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As local contrast mechanisms are extensively utilized in infrared small target
detection. However, the performance of existing local contrast-based methods
is often compromised in complex backgrounds. This study presents a novel
local contrast method based on third-order central moments to address the
above challenges. Initially, the infrared image undergoes top-hat transformation
to mitigate most background clutter and highlight potential target pixels.
Then, a local contrast description operator based on third-order central
moments is defined to characterize the grayscale changes in different regions
of the preprocessed image, enhance the target and suppress the background.
Finally, the target is extracted by using an adaptive threshold segmentation
operation. The experimental results in six real-life scenarios demonstrate that
the proposed method occupies the best detection index compared to other
similar technologies.
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1 Introduction

Target detection is a pivotal technology in infrared search and track (IRST) systems [1].
In practical applications such as guidance, early warning, and surveillance/monitoring,
whether airborne, space-borne or in anti-UAV (unmanned aerial vehicle) operations,
which have garnered significant attention recently, detecting targets presents substantial
challenges. These challenges stem from the inherent characteristics of the targets,
which typically exhibit weak brightness and small size, while lacking unique
shape, texture, and color information. Consequently, rapid and robust detection
of small infrared targets has always been an unresolved issue in the field of
object detection.

Currently, the relevant infrared small target detection technologies are mainly
classified into two types: sequential detection approaches and single-frame detection
approaches. Sequential detection technology typically capitalizes on the continuous
motion of the target contrasted against the random motion of noise in sequential
imagery. This type of technology facilitates small target detection and random noise
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elimination by identifying potential motion trajectories, albeit
requiring substantial prior information. Conversely, the single-
frame detection method relies on the characteristic feature
information of dim and small targets within a single image
to accomplish detection. This type of technology offers
several advantages over sequential detection, including simpler
computations, faster processing speeds, higher real-time
performance, and broader applicability.

The current single-frame detection technology mainly
includes the following two categories: non-local information-
based methods and local information-based methods. Non-local
information methods distinguish the target image from the entire
original image by leveraging differences in frequency bands and
data spaces between the target and background/noise images.
These methods include frequency domain techniques, classifier
methods, overcomplete sparse representation, and sparse low-
rank decomposition. To illustrate, Gregoris et al. [2] integrated
wavelet transform into infrared small target detection. Wu et al. [3]
developed amethod based on the contour transform that suppresses
background frequencies while enhancing those of the target within
the transform domain to bolster detection capabilities. Kong
et al. [4] utilized diagonal detail information from Haar wavelet
decomposition to aid in detecting weak infrared targets against
sea-sky backgrounds. Wang et al. [5] applied dual-tree complex
wavelets for decomposing the original image and employed a top-
hat operator to filter the low-frequency sub-bands, subsequently
using local image entropy to weight the reconstructed image for
extracting infrared small targets. Zheng et al. [6] initially employed
background estimation and differencing to pinpoint suspicious
pixels, followed by clustering analysis to identify potential small
targets. Dong et al. [7] extracted interest points from the image
and introduced a novel R-mean clustering method to categorize
these points into targets and backgrounds based on their associative
patterns. Wu et al. [8] utilized support vector machines to identify
the optimal hyperplane in kernel space that segregates targets from
backgrounds, thus classifying pixels into these categories. Jiang et al.
[9] merged the correlation between the observation matrix and
the sparse matrix with the concept of gradient descent to devise an
adaptive gradient descentmethod. Gao et al. [10] posited in their IPI
model that the background in infrared images constitutes a low-rank
component and the target a sparse component, transforming the
detection of infrared small targets into a recovery problem for low-
rank and sparse matrices, followed by decomposing image blocks to
more effectively separate targets from backgrounds. Building on this
framework, Zhang et al. [11] proposed amethod that involves partial
tensor nuclear norm sums and incorporates target edge information
into the model to enhance its ability to suppress edge clutter.

