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Traffic congestion is a serious problem faced by many cities worldwide today.
Congestion warning information is one of the important influencing factors of
urban road congestion; To this end, based on the dynamics of infectious diseases,
a congestion warning information dissemination model considering the attitudes
of travelers and the network structure was constructed. The existence and
stability of the equilibrium points of non congestion warning information and
congestion warning information in the model were analyzed, and the optimal
control strategy of the model was proposed. Numerical simulation was
conducted to verify the results of theoretical analysis, simulate and analyze
the impact of changes in various parameters in the model on the
dissemination of congestion warning information, and perform sensitivity
analysis on several parameters. The results indicate that travelers are more
inclined towards “fast” modes of transportation and have a stronger
willingness to share congestion warning information. The dissemination range
of warning information is wider, which can play a positive role in reducing traffic
congestion pressure.
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1 Introduction

With the rapid development of the urban economy, urban traffic congestion has
brought many inconveniences to people’s travel, and alleviating the pressure of urban traffic
congestion has become an important task that urgently needs to be solved in the
development of many cities around the world. The dissemination of road congestion
warning information is an important way to prevent and control urban congestion [1]. The
attitude of travelers toward congestion warning information can affect the dissemination
process of warning information to some extent, thereby affecting the degree of urban traffic
congestion. Therefore, It is necessary to explore the disseminationmechanism of congestion
warning information considering the attitude of travelers and propose corresponding
optimization strategies.

In recent years, urban road congestion warning information has been disseminated
among users through social networks and navigation apps, providing travel plans for
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travelers and alleviating the pressure of urban traffic congestion.
Scholars from different fields have conducted numerous studies on
congestion warning information. Ahmad et al. proposed a novel
detection scheme (IVCD) to support the propagation of congestion
information that is about to occur on all roads in its coverage area
[2]. Many scholars began discussing the application of space supply
chain in transportation many years ago [3–9]. Yilmaz et al. proposed
an urban traffic monitoring system that utilizes participatory sensing
and cloud messaging capabilities and can issue warnings or
suggestions to drivers near congested roads or on the route [10].
Online sharing of congestion warning information is an effective
way to quickly spread congestion information. Travelers can make
timely choices and change routes, which is beneficial for controlling
vehicle diversion. Yang et al. proposed the concept of an event
consistency proof suitable for vehicle networks and introduced two-
stage transactions on the blockchain to send warning messages in
appropriate regions and time periods [11]. Shi et al. proposed a
framework for a physically informed spatiotemporal graph
convolutional neural network (PSTGCN) based on the theory of
physically informed deep learning to estimate congestion warning
information [12]. Ning et al. proposed the traffic warning message
dissemination system (TWMDS) framework, which allows travelers
to quickly rebuild their travel paths to alleviate traffic congestion
[13]. Humayun et al. promotes dissemination by using roadside
message proxies to provide real-time traffic information about traffic
congestion and unexpected traffic events [14]. Jiang et al. proposed
an innovative early traffic congestion warning system to monitor
and plan traffic conditions [15]. The above discussion describes the
research conducted by scholars on how to develop and send a
complete set of congestion warning information, indicating the
importance of congestion warning information for urban traffic
management.

There are lots of studies in transportation areas to discuss the
value of information, Zhang et al. developed a day-to-day route-
choice learning model with friends’ travel information [16]. Chen
et al. presented a model of a social network-based attitude diffusion
system in the context of activity and travel choice behavior [17]. Yu
et al. investigated the welfare effects of inaccurate pre-trip
information on commuters’ departure time choice under
stochastic bottleneck capacity in the morning commute [18]. Han
et al. experimentally investigated how routing advice influenced
strategic uncertainty and analyzed compliance behavior and
decision time that might affect strategic uncertainty [19].

The dissemination of congestion warning information is
strongly influenced by travelers’ psychological perceptions of
congestion status. Many scholars have studied the attitudes of
travelers toward road congestion. Khoo et al. believes that the
choice of travel route is directly related to drivers’ sensitivity to
congestion and that changing the travel route is positively correlated
with the degree of road congestion [20]. Huang et al. quantified
drivers’ response to congestion warning information and the traffic
congestion mitigation effect based on congestion warning
information [21]. Zhou et al. proposed that traffic congestion can
be spread among people or through public media, leading to the
interactive dissemination of warning information in the network
[22]. Huang et al. considered two states in the warning information
network, travelers receiving warning information and travelers not
receiving warning information, and studied the impact of travelers’

behavioral characteristics when facing warning information on the
spread of congestion risk [23]. The warning information is divided
into two types: “fast speed” and “short distance”. These two types of
warning information can lead travelers to make different travel
decisions. The impact of various warning information, such as “fast
speed” and “short distance”, on traffic congestion pressure should be
analyzed [24].

