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We have developed a compact sensor utilizing a tunable diode laser near
1850.5 nm to measure H₂O absorption for wide-range temperature diagnostics.
The sensor’s performance was experimentally evaluated in a tube furnace at
temperatures ranging from 600 to 1800 K and pressures from 3.5 to 103 kPa,
showing a relative error between the measured and set temperatures of
−2%–3.5%. The numerical simulations confirmed the sensor’s suitability for
temperature measurements between 500 and 2500 K, with the accuracy of
absorbance extraction being a critical factor. The above results suggest that the
sensor is highly effective for temperature measurement across a broad range
and holds potential for applications in aerospace and industrial combustion
diagnostics.
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1 Introduction

Highly accurate and fast-response measurements of temperature and species
concentration are critical in assessing combustion efficiency, which directly influences
thermal performance in various combustion systems, such as gas turbines, scramjets, wind
tunnels, shock tubes, laboratory flames, and industrial-scale combustors [1–3]. Among the
available diagnostic techniques, tunable diode laser absorption spectroscopy (TDLAS) is
widely adopted for retrieving combustion temperature and species concentration due to
its robustness, high sensitivity, fast response, and non-intrusive measurement capabilities
[4–8].This technique detects specific absorption features of target gases, such as water vapor
(H₂O), which is a major product in combustion and has been frequently used as a target gas
in TDLAS-based diagnostics [9, 10]. H₂O exhibits several strong absorption bands in the
infrared region [11], as illustrated in Figure 1.

At a typical combustion temperature of 1,600 K, the line strengths are plotted across a
wavelength range from 1 to 10 μm.These absorption bands occur at 1.4 μm (v1+v3), 1.8 μm
(v1+v2+v3), 2.7 μm (v1+v2+v3), 5.5 μm (v2), and 6.5 μm (v1+v2), with the line strengths at
2.7 μm, 5.5 μm, and 6.5 μm being approximately 10 times stronger than those at 1.4 μm and
1.8 μm.Although these stronger absorption bands in themid-infrared region provide higher
precision for temperature sensing and trace H₂O detection, they require more expensive
laser sources, such as quantum cascade lasers (QCLs) [12, 13] and interband cascade lasers
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FIGURE 1
Absorption line strength of H2O at 1600 K in infrared spectral region.

(ICLs) [14, 15]. In contrast, the near-infrared absorption bands
around 1.4 μm and 1.8 μm can be accessed using fiber-optic diode
lasers, offering advantages such as compact size, lower cost, high
spectral quality, and room-temperature operation [16–18], and the
signals from these lasers can be directly acquired using either a
photodetector or a quartz tuning fork detector, which has the merits
of wide response range, low cost and tiny size [19–21], making
these lasers more attractive for temperature and H₂O concentration
measurements in various combustion systems.

Most previous studies have focused on the 1.4 μm region
for high-temperature sensing due to the availability of
telecommunication-type lasers. For instance, Qu et al. [22] and
Liu et al. [23] designed a temperature sensor capable of measuring
temperatures using a distributed feedback (DFB) laser with a
center wavelength of 1397.8 nm to detect two H₂O absorption
lines at 7153.7484 cm⁻1 and 7154.3534 cm⁻1. Similarly, Shao et al.
[24] developed a gas sensor based on a 1.56 μm laser using
wavelength modulation and two-line temperature retrieval to
measure temperatures ranging from 200°C to 1000°C. However,
these methods are prone to calculation errors due to uncertainties
in the HITRAN or HITEMP databases. Increasing the number
of H₂O absorption lines can enhance temperature measurement
precision. Recent studies by Liu et al. [25] and Li et al. [26] employed
three H₂O absorption lines at 7185.597 cm⁻1, 7444.350 cm⁻1, and
7444.37 cm⁻1, respectively, to achieve high-precision temperature
measurements in a flat-flame furnace and scramjet engine. Zhang
et al. [27] used three DFB lasers operating near 1,343 nm, 1,392 nm,
and 1,469 nm to accurately measure engine nozzle temperatures.
In our previous work [28], five DFB lasers were employed near
1,392 nm, 1,393 nm, 1,339 nm, 1,343 nm, and 1,469 nm to improve
temperature measurement precision in the expansion section of a
scramjet engine.