The local information class method posits that the grey level of
the background pixel point in an infrared image is typically similar
to that of its local surrounding pixel points, whereas the target pixel
point exhibits amore pronounceddisparity in its grey level relative to
its peripheral pixel points. By extracting the difference information
between each pixel point in the image and its neighborhood
reference pixel point, the target can be successfully filtered. For
instance, Shao et al. [12] utilized a Laplacian of Gaussian (LoG)
filter template characterized by a positive central coefficient and
negative surrounding coefficients. During the convolution filtering
of the original image with this template, the differences between

each pixel and its neighbors are accentuated. From the standpoint
of local image segmentation, Yao et al. [13] developed a small target
detection model based on facet kernel and randomwalker (FKRW),
which effectively mitigates edge noise. Chen et al. [14] introduced
the Local Contrast Measure (LCM) method to enhance small target
detection performance, although it suffered from a pronounced
“blocking effect.” Building on LCM, a series of improved measures
were subsequently proposed. Such as, Han et al. [15] introduced an
Improved LCM (ILCM) method, incorporating the average value of
sub-blocks as a parameter to better suppress randompoint noise, yet
it tended to smooth out small targets when they were diminutive.
Qin et al. [16] proposed a novel LCM (NLCM), that averages only
the largest number of pixels in each sub-block, thus better addressing
the issue of small targets being smoothed while still retaining noise
suppression capabilities. Han et al. [17] initially defined Refined
LCM (RLCM) and made significant enhancements in the design of
the filtering template [18], the selection of background references
[19], and the introduction of a weighting function [20]. This
concept has been widely recognized and adopted in the field. For
example, Wei et al. [21] proposed a target enhancement method
based on multi-scale patch contrast measurement (MPCM) for
infrared small target detection, although this method struggled
with retaining target shape and edge information and resulted in
numerous false alarms. Fu et al. [22] combined an adaptive filter
with a probabilistic Hough transform to enhance local contrast,
effectively distinguishing targets from backgrounds and accelerating
the target detection process, albeit with reduced accuracy in highly
complex backgrounds. Notably, recent studies have shown a trend
where many researchers are combining local contrast with other
types of algorithms to achieve superior detection results. Such as,
Cui et al. [23, 24] integrated local contrast with support vector
machines. Deng et al. [25–27] applied information entropy toweight
local contrast, thoroughly analyzing the shape and size of the
local information entropy window. Chen et al. [28, 29] utilized
the local signal-to-clutter ratio (SCR) to weight local contrast or
combined the local contrast with frequency domain concepts. Du
et al. [30] employed local smoothness to weight local contrast.
Xiong et al. [31] initially calculated the local gradient of the
original image and then assessed the local contrast of the gradient
map. Han et al. [32] merged local contrast with TDLMS adaptive
background estimation. Additionally, Dai et al. [33] integrated both
local and non-local prior information to propose the RIPT model,
which effectively suppresses interference factors and enhances
the accuracy of target detection in specific scenarios. However,
in complex environments, this method is prone to interference
from background elements, resulting in lower detection precision.
Pang et al. [34] proposed a low-rank and sparse decomposition
method based on greedy bilateral decomposition for infrared
dim and small target detection. This method can detect the target
quickly and stably in complex sceneswith a low signal-to-noise ratio,
but the detection effect performs unsatisfactorily in the background
with significant changes between different frames.

In general, local information class algorithms focus on a limited
number of pixel points within a local area when calculating
each pixel point. This results in a relatively small computational
volume, whichmay have the potential for real-time processing when
engineering optimisation techniques such as parallel acceleration
and pipelined architecture are employed. The local contrast

Frontiers in Physics 02 frontiersin.org

https://doi.org/10.3389/fphy.2024.1477253
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Xu et al. 10.3389/fphy.2024.1477253

algorithm is a relatively simple and straightforward approach that
aligns well with the infrared image model. By employing a carefully
designed contrast formula, it is possible to enhance the visibility of a
target while simultaneously suppressing complex background noise.
However, the effectiveness of this method hinges on the premise
that the target must be the most prominent locally. In practice, this
may not always be the case, particularly in scenarios with highly
complex backgrounds. In a real scene, if the background is highly
complex, the target may be in close proximity to an extremely bright
background, which may overwhelm it. This makes it challenging
to detect the target using local information, which in turn leads to
a degradation in the detection performance of local information-
based algorithms in complex real backgrounds. The non-local
information class makes full use of all the information in the
frame to detect weak targets, irrespective of the prominence of the
target in the local region. Non-local information algorithms leverage
all available information within the frame to detect weak targets,
independent of the target’s prominence within the local region.
Even when a target becomes less discernible due to its proximity
to a highlighted background, it can still be successfully separated,
presenting a significant advantage over local information-based
classification algorithms. However, many non-local information-
based algorithms proposed to date exhibit certain shortcomings that
warrant further research and improvement. For instance, frequency
domain methods posit that the frequency bands occupied by the
target and background are distinct. However, in scenarios with
more complex backgrounds, these frequency bands often overlap,
complicating accurate differentiation in the frequency domain.
Furthermore, most classifier methods require a substantial number
of training samples, which can be challenging to obtain in the
field of infrared weak target detection, especially in the presence of
non-cooperative targets. The efficacy of the hyper-complete sparse
representation method relies on the accuracy of the ultra-complete
dictionary. Nevertheless, constructing an ultra-complete dictionary
that encompasses all potential scenarios is impractical in practice.
The sparse low-rank decomposition method assumes that the target
is sparse while the background is low-rank. However, in complex
backgrounds, sparse information may also be present at the edges
of the background and at noise locations, which is susceptible to
generating false alarms.

