Γ f + 〈σzL〉∞( ). (10)
This current is uniform across the chain, with its value dictated by
the average magnetization at the boundaries; from now on, we
remove the subscript and denote it simply by 〈I〉∞. In the absence of
any bias (f � 0), the boundary reservoirs induce an infinite
temperature (maximally-mixed) steady state ρ(∞) � I/2L, in
which the values of magnetization and current all vanish.

2.2 Steady-state ansatz

In order to study the transport properties of the model at the
steady state, both numerically and analytically, we make use of a
perturbative ansatz characterized by an expansion in terms of
potential bias f as [31, 32, 36].

ρ � 1
2L

I + f H + B( ) +O f2( )[ ], (11)

H � ∑L
r�1

∑L+1−r
j�1

h r( )
j H r( )

j , (12)

B � ∑L
r�2

∑L+1−r
j�1

b r( )
j B r( )

j , (13)

where h(r)j and b(r)j where in Equations 11–13 are expansion
coefficients, and the corresponding operators are given by
Equation 14

H 1( )
j � −σzj ,

H r( )
j � σxjZ

r−2( )
j+1 σxj+r−1 + σyj Z

r−2( )
j+1 σyj+r−1 , r≥ 2

B r( )
j � σxjZ

r−2( )
j+1 σyj+r−1 − σyj Z

r−2( )
j+1 σxj+r−1 , r≥ 2.

(14)

These operators are thus strings of Pauli matrices starting at
site j and having length r, where Z(r−2)

k+1 � σzk+1σ
z
k+2 . . . σzk+r−3σ

z
k+r−2

are strings of Pauli z matrices of length r − 2. The defining
characteristic of this ansatz is that all operators in the
expansion are orthogonal according to the Hilbert-Schmidt
inner product 〈A, B〉 ≡ Tr[A†B]. This implies that the
expectation values of H(r)

j and B(r)
j are exactly determined

within first order in f. In particular, H(1)
j and B(2)

j are
respectively proportional to the magnetization and current

〈σzj〉∞ � −fh 1( )
j , 〈Ij〉∞ � f

4Jb 2( )
j

Z
. (15)

Once we determine the first order expansion coefficients h(r)j

and b(r)j , we have access to the exact current and magnetization
profile, as dictated by Equation 15 [32, 36, 38, 39]. In order to obtain
them, we insert Equation 11 into Equation 2 and set the left-hand
side to zero as demanded at stationarity (see Refs. Žnidarič [31];
Žnidarič and Horvat [32] and Supplementary Material for more
details). This gives rise to a set of equations for the coefficients.

ZΓ 1 + h 1( )
1( ) − 4Jb 2( )

1 � 0, (16)
ZΓ 1 − h 1( )

L( ) − 4Jb 2( )
L−1 � 0, (17)

b 2( )
j − b 2( )

j−1 � 0, j � 2, . . . , L − 1, (18)

for r � 1. Note that Equations 16–18 just express the fact that the
current is uniform in the steady state, with its value dictated by the
boundary reservoirs as discussed before. For r≥ 2 we have.

J h r−1( )
j − h r−1( )

j+1 + h r+1( )
j − h r+1( )

j−1[ ] + εj − εj+r−1( )h r( )
j

+ Z γ + Γ
4

δj,1 + δj+r−1,L( )[ ]b r( )
j � 0, (19)

J b r−1( )
j − b r−1( )

j+1 + b r+1( )
j − b r+1( )

j−1[ ] + εj − εj+r−1( )b r( )
j

− Z γ + Γ
4

δj,1 + δj+r−1,L( )[ ]h r( )
j � 0. (20)

In total, Equations 16–20 are a closed set of L2 coupled equations
and will be the starting point of our study. This set of equations is
equivalent to a Lyapunov-type equation for the correlation matrix in
the presence of dephasing [32]. Instead of the exponential scaling
with the system size, the quadratic scaling makes the problem
computationally tractable. Moreover, as we show below, it also
allow us to find analytical expressions for the current under
some mild assumptions.