From the perspective of research methods, because the
dissemination process of urban congestion warning information
is similar to that of infectious diseases, infectious disease models can
be widely applied to analyze various transmission mechanism
problems. Saberi et al. (2020) described the dynamic process of
urban traffic congestion transmission and dissipation based on the
susceptibility infection recovery (SIR) model and monitored,
predicted, and controlled the status of urban traffic congestion
[25]. Jia et al. proposed an improved susceptible infected
susceptible (SIS) congestion propagation model to estimate the
probability of congestion risk (RPC) in subway networks [26].
Chen et al. established an urban traffic congestion propagation
model based on the SIS propagation theory to study the
mechanism and characteristics of urban traffic congestion
propagation [27]. For example, Ma et al. established a new UAU-
SEIR (Unaware Aware Unaware Susceptible Exposed Infected
Recovered) model to study the impact of individual and mass
media information dissemination on epidemic transmission [28].
She et al. constructed an SIS model to study the mutual influence
between the spread of epidemics and the spread of opinions on the
network [29]. Nian et al. explored the propagation patterns of public
opinion in social networks based on the susceptible exposed infected
recovered (SEIR) model and conducted empirical research on the
relationships among rumor propagation, user characteristics, and
differences in subject interests. The authors also analyzed the
common effects of individual factors and the social environment
[30]. Ojha et al. developed a model based on epidemiological
methods for detecting and controlling false information
propagation in OSNs [31].

In summary, most of the current research has focused on
developing congestion warning information and controlling the
spread of urban traffic congestion, with little research on the
dissemination patterns of congestion warning information. Some
studies have also considered the impact of congestion warning
information on urban traffic congestion but have considered only
two states: each traveler received or did not receive warning
information. In addition, when network platforms push warning
information, they directly push “fast” and “short distance”messages
without considering that travelers’ attitudes toward congestion
directly affect the dissemination of congestion warning
information. Therefore, to better predict and control the
dissemination process of congestion warning information, it is
necessary to consider the impact of network topology
characteristics and complex user behavior characteristics on the
dissemination process of congestion warning information in the
social network. In view of this, this article divides travelers into
ignorant, negative, positive, disseminator, and immune individuals
based on the classic infectious disease SIR model and considers the
structural characteristics of the congestion warning information
dissemination network to construct a congestion warning
information dissemination model to more accurately and
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reasonably describe the dynamic laws of congestion warning
information dissemination in social networks.

The remainder of this article is organized as follows: In the
section on model construction, a congestion warning information
dissemination model (SPEIR model) is constructed by considering
the attitudes of travelers toward road congestion. In the section on
model analysis, the basic regeneration number of the model is
calculated, and the stability of no congestion warning
information and the presence of congestion warning information
are analyzed. In the section on the optimal control model, the
optimal control model is constructed, and the optimal control
strategy is proposed. In the numerical simulation section, the
stability analysis in the previous section is simulated and verified,
and the impact of parameter changes on the propagation process of
congestion warning information is simulated. A sensitivity analysis
of the parameters is conducted, and numerical simulations are
conducted on the optimal control strategy. The conclusion
section provides a summary of the entire article and highlights
its limitations.

2 Materials and methods

The model constructed in this article is based on the classic SIR
model, assuming that congestion warning information propagates in
a mixed uniform network with nodes, each node represents a user in
the social network, and the total number of nodes is variable. The
information can be divided into 5 categories: (1) Ignorant, which
refers to the group of people who have not been exposed to
congestion warning information but are easily receptive to it,
denoted as S(t); (2) Negative individuals, who receive congestion
warning messages but are not sensitive to congestion and hold a
negative attitude, tend to choose the group with a “short distance”,
remember P(t); (3) Positive individuals, who receive congestion
warning information and are highly sensitive to road congestion,
hold a positive attitude and are more inclined to choose the group
with “fast speed”, denoted as E(t); (4) The disseminator, who
receives congestion warning information and chooses to share it
with other users, denoted as I(t). (5) Immune individuals who are
not interested in congestion warning information are referred to
as R(t).

In a social system, the number of users on social networks
dynamically changes over time. Therefore, this article assumes that
the number of people joining social networks per unit of time is B.
Moreover, considering that ignorant, negative, positive, spreaders,
and immune individuals may all exit social networks for certain
reasons, this article assumes that each type of user has the same
population migration rate μ.