Due to the presence of various types of noise and complex
background interference, the aforementioned methods are likely
to result in false positives and missed detections. In practical
applications, it is necessary to adjust and optimize these methods
based on specific scenarios and data characteristics. Therefore, to
address the issue of detecting small infrared targets in complex
backgrounds, this paper proposes a novel target detection method
based on the contrast of local third-order central moments.
Specifically, the innovative aspects of the proposed method
are as follows:

1. This study introduces the third-order central moment to
characterize the fluctuation properties of image gray levels in
different regions for the first time.

2. Utilizing the gray level fluctuation properties across different
image regions, a local contrast descriptor based on the third-
order central moment is designed to enhance targets and
suppress backgrounds.

3. Extensive experiments have been conducted, and multiple
evaluation metrics have been employed to validate the
effectiveness and superiority of the proposed method.

The other sections of the paper are organized as follows:
Section 2 details the method proposed in this paper; Section 3
presents comparative experiments with six baseline methods in real
infrared scenes, provides experimental results, and uses a series
of evaluation metrics to verify the effectiveness of the proposed
method; finally, Section 4 concludes this article.

2 Materials and methods

Figure 1 illustrates the detection workflow of the proposed
method. Initially, the infrared image is preprocessed using a
top-hat operator to suppress most of the background clutter
and extract candidate target pixels. Subsequently, the contrast
of the third-order central moments in the local areas of each
candidate target pixel is calculated to enhance the targets and
suppress clutter, resulting in a saliency detection map. Finally,
the targets are accurately segmented and extracted using an
adaptive threshold.

2.1 Preprocessing

Due to the weak target signal and low target intensity, the
target is easily masked under complex background or strong clutter
interference. In order to enhance the target detection ability under
various backgrounds, here the top-hat operator is used to do
preprocessing on the whole image to suppress the background noise
and improve the image signal-to-noise ratio. For the original image
and the structure element two basic operations, namely dilation and
erosion, are defined. The dilation operation makes the gray value
of the image larger than the gray value of the input image due to
the maxima operation, while the erosion operation makes the gray
value of the image smaller than the gray value of the input image
due to the minima operation. Thus, dilation results in increasing
the size of the bright areas and decreasing the size of the dark
areas. Erosion results in the opposite. They are denoted by and as
Equations 1, 2:

(f ⊕ b)(x,y) =max
m,n
 (f (x −m,y − n) + b(m,n)) (1)

(f ⊖ b)(x,y) =min
m,n
 (f (x +m,y + n) − b(m,n)) (2)

where x and y are the coordinates of the pixels in the image,m and n
are the offsets of the coordinates of the pixels in the structure element
with respect to x and y.

Then, the open operation ( f ∘ b) and the closed operation ( f.b)
can be expressed as Equations 3, 4:

(f ∘ b)(x,y) = (f ⊙ b) ⊕ b (3)

(f .b)(x,y) = (f ⊕ b) ⊖ b (4)

By using the open operation, the background can be obtained
after extracting the fore-ground. Subsequently, the background is
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FIGURE 1
Illustration of whole target detection flowchart of the proposed approach. The detection process includes top-hat filtering, calculation of the
third-order central moment, and the extraction of targets by adaptive threshold segmentation.

subtracted from the original image to high-light the target. The
above process is also described as top-hat transform and is defined
as Equations 5, 6:

That(f (x,y)) = f − f (f ∘ b) (5)

Bhat(f (x,y)) = (f ⋅ b) − f (6)

where That( f(x,y)) and Bhat( f(x,y)) are referred to as the open top-
hat and closed top-hat operations, respectively.

As illustrated in Figure 1, after preprocessing with the
top-hat transformation operation, the SNR of infrared images
under different backgrounds is improved, and the targets are
significantly enhanced. Although some clutter remains, the
background clutter in local areas tends to spread in a certain
direction, exhibiting local directional consistency in grayscale
values. The areas containing targets show drastic changes in
grayscale values, with little correlation to the surrounding
neighborhood.