3 Dephasing-assisted transport

We now discuss separately the effect of the tilt and dephasing
on the transport properties of the model, while their interplay is
addressed in the next section. The bias f of each reservoir at the
boundaries induces transport along the chain. Intuitively, a similar
effect is expected in the presence of an electric field which
increases/decreases at each site at a rate U, or tilt between
neighbour sites. If the tilt decreases from left to right, the local
potentials are

εj � −Uj. (21)

Setting the bias to f � 1 drives excitations in the same direction
(see Figure 1). Note that changing the sign off inverts the sign of the
current and magnetization, while changing the sign of U
affects neither [39].

Since the tilt U represents the energy difference between nearest
neighbours in the chain, the total tilt V � U(L − 1) represents the
difference in energy across the whole chain. This quantity diverges in
the thermodynamic limit, so that a physically meaningful analysis
requires fixing the total tilt V and allowing U to decrease with the
system size L. As discussed in Sections. 3.2 and 3.3, this procedure
introduces a non-trivial dependence of the current with system size
in the presence of dephasing: while for fixed U the current is
expected to decrease with the system size L, this will no longer
be the case for fixed V.

Such a linear potential is known to induce Wannier-Stark
localization in the absence of dephasing, with U/Z being the
frequency of Bloch oscillations [20–22, 24]. In the absence of
dephasing γ � 0 and for non-vanishing tilt V> 0, the steady state
magnetization profile shows the formation of domain walls
[39] – regions of constant magnetization 〈σzj〉∞ ≃ ± f starting at
the boundaries and extending inwards as shown in Figure 2A.
According to Equation 8 or Equation 10, this implies a vanishing
current, which characterizes the localized system. Indeed we observe
in Figure 2B that, as V increases, the current displays an exponential
decay with the system size 〈I〉∞ ~ e−L/L0 with L0 being the
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localization length. Note that L0 here is different from the
localization region of a single particle in a Wannier-Stark
localized system given by J/U [22].

The results in the absence of tilt U � V � 0 are shown in Figures
3, 5A, respectively for the magnetization and the current. We
distinguish two regimes: γ � 0 and γ> 0. The first case
corresponds to ballistic transport, characterized by a small (but
non-zero) magnetization at the boundaries and zero bulk
magnetization (inset of Figure 3), together with a size-
independent current (see later Figure 5A). The second case
corresponds to diffusive transport, characterized by an emerging
linear magnetization profile as the dephasing rate increases,
accompanied by a decreasing current in accordance with
Equation 8, 10. For very large dephasing or system sizes the
current scales as 〈I〉∞ ~ 1/(γL) signaling diffusive transport. The
exact expression for the current in the absence of tilt is given by
Equation 30 (with U � V � 0) as we discuss in Sec. 3.2.

3.1 Exact current for small system sizes

Having shown the degrading effect of the tilt and dephasing
separately on the spin transport across the system, we now study
their interplay which gives rise to dephasing-enhanced transport. In
this section, we focus on transport for small system sizes L � 2, 3. An
exact and compact solution for the current can be found from
Equations 16–20 in these cases. For L � 2 we obtain

〈I〉∞ � f
16J2Γ 2γ + Γ( )

16J2 2γ + Γ( ) + 4ΓU2 + Z2Γ 2γ + Γ( )2. (22)

Dephasing-assisted transport can be characterised through the
maximum of Equation 22 with respect to the dephasing rate γ,
yielding an optimal dephasing rate

γmax �
U

Z
− Γ
2
≥ 0. (23)

FIGURE 1
A schematic diagram of the system under study. The lattice is modeled as an XX spin chain, characterised by a hopping amplitude J and on-site field
linearly decaying in steps ofU across the chain. The boundary sites are coupled to separate reservoirs that inject/eject spin excitations controlled by a bias
f , while in the bulk each spin is coupled to its own local reservoir which induces dephasing.

FIGURE 2
(A) Steady-statemagnetization profile {〈σzj 〉∞}L

j�1 for system size L � 50 and different values of total tilt V . The site positions are normalized x � j/L. (B)
Steady-state current 〈I〉∞ as a function of system size for different values of total tilt V. The dashed lines represent exponential fits 〈I〉∞ ∝ e−L/L0 to the data
with L0 � 4.06, 1.75, 1.20,0.82,0.67 respectively for V � 5, 7.5, 10, 15, 20. Parameters: Z � f � J � 1, Γ � 0.01 and γ � 0.
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The behaviour of Equation 22 is shown in Figure 4. Note that
since the dephasing is always positive, the maximum only occurs if
U/Z≥ Γ/2.