When the ignorant individuals receive the congestion warning
information, if they are willing to share congestion warning
information with other users, they will transform into
distributors with probability λ; if the ignorant person is not
interested in congestion warning information, they will transition
to an immune person based on probability η ; if the ignorant tends to
have a shorter distance due to their sensitivity to traffic congestion,
preference for congestion risk, or other reasons, then probability θ1
becomes a negative factor; if there is a tendency toward “fast speed”,
then the probability θ2 changes to a positive one.

Although passive individuals are not sensitive to traffic
congestion, if they are willing to share congestion warning
information with others, they will transform into distributors
based on probability α; if a negative person gradually becomes
uninterested in congestion warning information, they will
transition to an immune person based on probability γ1. If the
active participants are willing to share congestion warning
information, they will transform into disseminators based on
probability γ2 ; the disseminator will eventually transform into
an immune recipient with a probability of ε. This article assumes
that the immune state is the final absorption state in the network;
that is, the immune recipient will not undergo a state change
at any time.

In addition, the impact of network structure on the
dissemination process of congestion warning information should
be considered. If each social network user is viewed as a node in the
network and the connections between users are viewed as edges
between nodes, then the social network can be represented as a
directed graph � 〈V, E〉. Among them, V represents the set of
nodes, E represents the set of edges, and (u, v) ∈ E represents the
relationship edge to which node u points; that is, node u connects to
node v. Obviously, the more edges a node has in a network, the
closer the connections between nodes are. The more paths
congestion warning information can propagate, the more
conducive it is to the dissemination of congestion warning
information. In graph theory, the degree ki of node vi is defined
as the number of edges connected to that node. The average degree
ki of all nodes vi in a network is called the average degree of the
network, �k � 1

N∑N
i�1ki, where N represents the total number of

nodes in the network. This article uses the average degree to
describe the degree of closeness of the social network structure.

Based on the above assumptions, the state transition process of
social network users during the dissemination of congestion
warning information is obtained, as shown in Figure 1. Table 1
provides the meaning of each parameter in Figure 1, where all
probabilities are positive constants.

(1) As shown in Figure 1, The changes in the states of the
ignorant, negative, positive, spreader, and immune
individuals per unit time are as follows: Within a unit of
time, there are B users who have joined social networks and
are all in an ignorant state; that is, they have not yet received
congestion warning information. The population density of
ignorant individuals who come into contact with distributors
and receive congestion warning information is
�k(θ1 + λ + θ2 + η)S(t)I(t). Similarly, the density of people
who quit social networks for some reason is μS(t). Therefore,
the density of the ignorant population changes by B − �k(θ1 +
λ + θ2 + η)S(t)I(t) − μS(t) per unit time.

(2) The density of people who transform from ignorant to
negative within a unit of time is θ1S(t)I(t)�k. The density
of people who are willing to share congestion warning
information with others and become spreaders is αP(t).
The population density of passive individuals who forget
or are not interested in congestion warning information,
thus transforming into immune individuals. The density of
negative individuals who withdraw from social networks for
some reason is μP(t). Therefore, the change in the density of
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negative individuals per unit of time is θ1S(t)I(t)�k − αP(t) −
γ1P(t) − μP(t).

(3) The density of people who transform from ignorant to
active within a unit of time is θ2S(t)I(t)�k. Similarly, the
density of people who are willing to share congestion
warning information with others and become

distributors is βE(t). Similarly, the population density of
active participants who forget or are not interested in
congestion warning information, thus transforming into
immune recipients, is γ2E(t). Similarly, the density of
active users who withdraw from social networks for
some reason is μE(t). Therefore, the population density

FIGURE 1
The flow diagram of the model.

TABLE 1 The parameters description of SPEIR model.

Parameter Description

S(t) The population density of ignorant individuals at time t

P(t) The population density of negative individuals at time t

E(t) The population density of positive individuals at time t

I(t) The population density of disseminators at time t

R(t) The population density of immunized individuals at time t

B The number of immigrants in the social system per unit time

μ Removal rate per unit time

λ The probability of the ignorant transforming into the disseminator

θ1 The probability of the ignorant transforming into the negative

θ2 The probability of the ignorant transforming into positive

α The probability of the negative transforming into the disseminator

β The probability of the positive transforming into the disseminator

γ1 The probability of the negative transforming into the immune

γ2 The probability of the positive transforming into the immune

ε The probability of the disseminator transforming into the immune

�k Network average
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FIGURE 2
Stability of the equilibrium point of (A) R0 < 1 and (B) R0 > 1

FIGURE 3
Trend of the density of disseminators over time under (A) different λ values, (B) different �k values, (C) different α values and (D) different β values.
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of positive individuals varies by θ2S(t)I(t)�k − βE(t) −
γ2E(t) − μE(t) per unit time.