2.2 Calculation of the third-order center
moment

By employing a sliding window of size M×N, the image is
traversed from top to bottom and left to right after preprocessing.
The third-order central moment can reflect the intensity of pixel
value changes within a certain spatial range, as well as whether
the pixel value changes conform to a Gaussian distribution [35].
For image blocks with small grayscale changes or conforming
to a Gaussian distribution, the third-order central moment is
approximately zero. For an image patch with a size of M×N, its

third-order central moment, J3, can be defined as Equations 7, 8:

J3 =

M

∑
x=1

N

∑
y=1
(f (x,y) − f )

3

M ×N
(7)

f = 1
M ×N

M

∑
x=1

N

∑
y=1

f (x,y) (8)

where, f(x,y) represents the grayscale value of the pixel at (x,y) and
f denotes the average grayscale value of the pixel in the image patch.

The third-order central moment is calculated for each window
area, and this value is assigned to the central pixel of the local
area.This process generates a saliency map based on the third-order
central moments, as shown in Figure 2. In this figure, the brighter
pixels indicate higher grayscale values, corresponding to larger
values of the third-order central moments [36]. It is evident from
the figure that the target areas have significantly higher third-order
central moment values compared to the surrounding neighborhood
pixels, creating a stark contrast. The residual background clutter
in the preprocessed image has lower third-order central moment
values, resulting in low contrast with the surrounding areas.
Therefore, it is considered to further suppress the residual clutter
by applying the contrast of local third-order central moments in the
image post top-hat preprocessing.

Initially, a nested sliding window structure is constructed, as
illustrated in the enlarged area of the figure. This model includes
a central block T and eight surrounding neighborhood blocks
Bi(i = 1,…,8), all of equal size [37].The third-order centralmoments
for the central block T and the eight surrounding blocks are
calculated separately.The local third-order central moment contrast
value for the area is determined and assigned to the central pixel
within the sliding window.
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FIGURE 2
Third-order central moment saliency map and sliding window example.

The specific calculation process is as Equation 9:

Ci =
JT
JBi

(i = 1,…,8) (9)

where JT and JBi
are the third-order central moments for the

T area and Bi areas, respectively. The minimum value of Ci is
selected as the contrast gain coefficient C for the local area,
calculated as Equation 10:

C =minCi(i = 1,…,8) (10)

Then, the pixel value Cn in the third-order central moment
contrast saliency map, defined as Equation 11:

Cn =mT ×C (11)

wheremT represents themean value of the 3 × 3 region in the central
of region T.The value range of the gain coefficient C is influenced by
the position of the window within the image and the information
contained within the image patches at various locations [38].
The behavior of the gain coefficient C can be described in the
following scenarios:

1. When the window is positioned in a stable background
area, the background and surrounding pixels display
structural similarity. Consequently, both the central and
nearest neighbor blocks exhibit high third-order central
moment values. Nevertheless, the discrepancy between these
values is minimal, resulting in a gain coefficient C that is
approximately 1.

2. If the window is located in a target area and the central block
encompasses complete target information, the difference in
third-order central moment values between the central block
and the neighboring blocks is substantial. This results in a
gain coefficient C that is greater than 1, effectively enhancing
the target.

3. In cases where the window includes partial target information
and the central block represents a background area, the third-
order central moment values between the central block and
the neighboring background blocks are comparable. However,
they significantly differ from those of the neighboring target

blocks, leading to a gain coefficient C that is less than or equal
to 1. This characteristic effectively suppresses the background
while enhancing the target.

The image regions where the central block is the target
have large contrast gain coefficients C, while the contrast gain
coefficients C of the gentle and undulating background regions
are small. Although the gray value of the undulating background
region changes greatly, it is strongly correlated with the gray
value of the surrounding neighbourhood, and there is a similar
structure in the local region, and the third-order central moments
of the small blocks in the background region do not vary
much, so the contrast gain coefficient of the value is much
smaller compared to the target. The dynamic adjustment of the
gain coefficient C based on local image characteristics allows
for the selective enhancement of targets and the suppression of
background noise, improving the overall detection performance.
In summary, the local third-order central moment contrast-
based detection algorithm has good target enhancement and
background suppression capabilities, which is conducive to target
detection.