Despite the stronger absorption at high temperatures in
the 1.8 μm band compared to the 1.4 μm band [11], TDLAS
measurements near 1.8 μm have been rarely reported. The 1.8 μm
band holds promise for more sensitive H₂O detection and higher-
precision temperature measurements. Therefore, in this study, we

employed a single DFB laser operating near 1.85 μm as a TDLAS
sensor to scan multiple H₂O absorption lines, with the lower-
state energy levels ranging from 70 to 6,581 cm⁻1. This sensor,
featuring a high signal-to-noise ratio and strong line strength
over a wide temperature range, enables high-precision temperature
measurements across a broad temperature range.

2 Measurement basis of the sensor

2.1 Selection of H2O absorption lines

The precision of laser-based sensors largely depends on the
absorption strength of the selected target lines, which directly
influences measurement accuracy. Therefore, selecting optimized
absorption lines is critical. In this study, I will elaborate on the
specific line selection criteria: 1) Target Molecule Selection: H₂O
was chosen as the target molecule for TDLAS-based temperature
measurement, with a designated temperature range of 500–2500 K.
This range not only covers the operational temperatures of our
laboratory tube furnace for experimental validation but also extends
to meet the requirements of future combustion flow field studies
in aerospace engines. 2) Band Selection: The chosen spectral band
lacks interference from major combustion products such as CO
and CO₂, and features uniformly distributed lower-state energy
levels, enabling measurements across a wide temperature span.
3) Laser Selection and Initial Line Database: Based on the above
analysis of Figure 1 and selection criteria (1) and (2), a DFB laser
operating near 1,850 nm (1.8–2 μm) was selected, covering the
5,400–5,409 cm⁻1 range. Absorption lines were initially chosen from
HITEMP2010 with line strengths at 296 K meeting a threshold
of S (T0)≥1.0 × 10−35 cm-2 ∙ atm−1. (4) Temperature-Based Line
Screening:Within this initial database, line strengthswere calculated
at 100 K intervals, and line strengths meeting S(T)≥1.0 × 10−6 cm−2

∙ atm−1 were selected to create temperature-specific databases from
500 to 2,500 K. (5) Signal-to-Noise Ratio (SNR) Optimization:
For each temperature interval, lines with peak absorbance values
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FIGURE 2
(A) Simulated absorption of H2O(in blue curve) at the temperature of 1600 K, the concentration of 50%, the pressure of 0.1 atm, and the pathlength of
23 cm. The absorption interferences of 20% CO2(in black curve), 10% CO (in red curve) and 10% CH4(in green curve) are also displayed in this figure; (B)
Distribution of the normalized line strength of the selected absorption lines in the temperature range of 500–2500 K.

yielding signal-to-noise ratios above 10 were further selected
and consolidated to form an optimized absorption line database
for temperature calculations over the 500–2,500 K range. Based
on the criteria, H₂O absorption lines between 5,400.5 cm⁻1 and
5,405.7 cm⁻1 were selected. Because the line selection incorporated
the temperature dependence of line strengths, each line in
the final combined database exhibits varying intensities across
temperatures, enabling accurate measurements from low to high
temperatures.

Based on the line selection criteria, the simulated H₂O
absorption spectra at 1,600 K (in blue) are shown in Figure 2A.
Additionally, in combustion flow environments, such as aerospace
engines and gas turbines, hydrocarbon-based fuels are commonly
used, resulting in maximum potential interference concentrations
of approximately 20% CO₂, 10% CO, and 10% CH₄. Hence,
potential interference from carbon dioxide (CO₂), carbonmonoxide
(CO), and methane (CH₄) was considered, with their simulated
absorption spectra displayed in black, red, and green, respectively.
The H₂O absorption is significantly stronger than that of other
gases, indicating that spectral interference from these gases can
be ignored. Figure 2B further illustrates the normalized line strength
distribution of the selected absorption lines for temperatures
ranging from 500 to 2500 K. The variation in line strengths for
each absorption line at different temperatures is distinguished by
the color gradient in the heatmap, clearly indicating the applicable
temperature calculation range for each line and demonstrating
how the line strengths and detectable absorption lines vary
with temperature, enabling temperature measurement over a
wide range.

2.2 Temperature retrieval method

The most common methods for retrieving temperature in
TDLAS combustion diagnostics are two-line thermometry [29,
30] and the Boltzmann Plot method [31–33]. However, these
approaches involve computing the integrated absorbance over a
wide spectral range, which can be computationally intensive. In this
study, we developed a broadband spectral fitting model based on
the univariate search method [34, 35] to determine temperature
and H₂O concentration. This model fits multiple H₂O absorption
lines across the absorption spectrum and continuous spectral bands,
which has been reported in our previous work [36].