(4) The population density of ignorant individuals transforming
into disseminators within a unit of time is λS(t)I(t)�k; the
density of the population where negatives transform into
disseminators is αP(t); the population density of positive
individuals transforming into disseminators is βE(t); the
population density of spreaders who forget or are not
interested in congestion warning information and thus
become immune recipients is εI(t); and the population
density of disseminators who withdraw from social
networks for some reason is μI(t). Therefore, the
population density of the spreader varies by λS(t)I(t)�k +
αP(t) + βE(t) − εI(t) − μI(t) per unit time.

(5) The population density of uninformed, passive, active, and
disseminators who become immune due to their neutrality or
lack of interest in congestion warning information per unit of
time is ηS(t)I(t)�k + γ1P(t) + γ2E(t) + εI(t); the population
density of immune individuals who withdraw from social
networks for some reason is μR(t). Therefore, the population
density of immunized individuals varies by ηS(t)I(t)�k +
γ1P(t) + γ2E(t) + εI(t) − μR(t).

Based on the above analysis, this article considers the congestion
warning information dissemination model for the sensitivity of
travelers to traffic congestion as follows:

dS t( )
dt

� B − θ1S t( )I t( )�k − λS t( )I t( )�k − θ2S t( )I t( )�k − ηS t( )I t( )�k − μS t( ),
dP t( )
dt

� θ1S t( )I t( )�k − αP t( ) − γ1P t( ) − μP t( ),
dE t( )
dt

� θ2S t( )I t( )�k − βE t( ) − γ2E t( ) − μE t( ),
dI t( )
dt

� λS t( )I t( )�k + αP t( ) + βE t( ) − εI t( ) − μI t( ),
dR t( )
dt

� ηS t( )I t( )�k + γ1P t( ) + γ2E t( ) + εI t( ) − μR t( ).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(1)

Satisfy S(t) + P(t) + E(t) + I(t) + R(t) � 1

3 Stability analysis of the model

It is not difficult to determine that the model has a balance point
E0 � (Bμ, 0, 0, 0, 0) without congestion warning information. The
existence of this equilibrium point means that when the
evolution of the congestion warning information dissemination
system reaches a steady state, there will be no individual users
infected by the congestion warning information, that is, the
congestion warning information will no longer spread in the
network. This article uses the next-generation matrix method to
calculate the basic regeneration number R0 [32] of Equation 1. The
specific calculation process is shown in Equations 2–5.

Let X � (I, R, P, E, S)T, then Equation 1 can be written
as dX

dt � F(X) − V(X)

F X( ) �

λSI�k
0
0
0
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, V X( )

�

εI + μI − αP − βE
μR − ηSI�k − γ1P − γ2E − εI
αP + γ1P + μP − θ1SI�k
βE + γ2E + μE − θ2SI�k

θ1SI�k + λSI�k + θ2SI�k + ηSI�k + μS − B

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (2)

We can get:

F � λS�k 0
0 0

( ), V � ε + μ 0
−ε μ

( ). (3)

Through calculation, it can be concluded that

FV−1 �
�kSλ

μ + ε
0

0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎠. (4)

Therefore, the basic regeneration number of system Equation 1
is the spectral radius FV−1, represented by R0, and the calculated
basic regeneration number of the system is:

R0 �
�kBλ

μ μ + ε( ). (5)

Theorem 1. When R0 > 1, there exists an equilibrium point
E*(S*, P*, E*, I*, R*) (Equation 6) for the propagation of
congestion warning information in Equation 1, where (The proof
process can be found in Supplementary Appendix A)

S* � μ + ε( ) μ + α + γ1( ) μ + β + γ2( )
�k θ1α μ + β + γ2( ) + θ2β μ + α + γ1( ) + λ μ + α + γ1( ) μ + β + γ2( )[ ],

P* � I*�kS*θ1
μ + α + γ1

, E* � I*�kS*θ2
μ + β + γ2

,

I* � R0μ θ1α μ + β + γ2( ) + θ2β μ + α + γ1( )[ ]
λ θ1 + θ2 + λ + η( )�k μ + α + γ1( ) μ + β + γ2( ) + μλ R0 − 1( )

λ θ1 + θ2 + λ + η( )�k,
R* � S*η + P*γ1 + E*γ2 + εI*

μ
.