2.3 Target extraction

After the above operation, the target and background are
well enhanced and suppressed. Subsequently, the adaptive
threshold segmentation operation is employed to extract
targets, and the threshold calculation formula is defined
as Equation 12:

Th = μ+ kσ (12)

where μ and σ denote the mean and standard deviation of the
processed image, respectively, and k is an adjustable parameter
that allows for threshold adjustment in different scenarios, and
experimental results show that a setting of 5 is quite appropriate in
our work. The framework of the proposed method in this paper is
summarized in Algorithm 1.
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Input:Infrared image f(x,y), size of local window

v, size of large window u, contrast enhancement

exponent C, structural element for top-hat

transformation b(m,n), and parameter k

Output:Detection result

1: Calculate the top-hat transformation map

f(x,y)using Equation 5;

2: for1 to i do

3: Calculate the local mean fusing Equation 8;

4: Calculate the local contrast

J3using Equation 7;

5: Calculate the absolute mean contrast;

6: end for

7: Calculate the contrast metrics of the

sub-blocks and normalize them;

8: Obtain the saliency map based on the

third-order central moment;

9: Obtain the final detection

result using Equation 12.

Algorithm 1. Specific Target Detection Steps of The Proposed Method.

3 Experiment and analysis

Here, we first introduce the datasets used in the experiments
and then analyses the performance of the proposed method from
both qualitative and quantitative perspectives. Qualitatively, the
performance of themethod is described through the detection result
images and their three-dimensional distributions. Quantitatively,
the analysis is conducted based on several metrics: Signal-to-Noise
Ratio (SNR), Signal-to-Noise Ratio Gain (SNRG), Background
Suppression Factor (BSF), Receiver Operating Characteristic (ROC)
curves, AreaUnder theCurve (AUC), and the average runtime of the
algorithm.

3.1 Datasets and baseline methods

To further validate the effectiveness and robustness of the
proposed algorithm, six infrared image sequences and an infrared
dataset containing mixed frames are select-ed as the experimental
dataset. Among these, the background of scenes 1 and 6 contain
strong cloud clutter, and the background of scene 2 includes high-
brightness buildings. The single-frame mixed dataset contains
high-brightness point-like noise similar to re-al targets, mountain-
forest environments, high-brightness interference objects, and
multi-target scenarios, significantly increasing the detection
difficulty. Table 1 provides a detailed feature description of
the dataset.

To illustrate the efficacy and robustness of the proposed
approach, six established methods were chosen as baseline
comparisons.The IPI [10]model was selected to represent non-local
information-based techniques. Local information-based methods
comprised MPCM [21], LoG [12], AAGD [9] and FKRW [13].
Furthermore, theRIPT [33]method,which combines local and non-
local a priori information, was selected as a comparisonmethod.The

parameters of different methods are adjusted to the best through
experiments.

3.2 Evaluation indicators

The evaluation of infrared small target detection algorithms can
be conducted from both qualitative and quantitative perspectives.
Qualitative analysis involves subjective assessment based on
the detection result images and their corresponding three-
dimensional distributions, such as whether targets are detected,
the number of false alarms, and the degree of background
clutter suppression compared to the original image. Due to the
influence of human subjective factors, it is essential to perform
a quantitative analysis to objectively evaluate the experimental
results. Common evaluation metrics include Signal-to-Noise
Ratio (SNR), Signal-to-Noise Ratio Gain (SNRG), Background
Suppression Factor (BSF), Probability of Detection (PD), False
Alarm Rate (FA), Receiver Operating Characteristic (ROC)
curve and Area Under the Curve (AUC). SNR is expressed as
Equation 13:

SNR =
Imax − Imean

σ
(13)

where, Imax and Imean represent the maximum grey value
and the average grey value of the image respectively, and σ
signifies the standard deviation of the image. The SNRG is
defined as Equation 14:

SNRG = 20× log10
SNRout

SNRin
(14)

where, SNRout and SNRin denote the SNR of the processed
image and the original image, respectively. In general, the larger
SNRG is, the better the target enhancement performance of
the method.

BSF can be used to describe the background suppression ability
of the corresponding method as Equation 15:

BSF =
σ in

σout
(15)

where, σout and σin indicate the standard deviation of the processed
image and the standard deviation of the original image, respectively.
Normally, the higher the BSF value, the better themethod suppresses
the infrared background.

The ROC curve is a critical metric for assessing target detection
performance, composed of PD and FA rates, defined as Equation 16:

PD = TD
AT
,FA = FD

NP
(16)

where, TD represents the number of correctly detected targets, AT
denotes the actual number of true targets, FD and NP respectively
represent the number of pixels in false alarm regions and the total
number of pixels in the test data.

When there is an overlap between the detected target pixels
and the real target pixels and the central distance between
them is less than 5 pixels, the detected target is considered
to be a real target, and vice versa, it is considered to be a
false target.
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TABLE 1 Presentation of specific details for sequences 1–6.