For L � 3 we have a similar expression, namely,

〈I〉∞ � f
16J2Γ 4γ + Γ( )

16J2 4γ + Γ( ) + 16ΓU2 + Z2Γ 4γ + Γ( )2, (24)

where the maximum is given by Equation 25

γmax �
U

Z
− Γ
4
≥ 0. (25)

The complexity of these expressions increases rapidly for
L> 3, so the exact evaluation of the current and its maximum
is too involved to be displayed here for larger systems. In the
following section, we resort to an approximate solution for
the current.

3.2 Tridiagonal approximation

In order to find an exact solution for systems of arbitrary size, we
perform the tridiagonal approximation which consists of retaining
strings of Pauli matrices up to r � 2, that is, ignoring higher order
coefficients in Equations 16–20 so that h(r)j , b(r)j � 0 for r≥ 3. In the
correlation matrix approach, this is equivalent to retaining only the
diagonal and first off-diagonal elements [32]. Physically, this implies
that spin and current correlations can be ignored within first order
in f, which allows the derivation of an exact expression for the
current as a function of all parameters as we now show. We only
have to consider Equations 19, 20 for r � 2. Summing Equation 19
from j � 1 to j � L − 1 we obtain

J h 1( )
1 − h 1( )

L( ) +∑L−1
j�1

εj − εj+1( )h 2( )
j + Zb γ L − 1( ) + Γ/4[ ] � 0, (26)

where b ≡ b(2)j is the coefficient associated with the current, which
is independent of j as a consequence of Equation 18. First, we can
write h(1)1 − h(1)L as a function of b by using Equations 16, 17,
which yields

h 1( )
1 − h 1( )

L � 8Jb
ZΓ − 2. (27)

Second, we can also express h(2)j as a function of b by using
Equation 20, which leads to Equation 28

h 2( )
j � εj − εj+1( )b

Z γ + δj,1 + δj,L−1( )Γ/4[ ]. (28)

We can now substitute the previous two equations into Equation
26 and obtain an expression for b, namely,

b � 4J

2Zγ L − 1( ) + ZΓ + 16J2

ZΓ + 2
Z
∑L−1

j�1
εj−εj+1( )2

γ+ δj,1+δj,L−1( )Γ/4. (29)

The current is now obtained from Equations 15 and 29. For the
local tilted potential in Equation 21 it becomes

〈I〉∞ � f
16J2Γ

16J2 + Z2Γ Γ + 2γ L − 1( )[ ] + 4ΓU2 1/ 2γ + Γ( ) L � 2
L − 3( )/ 2γ( ) + 4/ 4γ + Γ( ) L≥ 3

{ .

(30)
We note that this expression is exact for L � 2 and L � 3, in

which case we recover Equations 22, 24, respectively. It is also exact
in the absence of tilt U � V � 0 [31, 32, 37], which is verified in
Figure 5A. In Figures 5B–D we plot the exact solution and the
tridiagonal approximation for non-zero values of total tilt V> 0. We
observe that the approximation works remarkably well, deviating
from the exact solution only for very small dephasing rates and
system sizes; when γ � 0, the approximation fails dramatically and

FIGURE 3
Steady-state magnetization profile {〈σzj 〉∞}L

j�1 for system size L �
50 and different values of dephasing γ. The site positions are
normalized x � j/L. The inset shows a zoom-in of the results for γ � 0
and γ � 0.001. Parameters: Z � f � J � 1, V � 0.

FIGURE 4
Steady-state current 〈I〉∞ for L � 2 as a function of dephasing γ
for different values of tiltU � V , computed from Equation 22. The large
filled markers represent the maxima computed from Equation 23.
Parameters: Z � f � J � 1, Γ � 0.01.
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only the exact solution is shown. The latter case corresponds to a
Wannier-Stark localized system which we already discussed.
Moreover, we see that for fixed γ the current can now increase
with the system size up to a critical size Lmax where it is maximal, and
only then decreases. In the same way, we see that for fixed L there is a
critical dephasing rate γmax at which the current is maximal.