(6)

FIGURE 4
Trend of negative population density over time under different
θ1 values.
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Theorem 2. When R0 < 1, the equilibrium point E0 of the
congestion free warning information is locally asymptotically
stable in the feasible domain. (The proof process can be found in
Supplementary Appendix B)

Theorem 3. When R0 < 1, the equilibrium point E0 of the
congestion-free warning information is globally asymptotically
stable. (The proof process can be found in
Supplementary Appendix C)

Theorem 4. When R0 > 1 occurs, the congestion warning
information at equilibrium point E* is locally asymptotically
stable. (The proof process can be found in
Supplementary Appendix D)

Theorem 5. The congestion warning information has an
equilibrium point E*(S*, P*, E*, I*, R*) that is globally
asymptotically stable. (The proof process can be found in
Supplementary Appendix E)

4 Optimal control model

Convert the four proportional constants λ, θ2, α, β in the model
into control variables λ(t), θ2(t), α(t), β(t)

Therefore, it can be proposed that the objective function is
Equation 7:

J λ, θ2, α, β( ) � ∫T

0
I t( ) + E t( ) − C1

2
λ2 t( ) − C2

2
θ22 t( ) − C3

2
α2 t( ) − C4

2
β2 t( )[ ]dt.

(7)
Satisfy the following state system:

dS

dt
� B − θ1SI�k − λ t( )SI�k − θ2 t( )SI�k − ηSI�k − μS,

dP

dt
� θ1SI�k − α t( )P − γ1P − μP,

dE

dt
� θ2 t( )SI�k − β t( )E − γ2E − μE,

dI

dt
� λ t( )SI�k + α t( )P + β t( )E − εI − μI,

dR

dt
� ηSI�k + γ1P + γ2E + εI − μR.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

The initial conditions of system Equation 8 meet (Equation 9):

S 0( ) � S0, P 0( ) � P0, E 0( ) � E0, I 0( ) � I0, R 0( ) � R0 (9)

Where:

λ t( ), θ2 t( ), α t( ), β t( ) ∈ U

≜ λ, θ2, α, β( ) λ t( ), θ2 t( ), α t( ), β t( )( )
measurable, 0≤ λ t( ), θ2 t( ), α t( ), β t( )≤ 1,∀t ∈ 0, T[ ]

∣∣∣∣∣∣∣∣{ }.
(10)

while U is the admissible control set (Equation 10). The time interval of
control is between 0 andT,C1, C2, C3, C4 are positiveweight coefficients
shown the control strength and importance of four control measures.

Theorem 6. An optimal control pair (λ*, θ2*, α*, β*) ∈ U exists so
that the function is established below (Equation 11) (The proof
process can be found in Supplementary Appendix F):

J λ*, θ2*, α*, β*( ) � max J λ, θ2, α, β( ): λ, θ2, α, β( ) ∈ U{ }. (11)

Theorem 7. For the optimal control pair (λ*, θ2*, α*, β*) of state
System Equation 8, there exist adjoint variables ξ1, ξ2, ξ3, ξ4, ξ5 that
satisfy (Equation 12) (The proof process can be found in
Supplementary Appendix G):

dξ1
dt

� θ1I�k ξ1 − ξ2( ) + λ t( )I�k ξ1 − ξ4( ) + θ2 t( )I�k ξ1 − ξ3( )
+ηI�k ξ1 − ξ5( ) + ξ1μ,

dξ2
dt

� α t( ) ξ2 − ξ4( ) + γ1 ξ2 − ξ5( ) + ξ2μ,

dξ3
dt

� 1 + β t( ) ξ3 − ξ4( ) + γ2 ξ3 − ξ5( ) + ξ3μ,

dξ4
dt

� 1 + θ1S�k ξ1 − ξ2( ) + λ t( )S�k ξ1 − ξ4( ) + θ2 t( )S�k ξ1 − ξ3( )
+ηS�k ξ1 − ξ5( ) + ε ξ4 − ξ5( ) + ξ4μ.

dξ5
dt

� ξ5μ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(12)

With boundary conditions (Equation 13):

ξ1 T( ) � ξ2 T( ) � ξ3 T( ) � ξ4 T( ) � ξ5 T( ) � 0. (13)
In addition, the optimal control pair (λ*, θ2*, α*, β*) of state

System Equation 8 can be given by (Equation 14):

FIGURE 5
Trend of population density of active participants over time
under different θ2 values.
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λ* t( ) � min max
SI�k ξ1 − ξ4( )

C1
, 0{ }, 1{ },

θ2* t( ) � min max
SI�k ξ1 − ξ3( )

C2
, 0{ }, 1{ },

α* t( ) � min max
P ξ2 − ξ4( )

C3
, 0{ }, 1{ },

β* t( ) � min max
E ξ3 − ξ4( )

C4
, 0{ }, 1{ }.