The flowchart for the broadband spectral fitting model is
shown in Figure 3. First, a measured broadband spectral absorbance
(denoted as Abs_mea) is recorded, and a model-based spectral
absorbance (denoted as Abs_model), using Voigt profile, is
simulated based on input fitting parameters such as H₂O line
parameters from HITEMP2010 and experimental conditions (e.g.,
pressure, optical path length). A nonlinear univariatemethod (using
the fminbnd function in MATLAB) is then employed to search
for the optimal temperature (denoted as Topt) under an initial
concentration (denoted as X₀) and initial temperature (denoted
as Tinitial). A linear fitting between Abs_mea and Abs_model is
performed to obtain the slope (f ) and intercept (b) of the linear
fit according to the relationship of Absmea = f ∙Absmodel + b. The
concentration is then updated as Xopt = X0 ∙ f . After jth iterations,
the second norm of the fitting residuals (rnormr) is minimized and
the convergence condition (| Topt,j−1-Topt,j |<1、| Xopt,j−1-Xopt,j
|<1 × 10−3) is satisfied, yielding the optimal temperature and
concentration. Here, the rnormr value represents the second norm of
the spectral fitting residuals, which is the square root of the sum of
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FIGURE 3
Flowchart of temperature retrieval method.

squared residuals. The rnormr is shown in Equation 1:

rnormr=√
N

∑
j=1
[Abs_meaj −Abs_meaj,f itted]

2 (1)

Where Absmeaj is Abs_mea during the jth iteration, Absmeaj, fitted is
the fitting result accordingtoAbsmea = f ∙Absmodel + b.

Topt and Xopt are respectively the optimal temperature and
concentration, then rnormr can be further expressed by Equation 2:

arg min
T
√

N

∑
j=1
[Abs_meaj − f ∙Abs_model j(Topt ,Xopt) − b]

2 (2)

Where Absmodel j is Absmodel during the jth iteration,
N
∑
j=1
[Absmeaj − f ∙Absmodel j(Topt ,Xopt) − b]

2 represents the objective

function dependent on temperature Topt . The term
arg min

T
indicates the value of Topt that minimizes the objective function.
Specifically, arg min is an operator that finds the variable value at
which the function reaches its minimum, and Topt refers to this
variable in the context.

The typical example illustrating this method is shown in
Figures 4, 5. To fit the actual experimental conditions, an H₂O

absorbance spectrumwas simulated under the conditions ofPressure
= 1 atm, XH2O = 0.06, L = 23 cm and T = 1200 K. Gaussian noise
with an amplitude of ±0.005 and a 20% error in H₂O absorption line
parameters were added in theH₂O absorbance spectrum regarded as
measured spectrum. Then it was input into the broadband spectral
fitting model to obtain the trends for temperature, concentration,
and rnormr during each iteration, as shown in Figure 4.

In the first iteration (blue curve in Figure 4A), the optimal
temperature differs significantly from the true value of 1200 K, and
the corresponding rnormr (green curve in Figure 4B) is also at its
maximum. Figure 5A shows the Abs_mea (blue curve) and Abs_
model (red curve) for the first iteration, where a poor fit between
the measured and model-based spectrum is evident. Similarly,
Figure 5B presents the linear fit of the spectral data for the first
iteration, demonstrating a clear deviation between the measured
data and the linear fit. These results indicate that the temperature
and the concentration are not optimal in the first iteration. After
several iterations, the temperature and concentration in the 11th
iteration converge closely to the true values of 1200 K and 0.06,
respectively. Furthermore, the rnormr is minimized. The spectra
(Figure 5C) and the linear fit of the spectral data (Figure 5D) confirm
a much-improved fit, indicating that the optimal temperature and
concentration have been successfully determined.
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FIGURE 4
(A) Temperature and concentration of each iteration; (B) rnormr of each iteration.

FIGURE 5
(A) Absorption spectra (Abs_mea in blue curve&Abs_model in red curve) for the first iteration; (B) Spectral linear fitting result for the first iteration; (C)
Absorption spectra (Abs_mea in blue curve&Abs_model in red curve) for the 11th iteration; (D) Spectral linear fitting result for the 11th iteration.