Frames number Image size Specific characteristics of target and background

Seq1 30 256 × 200 Gloomy sky background, strong edge cloud clutter
The target intensity is weak and overlaps with the cloud

Seq2 40 300 × 300 Gloomy sky background, high brightness tree and building clutter
Extremely weak target intensity and low contrast

Seq3 400 330 × 230 Dim sky background, strong edge cloud clutter
Extremely weak target intensity and low contrast

Seq4 400 198 × 200 Ground - sky background, railing
Extremely weak target intensity and low contrast

Seq5 100 506 × 404 Sky background, buildings
Extremely weak target intensity and low contrast

Seq6 200 254 × 200 Sky background, strong edge cloud clutter
Target and cloud overlap

Additionally, the AUC can be calculated as a supplementary
quantitative evaluation metric for the ROC curve. Generally, a
larger AUC signifies better detection performance represented by
the ROC curve. The area under the ROC curve, AUC, is calculated
using a non-parametric method. The area under the curve is
calculated as Equation 17:

AUC = 1
2

n

∑
i=1
 (xi − xi−1)(yi + yi−1) (17)

where xi and yi represent the false alarm rate and the detection
rate, and n means the total number of operating points
on the ROC curve.

3.3 Analysis and discussion of experimental
results

This section employs a series of evaluation metrics to
assess the detection performance of different methods, thereby
validating the effectiveness and robustness of the proposed
approach. The experiments utilized six sequence datasets and
one single-frame mixed dataset. The proposed method was
compared with baseline methods to verify its effectiveness
and robustness.

3.3.1 Visual comparision
The detection results are presented in Figures 3, 4. Figure 3

displays the out-comes for the sequence datasets, while Figure 4
shows the results for the single-frame mixed dataset. In Sequence
1, despite the significant cloud clutter in the background, the targets
are distinct and brightly illuminated. The baseline methods succeed
in detecting the targets, but the heightened background clutter
leads to an elevated false alarm rate. In Sequence 2, where the
targets are less bright and the background interference is more
pronounced, the performance of the LoG and AAGD methods
exhibit a marked decline in detection accuracy, failing to identify
the actual targets. The remaining baseline methods manage to

detect the actual targets but also flag numerous suspicious targets.
For Seq 3 and 6, which feature more uniform scenes, all seven
methods yield favorable detection results. However, Seq 4 and 5
present challenges due to the high-brightness interference clutter
in the backgrounds, leading to suboptimal performance from the
baseline methods. The MPCM method detects real targets in both
sequences but also registers numerous background noises and
suspicious targets. The AAGD, FKRW, IPI, and RIPT methods fail
to detect real targets in Sequence 4 and retain false targets. In
Sequence 5, although AAGD, IPI, and RIPT detect real targets,
they also identify suspicious targets, and FKRW fails to detect
real targets.

As observed in Figure 4, the proposed method performs
excellently in various scenes, demonstrating strong target response
capabilities and background suppression abilities, and is capable of
detecting multiple targets.

3.3.2 Quantitative comparison
SNRG and BSF are used to evaluate the target enhancement

and background suppression capabilities of the proposed method
compared to baseline methods. Higher values of SNRG and BSF
indicate superior performance of the respectivemethods. Tables 2, 3
display the SNRG and BSF values for different methods under six
different backgrounds, where bold numbers represent the highest
values of SNRG and BSF in each sequence, and underlined numbers
indicate the second highest values. The proposed method achieved
the highest SNRG and BSF in Sequences 2, 4, and 5. Notably,
high SNRG and BSF values are primarily found in the RIPT,
FKRW, and the proposed methods. Among these, the RIPT model
showed the highest SNRG and BSF values in Scenes 1 and 3,
although background clutter still existed in the detection results of
Sequence 1.

As shown in Figure 5, the ROC curves indicate the relationship
between Pd and Pf in Seq 1–6 for all methods. Also, in order to
visually evaluate the detection performance of different algorithms,
we calculated the area under the curve (AUC) values of different
methods, as shown in Table 4. Bold and underline indicate the
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FIGURE 3
Visual comparison results of different approaches on sequences 1–6. For better resolution, the red rectangle are used to mark the target, respectively.