(14)

5 Numerical simulations

In this section, MATLAB R2021a simulation software is used,
and the Runge − Kuttamethod is used to numerically simulate the
differential equation system given in Equation 1. To verify the
theoretical analysis results, the impacts of different λ, θ1, θ2, α, β, �k
parameters in the model on the propagation process of congestion
warning information are analyzed, a sensitivity analysis is
conducted on R0, and the optimal control problem is
numerically simulated. Assuming that congestion warning
information is initially propagated in a mixed uniform network
with N nodes, each node represents the users who can receive
congestion warning information,N(0) � 10000. In the initial state,
there are only 100 propagators, 100 positives, and 100 negatives,
namely, I(0) �P(0) �E(0) � 100

N � 0.01,R(0) � 0, S(0) � 1− I(0)−
P(0)−E(0)−R(0) � 0.97 .

In B � 0.01, �k � 7, μ � 0.1, λ � 0.3, θ1 � 0.5, θ2 � 0.6, η � 0.2, α
� 0.2, β � 0.2, γ1 � 0.3, γ2 � 0.3, ξ � 0.6, the population density
changes of the uninformed, active, passive, spreading, and
immune users who can receive congestion warning information
in R0 � 0.3< 1 are shown in Figure 2A. In the process of
disseminating congestion warning information, the population
density values of positive, negative, disseminators, and immune
individuals increase first, reaches their peak values, then begin to
decrease, and finally become 0; the density of the ignorant

population rapidly decreases until it reaches equilibrium.
Theorems 2, 3 indicate that when R0 < 1 occurs, congestion
warning information will eventually disappear in the propagation
network, indicating that the equilibrium point of no congestion
warning information is stable. The simulation results shown in
Figure 2A further confirm this conclusion.

When B � 0.1, �k � 10, μ � 0.1, λ � 0.7, θ1 � 0.5, θ2 � 0.6, η �
0.2, α � 0.2, β � 0.2, γ1 � 0.3, γ2 � 0.3, ξ � 0.1, the population
density changes of the ignorant, active, passive, spreading, and
immune users who can receive congestion warning information
in R0 � 35> 1 are shown in Figure 2B. In the process of
disseminating congestion warning information, as shown in
Figure 2B, the population density values of positive, negative,
spreading, and immune individuals in the congestion warning
information first increase, reaches their peak values, and
gradually stabilize. The population density of ignorant individuals
gradually decreases until it reaches equilibrium. Theorems 1, 4, 5
indicate that the congestion warning information of the model
established in this article has a stable equilibrium point at R0 > 1;
that is, it will continue to exist in the network at a certain amount.
The simulation results shown in Figure 2B further verify the above
conclusion.

Figures 3A–D depict the effects of different parameters in the
model on the population density of congestion warning information
disseminators. Figure 3A illustrates the trend of the population
density of spreaders over time when B � 0.01, �k � 10, μ � 0.1, θ1 �
0.5, θ2 � 0.6, η � 0.2, α � 0.2, β � 0.2, γ1 � 0.3, γ2 � 0.3, ξ � 0.6 and
λ take different values. Figure 3B illustrates the trend of the
population density of spreaders over time when different values
of B � 0.01, μ � 0.1, λ � 0.3, θ1 � 0.5, θ2 � 0.6, η � 0.2, α � 0.2, β �
0.2, γ1 � 0.3, γ2 � 0.3, ξ � 0.6 and �k are taken. The results show
that the larger λ is, the greater the probability of ignorant
individuals spreading congestion warning information, the
higher the peak density of the spreader population, and the
shorter the time required to reach the peak. The network
average λ represents the degree of closeness between users. As
�k increases, the disseminator of congestion warning information

FIGURE 6
(A, B) The sensitivity analysis of the basic reproduction number.
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will reach a higher peak in a shorter time. Figures 3A, B show that
if ignorant individuals have a greater willingness to share
congestion warning information with others or have closer
contact with users after being exposed to it, this further
promotes the dissemination of congestion warning
information and alleviates traffic congestion pressure.