3.3 Interplay between dephasing and tilt

Since the validity of Equation 30 is established, we now use it to
determine both Lmax and γmax. The maxima of Equation 30 as a
function of L (for fixed V and γ) and γ (for fixed L and V) can be
determined exactly. However, as before, the expressions are too
lengthy to be displayed. More physically intuitive expressions are
obtained by assuming that L≫ 1 and L≫ 8γ/(4γ + Γ) in the
denominator of Equation 30 which leads to the
approximate maxima.

Lmax ≃
V

Zγ
, (31)

γmax ≃
V

ZL
� U

Z
. (32)

Thesemaxima characterize dephasing-assisted transport as we show
in Figure 6A. Below the critical length (Lmax ≫L≫ 1), dephasing is not
yet effective and an increase in L decreases the local tilt U � V/(L − 1)
and thus localization, which increases the current according to Equation
30. Above this length scale (L≫ Lmax ≫ 1) dephasing becomes effective
and diffusive transport clearly emerges 〈I〉∞ ~ 1/(γL). Analogously,
below the critical dephasing rate (γmax ≫ γ) dephasing jump events
happen at amuch lower frequency than Bloch oscillations, so the current
flowing remains hampered by localization. Increasing the rate of
dephasing destroys localization and increases the current. When the
dephasing rate passes this threshold (γ≫ γmax) diffusive behaviour
emerges. We illustrate this in Figure 6B where we plot the (finite
size) diffusion coefficient defined by 〈I〉∞ ≡ fD/L as a function of
dephasing rate for the largest system size we reached L � 1000.

The imprint of dephasing-enhanced transport is also evident in
the magnetization profile, as shown in Figure 7. Here, varying the
dephasing strength towards its critical value Equation 32 decreases
the magnetization gradient, rendering the magnetization profile
almost uniform. This is in contrast with the results obtained in the
absence of tilt, where an increasing dephasing rate tends to
increase the magnetization gradient and decrease uniformity as
shown in Figure 3A. Uniformity as a feature of environment-

FIGURE 5
Steady-state current 〈I〉∞ as a function of system size L for different values of dephasing rate γ and total tilt V � U(L − 1). (A) V � 0, (B) V � 5, (C)
V � 10 and (D) V � 20. The unfilled markers represent the exact values computed from Equations 16–20; the lines represent the tridiagonal
approximation in Equation 30. The large, filled markers represent the maximum of the current as a function of the system size occurring at Lmax ≃ V/(Zγ).
Parameters: Z � f � J � 1, Γ � 0.01.
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assisted transport has been pointed out for quantum systems
subject to on-site disorder [9]; our results confirm that the
same phenomenon appears in the presence of a linear potential
inducing Wannier-Stark localization.

4 Conclusion and outlook

In this paper, we have exploited an exact ansatz to obtain the
steady state of a non-interacting spin chain subject to bulk dephasing,
a linear potential and boundary-driving. This description has allowed
us to unravel the delicate interplay between Wannier-Stark
localization and dephasing-induced diffusive transport. We applied
the tridiagonal approximation, where only on-site and nearest-

neighbour correlation matrix elements are retained, to derive an
approximate expression for the steady-state current as a function
of both dephasing and tilt. This expression is found to closely match
the exact solution for a wide range of parameters, and reveals that the
maximum current occurs for a dephasing rate equal to the period of
Bloch oscillations in the Wannier-Stark localized system. Fixing the
total tilt across the system then revealed a maximum in the current as
a function of system size. This evidences a critical system size beyond
which Bloch oscillations are suppressed by dephasing.

Our work motivates future analytical and numerical analysis on
the interplay between dephasing and a tilted potential in more
complex and richer systems, e.g., those including interactions
between neighboring sites [40–42], time-periodic driving [43, 44],
or more realistic (non-Markovian) boundary-driving schemes
[45–50]. Another promising research avenue is to study the
sensing capacity of our quantum many-body system. Indeed, it
has been recently shown that the non-equilibrium dynamics of
Bloch oscillations can enhance the sensing capacity of an isolated
quantummany-body system [51]; it would be interesting to examine
whether such an advantage is found for a quantum many-body
system subject to dephasing, particularly in the dephasing-assisted
transport regime. Finally, our results can be readily verified in
current photonic [52], ion-trap [53] and cold-atom [54–56]
experimental platforms.
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