3 Experimental setup and discussions

3.1 Experimental setup

A DFB laser (Nanoplus, S/N: 2899/03-02) operating near
1850.5 nm was selected as the laser source. A commercial laser

controller (LDC501, Stanford Research Systems) was used to
regulate the laser operating temperature, and a sawtooth wave
signal generated by a commercial function generator (SDG2082X,
SIGLENT) was applied to continuously scan the absorption lines of
H₂O.The temperature measurement performance of the sensor was
evaluated using a commercial tube furnace platform (GSL-1800X-
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FIGURE 6
Overall scheme of sensor temperature measurement.

III-₵50).The laser beamwas split into two parts using a fiber splitter,
as shown in Figure 6. Fifty percent of the beam was collimated by
a fiber collimator, transmitted through the temperature test region
in the furnace, and then detected by a photodetector (Thorlabs
PDA10D-E-C). The other half of the beam passed through a quartz
Fabry-Pérot etalon for frequency calibration and was detected by
another photodetector.The generated photocurrents were converted
into voltage signals using a custom-made transimpedance amplifier.
The signals were then digitized using a 16-bit data acquisition
card (NI PXIe-5172). To ensure a stable temperature region within
the furnace, the sapphire tube was inserted into both ends of
the furnace tube. Additionally, a pair of structures incorporating
internal gas pipes was designed to mount the collimator. The
structures allowed for purging the internal air gap with high-
purity nitrogen (99.99%) to eliminate absorption interference from
residual H₂O.

Seven equally spaced temperatures ranging from 600 K
to 1800 K were set within the furnace’s maximum tolerance
temperature of 2000 K. After reaching the preset temperatures,
pure water vapor (100% purity) at three different pressures (P1–P3:
3.5–6.5 KPa) was introduced into the furnace, with the pressures
monitored using amanometer (MKS628). For each temperature and
pressure, 500 raw spectral signals were recorded once the pressure
stabilized. Additional tests were conducted at higher pressures
(P4–P6: 10–103 KPa) using a mixture of pure water vapor and
high-purity nitrogen, with 500 spectral signals captured for each
set condition. Non-absorbing regions of the raw spectral signals
were fitted using a third-order polynomial to extract the H₂O
absorbance. Figure 7A displays the measured raw data and the
corresponding extracted H₂O absorbance. A spectral fitting result
using the broadband spectral fitting model is shown in Figure 7B,
demonstrating close agreement between the fitted and measured
H₂O absorbance. But there is still a deviation between −0.02 and
0.02 as shown in Figure 7C. The reason of this deviation can be
concluded as follows. DFB laser’s wide scanning range combined
with spectral broadening and weak absorption lines, introduces
errors in selecting non-absorbing regions, resulting in irregular
baseline fluctuations that subsequently cause baseline shifts during

spectral fitting, and this effect will be discussed in Section 3.2.
Moreover, the spectral line parameters in HITEMP2010 have errors
ranging from 5% to 20%, or even higher, and unavoidable spectral
noise also contributes to the deviation. Calibration of spectral
parameters and an increase in the SNR can reduce these errors,
but due to the large number of lines involved, this process is still
ongoing. However, as illustrated in Figure 7D, even with a deviation
between −0.02 and 0.02, rnormr converges to a minimum after 13
iterations, allowing optimal temperature and concentration values
to be obtained.

3.2 Results and discussions

3.2.1 Analysis of experimental results
To further validate the sensor’s performance, temperature

measurements were carried out in the furnace across a range of
600–1800 K and pressures from 3.5 to 103 KPa. An example of
the extracted H₂O absorption spectrum at temperatures between
600 K and 1800 K (at P3) is shown in Figure 8A. The absorption
intensity varies across this temperature range, corresponding
to the trend in line strength with temperature, as depicted
in Figure 2B.

The extracted H₂O absorption spectra were processed using
the broadband spectral fitting model to determine the measured
temperatures, with error bars and relative errors at different
temperatures and pressures shown in Figure 8B. At a constant
temperature, the standard deviations at different pressures remain
relatively consistent and close to the average values. The relative
error fluctuates within 2% for pressures ranging from 3.5 to
6.5 KPa, indicating stable temperature measurement performance.
At higher pressures (10–103 KPa), themaximum standard deviation
is 34.6 K (at 1800 K, 102.9 KPa), and the relative error ranges
from −1% to 3.5%. The relative error increases significantly at
temperatures above 1000 K and pressures exceeding 50 KPa. The
wide wavelength scanning range of the laser, combined with weak
spectral lines and spectral broadening, complicates the accurate
fitting of non-absorbing regions using polynomial methods,
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FIGURE 7
Processing of experimental measured data: (A) Experimental measured H2O absorption signal and extracted spectrum at T = 1000 K、XH2O =
0.0578、PH2O-N2 = 99.11KPa; (B) Spectral fitting result; (C) Spectral fitting residual between Abs_mea and Abs_model; (D) rnormr of each iteration.