Figure 3C shows the trend of the population density of
spreaders over time when B� 0.01,μ� 0.1,λ� 0.3,θ1 � 0.5,θ2 �
0.6,η� 0.2,β� 0.2,γ1 � 0.3,γ2 � 0.3,ξ � 0.6, �k� 10 and α take
different values. The results show that the larger α is, the
more willing people who are negative about congestion
warning information are to make changes, realize the adverse
effects of congestion on traffic, and share congestion information
with others. The peak density of the spreader population is
greater, and the time required to reach the peak is shorter.
Figure 3D shows the trend of the population density of
spreaders over time when B� 0.01,μ� 0.1,λ� 0.3,θ1 � 0.5,θ2 �
0.6,η� 0.2,α� 0.2,γ1 � 0.3,γ2 � 0.3,ξ � 0.6, �k� 10 and β take
different values. The results indicate that as the value of β

increases, the willingness of congestion warning information
enthusiasts to disseminate congestion warning information
increases, resulting in a significant increase in the population
density of disseminators.

Figure 4 shows the trend of the density of negative individuals
over time when B � 0.01, μ � 0.1, λ � 0.3, θ2 � 0.6, η � 0.2, α �
0.2, β � 0.2, γ1 � 0.3, γ2 � 0.3, ξ � 0.6, �k � 10 and θ1 take
different values. Figure 5 shows the trend of the density of
positive individuals over time when B� 0.01,μ� 0.1,λ� 0.3,θ1 �
0.5,η� 0.2,α� 0.2,β� 0.2,γ1 � 0.3,γ2 � 0.3,ξ � 0.6, �k� 10 and θ2
take different values. The simulation results show that when
an ignorant individual receives congestion warning information,
if the ignorant individual tends to travel a shorter distance, the
population density of the passive will increase with increasing
congestion; if ignorant individuals tend to travel faster, then the
population density of positive individuals will increase with
increasing θ2 .

6 Discussion

To evaluate the influence of parameters �k, λ, ε on the basic
regeneration number R0, this article conducts a sensitivity
analysis on R0. Based on the previous calculation of R0 � �kBλ

μ(μ+ε), it
can be concluded that (Equation 15)

∂R0

∂�k
� Bλ

μ μ + ε( )> 0 (15)

This means that as �k increases, the basic regeneration numberR0

also increases, as shown in Figure 6A. This indicates that the greater
the closeness between users is, the more conducive they are to the
dissemination of congestion warning information; that is, the more
people there are in contact with the disseminator, the more likely
they are to be to spread congestion warning information.

For parameters λ and ε, it can be obtained that
(Equations 16, 17)

∂R0

∂λ
�

�kB

μ μ + ε( )> 0 (16)

∂R0

∂�k
� −�kBλ
μ μ + ε( )2 < 0 (17)

This means that the basic regeneration number R0 increases
with increasing λ and decreases with increasing ε. As shown in
Figure 6B. From this, it can be seen that when ignorant individuals
are exposed to congestion warning information, they are more
willing to spontaneously spread congestion warning information,
which promotes the dissemination of congestion warning
information. In addition, if the disseminator is more likely to
forget or shift his or her attention to congestion warning
information, the dissemination of congestion warning
information will be suppressed. In fact, the current speed of
updating social information on the internet is extremely fast, and
the attention given to irrelevant congestion warning information is
very limited. Therefore, the forgetting mechanism has a significant

FIGURE 7
Trend of population density of (A) E(t) and (B) I(t) over time under the different control strategies.
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impact on the dissemination process of congestion warning
information.

7 Optimal control simulation

To analyze the impact of the optimal control (λ*, θ2*, α*, β*) on
the propagation process of congestion warning information when
adopting the optimal control strategy, this section simulates the
changes in the active participant E(t) and the disseminator I(t)
during the period from t � 0 to t � 20. The simulation is divided
into the following three situations: (1) no control, (2), control of only
a single variable, and (3) optimal control strategy.

In the uncontrolled strategy, when B � 0.1, μ � 0.1, λ � 0.3, θ1 �
0.5, θ2 � 0.6, η � 0.2, α � 0.2, β � 0.2, γ1 � 0.3, γ2 � 0.3, ξ � 0.6,
�k � 10, let B � 0.1, μ � 0.1, λ � 0.3, θ1 � 0.5, η � 0.2, α � 0.2, β �
0.2, γ1 � 0.3, γ2 � 0.3, ξ � 0.6, �k � 10 to control θ2*, let B � 0.1, μ �
0.1, λ � 0.3, θ1 � 0.5, θ2 � 0.6, η � 0.2, α � 0.2, γ1 � 0.3, γ2 � 0.3,
ξ � 0.6, �k � 10 to control β* and the trend of population density
changes among active participants when adopting the optimal
control strategy. As shown in Figure 7A, when the optimal
control strategy is adopted for θ2* and β*, the density of active
participants reaches its maximum value, indicating that the more
people tend to be “fast”, the wider the dissemination range of
congestion warning information, which is beneficial for
alleviating traffic congestion pressure.