maximum and second largest values, respectively. In general, the
closer the ROC curve is to the upper left corner and the larger
the AUC value is, the better the detection performance is. For
seq 1, the target detection result of LoG and MPCM methods
show the presence of obvious interfering targets, which fail to
be detected accurately. Therefore, a lower Pd value corresponds
to it when the pf is the same, causing a low AUC value. In
seq 2 and 5, MPCM obtained the closest detection accuracy to
the proposed method. The AUC values of the corresponding ROC

curves were also second only to our method. In seq 3 and 4, the
AUC values of LoG and RIPT were low. In sequence 6, AAGD
accurately detects the target, closest to the detection accuracy
of the proposed method. The AUC values of the corresponding
ROC curves are also second only to our method. The ROC
curves of the proposed method in this paper consistently maintain
the optimal Pd value and the maximum AUC value in all six
scenarios, indicating that our method has excellent target detection
capability in all six scenarios.
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FIGURE 4
Visual comparison of single-frame mixed datasets, the red rectangle are used to mark the target, respectively.

TABLE 2 Average SNRG values of different methods in six real scenes. The bold value is the maximum value.

LoG [12] AAGD [9] MPCM [21] FKRW [13] IPI [10] RIPT [33] Proposed

Seq 1 42.9126 37.2999 18.1030 46.5820 45.7398 47.1608 46.5872

Seq 2 12.6842 22.7342 −3.3249 33.7752 25.8948 31.9745 35.1651

Seq 3 38.6286 39.0160 25.0280 40.0749 39.6803 41.1559 38.9639

Seq 4 3.1224 12.4164 11.8490 24.5923 25.5748 22.5606 26.3360

Seq 5 15.2126 20.7905 19.9816 37.1702 16.5926 29.0504 41.4241

Seq 6 42.5041 43.1355 44.4799 42.7732 NaN 42.6279 41.4010

4 Discussion

4.1 Discussion of detection performance

The detection of infrared small targets is rendered challenging
by the complexity and variability of the infrared image
environment, which frequently includes substantial background
clutter and interference noise. Conventional detection techniques,

such as LoG, MPCM, and AAGD, are characterized by high
computational complexity and noise sensitivity, rendering
them prone to image noise and resulting in false or missed
detections. Methods like IPI and FKRW are highly responsive to
variations in target gray intensity, leading to unstable detection
outcomes when the target and background exhibit minimal
grayscale differences or when influenced by factors such as
illumination. The RIPT detection method, which integrates
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TABLE 3 Average BSF values of different methods in six real scenes. The bold value is the maximum value.

LoG [12] AAGD [9] MPCM [21] FKRW [13] IPI [10] RIPT [33] Proposed

Seq 1 17.4953 9.1209 5.9284 26.2413 23.2279 27.5569 26.3840

Seq 2 3.7184 11.4748 2.4414 40.9638 17.4044 33.9158 48.8688

Seq 3 49.0199 52.9625 27.3042 59.2640 55.6245 66.0983 51.7224

Seq 4 1.3675 3.8351 3.5887 16.6863 17.6726 12.2383 19.9535

Seq 5 4.5858 8.6565 2.1983 58.7325 5.3834 22.4054 92.9656

Seq 6 42.1676 45.3576 53.0407 43.6129 Inf 42.7872 37.6230

FIGURE 5
(A–F) Comparison of ROC curves obtained by all methods on Sequences 1-6.

TABLE 4 AUC values corresponding to ROC curves of all approaches on sequences 1.6 (× 10−3 ). The bold value is the maximum value.

MPCM [21] LoG [12] AAGD [9] FKRW [13] IPI [10] RIPT [33] Proposed

Seq 1 758.7167 717.5151 947.0283 805.2301 806.2288 790.8851 999.9911

Seq 2 944.0244 801.0041 935.2437 777.6925 859.6449 794.2826 999.9886

Seq 3 857.5838 702.3206 993.0174 780.9553 852.5991 678.0886 999.9926

Seq 4 693.3668 581.772 718.3679 607.5147 726.6379 601.7396 981.3734

Seq 5 984.0468 895.36 945.2263 799.9512 946.2618 667.6413 991.48

Seq 6 999.4926 990.079 999.9209 898.6716 500 847.0958 999.9969
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TABLE 5 Parameter settings for all approaches.

No. Abbreviations Parameter settings

1 MPCM [21] Local window size: N = 3,5,7,9. Mean filter size: 3 × 3

2 LoG [12] σ = 1.5, scale size: n = 5

3 AAGD [9] lmax = 19, 19, 19, 19; lmin = 3, 5, 7, 9

4 FKRW [13] Local window size:11 × 11

5 IPI [10] Patch size: 50 × 50, sliding step:10, λ = 1/√min(m,n),ε = 10−7

6 RIPT [33] Patch size: 50 × 50, sliding step: 10, λ = L
√min(I,J,P)

, L = 1, h = 10, ε = 0.01, ε = 10−7

7 Proposed Local window size: v = 3,5,7,9 u = 3× v

TABLE 6 Presentation of specific details for sequences 1–4.