FIGURE 8
(A) Experimental measured H2O absorption spectrum at 600–1800K (@P3); (B) Error bar chart (top panel) and relative error (bottom panel) of
experimental data at 600–1800K and 3.5–103 KPa.

leading to errors in absorbance extraction and temperature
measurement.

3.2.2 Simulation analysis
To evaluate the impact of absorbance extraction errors on

temperature accuracy, the absorption-free laser intensity (I₀) was
determined by extracted baselines at different temperatures and
pressures in Section 3.2.1. H₂O absorption spectra (denoted as α(υ))
were simulated at seven equal-interval temperatures between 600
and 1800 K and six different pressures (3.5–150 KPa), with Gaussian
noise (amplitude±0.005) and a 20%error in theH₂O line parameters

added to the simulated spectra. The transmitted intensity (It) is
calculated by Equation 3.

I t = I0 · exp[−(α(υ) +B(υ))] (3)

where B(υ) represents the added Gaussian noise.
Figure 9A shows an example of the simulated transmitted

intensity at 1000 K and 150 kPa, along with the extracted spectrum.
The error bars and relative errors are plotted in Figure 9B, showing
a maximum standard deviation of 60.1 K (at 1800 K, 150 KPa).
The relative error fluctuates within ±1% at pressures between
3.5 KPa and 10 kPa, but rises to 3% at pressures between 50 and
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FIGURE 9
(A) Simulated It (@1000K, 150 KPa) and the extracted spectra; (B) Error bar chart (top panel) and relative error (bottom panel) of simulation data at
600–1800K and 3.5–150 KPa.

FIGURE 10
(A) Simulated absorption spectrum (@500–2500K, 150 KPa); (B) Error bar chart (top panel) and relative error (bottom panel) of simulation data at
500–2500K and 3.5–150 KPa.

150 kPa, which is largely consistent with the experimental results.
This indicates that incorrect selection of non-absorbing regions
can reduce accuracy of absorbance extraction and temperature
measurements.

To further verify the impact of these factors and evaluate the
sensor’s performance at temperatures above 1800 K,H₂O absorption
spectra were simulated for ten equal-interval temperatures between
500 and 2500 K at six different pressures (3.5–150 KPa). Gaussian
noise (amplitude ±0.005) and a 20% error in spectral parameters

were added to the H₂O absorbance, where the process assumes
accurate absorbance extraction. Figure 10A shows an example of
the simulated spectra, while Figure 10B presents the corresponding
error bars and relative errors. The maximum standard deviation
of temperature is 105.14 K (at 2500 K, 150 KPa), and the relative
error fluctuates between 1.5% and 2%, which is lower than
the error shown in Figure 9B for the same conditions. These
results demonstrate that the sensor performs effectively over the
500–2500 K range, and that improper selection of non-absorbing
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regions directly reduces the accuracy of absorbance extraction
and temperature measurements, which will be addressed in future
work by developing a broadband baseline fitting model to enhance
temperature measurement accuracy.

4 Conclusion

In this study, we developed a TDLAS sensor operating near
1850.5 nm to scan multiple H₂O absorption lines within the
5,400–5,406 cm⁻1 range for wide-range temperature measurement.
The sensor’s performance was experimentally validated in a tube
furnace at temperatures ranging from 600 to 1800 K and pressures
from 3.5 to 103 kPa, where the relative error of temperature is within
3.5%. Additionally, numerical simulations demonstrated that the
sensor is capable of accurate temperaturemeasurements from 500 to
2500 K.The accuracy of the extracted absorbance plays a crucial role
in the overall measurement precision, and factors such as the wide
scanning range, weak spectral lines, and spectral line broadening
can influence the selection of non-absorbing regions and the quality
of absorbance extraction. Futureworkwill focus on the development
of a broadband baseline fitting model to mitigate the effects of
spectral interference and further improve temperaturemeasurement
accuracy. Overall, the sensor exhibits high measurement accuracy
over a wide temperature range and is well-suited for applications
in combustion environments with large temperature gradients,
such as the isolation and expansion sections of scramjet engines.
Additionally, this sensor provides a promising solution for
multiline temperature distribution measurements in future
diagnostics.
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