When B � 0.1, μ � 0.1, λ � 0.3, θ1 � 0.5, θ2 � 0.6, η � 0.2, α �
0.2, β � 0.2, γ1 � 0.3, γ2 � 0.3, ξ � 0.6, �k � 10, let B � 0.1, μ �
0.1, λ � 0.3, θ1 � 0.5, θ2 � 0.6, η � 0.2, α � 0.2, γ1 � 0.3, γ2 � 0.3,
ξ � 0.6, �k � 10 control β*, let B � 0.1, μ � 0.1, θ1 � 0.5, θ2 � 0.6, η �
0.2, α � 0.2, β � 0.2, γ1 � 0.3, γ2 � 0.3, ξ � 0.6, �k � 10 control λ*, let
B � 0.1, μ � 0.1, λ � 0.3, θ1 � 0.5, θ2 � 0.6, η � 0.2, β � 0.2, γ1 �
0.3, γ2 � 0.3, ξ � 0.6, �k � 10 control α* and change the density of the
spreader population when adopting the optimal control strategy. As
shown in Figure 7B, when λ*, α* and β* adopt the optimal control
strategy, the density of the spreader population reaches its
maximum value. This indicates that the greater the willingness of
the ignorant S(t), the passive P(t), and the active E(t) to share
congestion warning information is, the more conducive it is to the
rapid dissemination of congestion warning information, which is
conducive to the quick response of travelers and thus alleviates
traffic congestion pressure.

8 Conclusion

In this paper, a congestion warning information dissemination
model is constructed by considering the influence of travelers’
attitudes on the dissemination of congestion warning
information. The basic reproduction number is calculated, and
the existence and stability of the equilibrium points of no
congestion warning information and congestion warning
information in the model are analyzed. The existence of the
optimal control of the model is verified, and the optimal control
strategy of the model is proposed. In addition, the basic theorem of
the model and the impact of changes in various parameters in the
simulation model on the propagation process of congestion warning
information are verified through numerical simulation, and

sensitivity analysis and optimization control simulation are
carried out. The research conclusions of this article are as follows:

(1) Based on the combination of two attitudes (positive and
negative) of travelers toward road congestion, the SPEIR
model for both negative and positive individuals is
introduced on the basis of the classic infectious disease
model. Moreover, the dissemination of congestion warning
information is influenced by the topology of social networks.
Therefore, the network average is introduced to characterize
the tightness of the social network structure, increasing the
realism and reasonableness of the model.

(2) Based on the next-generation matrix method, the basic
regeneration number is determined, and the existence and
stability of the equilibrium points of congestion free warning
information and congestion warning information in the
model are evaluated. When the basic regeneration number
R0 < 1 is reached, the congestion warning information
eventually disappears from the system and reaches
stability. When R0 > 1 occurs, congestion warning
information will continue to exist in the system and
gradually stabilize.

(3) By utilizing optimal control theory, establishing and
discussing optimal control problems, and formulating
optimal control strategies that simultaneously increase the
population density of both positive and disseminator,
important reference opinions are provided for controlling
or mitigating traffic congestion.

(4) The sensitivity of travelers to road congestion directly affects
the dissemination process of congestion warning information.
A negative or more inclined attitude toward road congestion
after receiving congestion warning information is not
conducive to alleviating traffic congestion pressure; if
travelers are more sensitive to road congestion, they are
more inclined to choose “fast” modes of transportation
and have a stronger willingness to share congestion
warning information, which is beneficial for preventing
and controlling traffic congestion outbreaks. Therefore,
relevant departments have taken timely measures to
achieve vehicle diversion and real-time push congestion
warning information to improve the sensitivity of traveler
information, providing a reference for using congestion
warning information dissemination models to suppress
practical problems of road congestion.

There are some limitations in this paper. First, the average field
method is used to construct a congestion warning information
dissemination model, without considering the impact of social
network heterogeneity on the process of congestion warning
information dissemination. Therefore, in the future, congestion
warning information dissemination models for different network
structures should be investigated. Second, Only MATLAB was used
for numerical simulation of the model, but the real process of
congestion warning information dissemination is often
more complex.

Therefore, in the future, the effectiveness of the model can be
further verified in a real network environment, taking into account
various individual psychological and behavioral factors, as well as

Frontiers in Physics frontiersin.org10

Yan et al. 10.3389/fphy.2024.1490499

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1490499


the dynamic laws of congestion warning information dissemination
evolution in a dual-layer coupled online and offline social network.
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