Frames number Image size Specific characteristics of target and background

Seq1 30 256 × 200 Gloomy sky background, strong edge cloud clutter
The target intensity is weak and overlaps with the cloud

Seq2 30 300 × 300 Gloomy sky background, high brightness building clutter
Extremely weak target intensity and low contrast

Seq3 30 330 × 230 Dim sky background, strong edge cloud clutter
Extremely weak target intensity and low contrast

Seq4 30 198 × 200 Ground - sky background, railing
Extremely weak target intensity and low contrast

local and non-local in-formation, is effective in suppressing
interference factors and enhancing target detection accuracy
in specific scenarios, nonetheless, in complex scenes, it is
more vulnerable to background interference, thereby decreasing
detection accuracy.

This paper presents a novel methodology that commences
with the preprocessing of infrared images using the top-
hat operator. It proceeds to enhance target objects and
suppress background clutter by calculating the third-order
central moment contrast within the local region of each
candidate target pixel. The extraction of targets is subsequently
accomplished through adaptive threshold segmentation. The
proposed method is evaluated against baseline techniques on
six real sequence datasets and one single-frame hybrid dataset,
demonstrating consistently superior performance across all
datasets. Furthermore, the proposed method is marked by
low computational complexity and is amenable to acceleration
through GPU or Field-Programmable Gate Array (FPGA)
technologies.

4.2 Discussion of the key parameter V

We briefly discuss in this section the selection of the key
parameter v in the proposed method, and the value of v in
Table 5 will directly determine the quality of the generated

target salient maps. To obtain the optimal value of v, we
select different sequences of infrared images for simulation
experiments. In the experiments, we set v as 3, 5, 7, and
9 respectively. The details of different sequences of infrared
images are described in Table 6. In addition, we use ROC
curves to evaluate the detection performance of the proposed
method at different v values. Figure 6 shows the ROC curves for
different scenes.

As shown in Figure 6, we find that the setting of v value
significantly affects the final target detection results. v value is
set to 3, the detection results are the worst in all the scenes.
v value is set to 7, the optimal detection results are obtained
in all the scenes. Therefore, it is recommended to set the v
value to 7.

4.3 Robustness to noisy scene

Furthermore, the algorithm must also overcome the challenge
of detecting objects in a noisy scene. In order to verify the
robustness of the proposed method in noisy environments, we
add Gaussian white noise with different standard variances to the
original infrared image. As shown in Figure 7. Gaussian white
noise with standard deviation of 5, 10, and 15 was added to
the original infrared image in the first, third, and fifth rows,
respectively. From the detection results in the figure, it can be
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FIGURE 6
(A–D) Comparison of ROC curves obtained by different v value on Sequences 1–4.

seen that the proposed method can effectively detect the target
in different degrees of noise scenarios. Thus, the ability of the
proposed method in combating noise scenarios is verified. It
shows that the proposed method possesses strong robustness in
noisy scenes.

5 Conclusion

In this paper, a novel target detection method based on
the contrast of local third-order central moments is proposed.
Initially, the top-hat operator is used to pro-cess infrared
images to suppress most of the background clutter and extract
candidate target pixels. Subsequently, the contrast of the third-
order central moments in the local areas of each candidate
target pixel is calculated to enhance targets and suppress clutter.
Finally, we conducted extensive experiments and compared
six SOTA approaches on a dataset containing six real IR

videos with various scenes and a mixed dataset consisting of
18 single-frame infrared images with different backgrounds.
Experimental results demonstrate that the proposed method can
efficiently detect small infrared targets and shows significant
advantages across a range of evaluation metrics. However,
given the complexity and variability of real-world scenes,
further in-depth research is warranted. This future work will
primarily focus on the following aspects: (1) The small target
detection method presented in this study is currently limited
to single-frame infrared images and does not leverage the
temporal information inherent in image sequences. Future
investigations will integrate time-domain information to enhance
target detection, considering the correlations across multiple
frames. (2) The proposed method has been simulated in
MATLAB, and we intend to explore its implementation on FPGA
and other hardware platforms, in conjunction with existing
laboratory equipment, to develop a real-time infrared small target
detection system.
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FIGURE 7
Detection results obtained in a noisy scene using the proposed method. The standard deviation of Gaussian white noise in the first, second and third
rows are 5, 10, and 15, respectively.
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