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The vibration of micro-circular
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Arabia

This work introduces a novel mathematical framework for examining the
thermal conduction characteristics of a viscothermoelastic, isotropic micro-
circular ring. The foundation of the model is Kirchhoff’s theory of love plates.
The governing equations have been developed by using Lord and Shulman’s
generalized thermoelastic model. For a viscothermoelasticity material, Young’s
modulus incorporates an additional fractional derivative consideration such as
the classical Caputo and Caputo-Fabrizio types, alongside the normal derivative.
The outer bounding plane is thermally loaded by ramp-type heating. Laplace
transform has been applied and its inverse has been obtained numerically.
Graphical comparisons between the definitions of the ordinary derivative and
the fractional derivatives were incorporated into the study. The objective was to
study the impacts of the fractional derivative order on the vibration distribution
of a ceramic micro-circular ring and obtain novel results. It is ascertained that
the fractional derivative order and resonator thickness have no discernible effect
on the distribution of thermal waves; nevertheless, the ramp heat parameter is
identified as having a significant impact. The order of the fractional derivatives
and the resonator’s thickness, have a significant impact on themechanical wave.
It has been demonstrated that the ramp heat parameter effectively regulates the
energy damping in ceramic resonators.

KEYWORDS

fractional derivative, micro-circular ring, resonator, viscothermoelasticity, ceramic,
Kirchhoff’s Love plate, ramp-type heat

Introduction

Micro-circular rings and plates have substantial uses in MEMS (Micro-Electro-
Mechanical Systems). They may be used in sensors for accurate measurement, such
as the detection of pressure or acceleration. Actuators facilitate the attainment of
regulated motions. Their small size and distinctive mechanical characteristics render
them optimal for tiny devices, augmenting the performance and utility of MEMS across
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diverse domains like as electronics and biomedicine [1, 2]. Many
researchers introduced many applications of micro-circular rings
and plates due to their importance in the construction of various
electromechanical micro-resonators. Hao conducted a study on the
reduction of vibrations in micro/nanoelectromechanical systems
by investigating thermoelastic attenuation using circular thin-plate
resonators [3]. A study on thermoelastic damping of circular-plate
resonators, with a special emphasis on the axisymmetric out-of-
plane vibration has been conducted by Sun and Tohmyoh [4]. The
influence of thermoelastic damping on the vertical oscillation of
circular plate resonators has been investigated by Sun and Saka [5].
The damping of vibrations that occur out-of-plane for a circular
thin plate with generalized viscothermoelastic properties has been
computed by Grover [6]. The dual-phase-lag (DPL) model has been
employed byGuo et al. to develop the thermoelastic damping theory
for micro and nanomechanical resonators [7, 8]. When studying
the behaviour of materials that change over time, it is crucial
to consider the properties of viscoelastic materials or mechanical
relaxation. Biot has analyzed the ideas of viscothermoelasticity
and the principles of vibration in the field of thermodynamics
[9, 10]. Drozdov constructed a mathematical model to describe
the behaviour of polymers when subjected to the combined
influences of viscosity, temperature variations, and deformation
under high stresses [11]. Ezzat and El-Karmany employed an
innovative thermo-viscoelastic model to investigate how volumetric
characteristics impact the thermoelastic behaviour of viscoelastic
materials [12]. Carcione et al. employed computer methodology to
study the transmission of waves in a solid substance, utilizing the
mechanical model of Kelvin-Voigt [13]. Grover conducted research
on transverse vibrations in small-scale viscothermoelastic beam
resonators [6, 14]. The mathematical equations that depict the
lateral vibrations of a slender beam composed of homogeneous
thermoelastic material, which has minuscule voids at a microscopic
level have been analyzed by Sharma and Grover [15]. The
inclusion of memory in fractional systems offers a legitimate
justification for this generalization, as the formation of romantic
relationships is fundamentally affected by memory [16, 17]. The
fractional derivative is a powerful technique for understanding the
origins and lineage of different materials and processes. Research
has demonstrated that using fractional derivatives in real-world
modelling is more appropriate than using typical integer derivatives
[18–20]. A multitude of scholars have dedicated their efforts to
the advancement of a groundbreaking concept, beginning with the
works of Riemann–Louville and Caputo, in the field of fractional
derivatives [21–23]. Youssef developed a theory of thermoelasticity
that integrates the notion of fractional heat conductivity and
expands upon preexisting thermoelasticity theories [24, 25]. Sherief
et al. introduced a different theory of thermoelasticity by employing
the methodology of fractional calculus [26].

The fractional calculus models demonstrate more consistency
in comparison to classic models due to their precise prediction
of delayed effects. Researchers have shown that new fractional
derivatives might potentially solve the issue of exceptional or
non-singular kernels by providing an exponential solution to the
problem of a single kernel in fractional derivatives concepts.
There exist three distinct categories of fractional derivatives,
namely Liouville-Caputo, Riemann-Liouville, and Caputo-Fabrizio
[27, 28]. Consequently, several innovative thermoelastic models

were introduced, all of which depended on the fundamental
notion of fractional calculus. Magin and Royston developed
a model that utilized the fractional deformation derivative to
describe the behaviour of the material [29]. A Hookean solid
is a substance that demonstrates zero-order derivative behaviour,
while a Newtonian fluid is a substance that demonstrates first-
order derivative behaviour. The heat exchanges at an intermediate
level and the splitting process for viscothermoelastic material are
described in the spectrum [29]. A new theory of generalized
thermoelasticity, which relied on the strain resulting from factional
order derivative has been proposed by Youssef. The stress-strain
relation has been considered based on a new and distinct addition
to the Duhamel-Neumann framework by Youssef [30]. Youssef has
effectively solved the issue of thermoelasticity in a one-dimensional
system by addressing the fractional order strain. More precisely, he
has examined an application where half of the space is involved,
based on the frameworks proposed by Biot, Green-Lindsay, Lord-
Shulman, and Green-Naghdi type-II [30]. Awad et al. investigated
the occurrence condition for the thermal resonance phenomenon
during the electron-phonon interaction process in metals based on
the hyperbolic two-temperature model [31]. Awad presented the
mathematical description of a two-dimensional unsteady magneto-
hydrodynamics slow flowwith thermoelectric properties (TEMHD)
on an infinite vertical partially hot porous plate [32].

This paper introduces a novel mathematical framework for
analyzing the heat conduction of a viscothermoelastic, isotropic
micro-circular ring. The notion is based on Kirchhoff ’s plate
hypothesis. The governing equations were constructed based on
Lord and Shulman’s extended thermoelastic model. This model
incorporates Young’s modulus, which encompasses the normal
derivative as well as the fractional derivative definitions of classical
Caputo and Caputo-Fabrizio. The study report utilizes a micro-
circular ring to illustrate the concept of scaled viscothermoelasticity.
The micro-circular ring’s outer bounding plane was subjected
to heating using a ramp-type method. Numerical methods were
employed to compute the inverse of the Laplace transform. The
investigation involved doing visual comparisons between normal
and fractional derivative definitions.The objective was to investigate
the effects of the fractional order of the derivatives on the vibration
of ceramic micro-circular rings and obtain new results.

Generalized viscothermoelastic based on
Lord and Shulman model

We assume an isotropic, viscothermoelastic, and homogeneous,
micro-circular ring based on the plate theory of Kirchhoff ’s Love.
The origin is at the centre of the plate with a uniform thickness
z(− h

2
≤ z ≤ h

2
) and radius r(R1 ≤ r ≤ R2) in the system of cylindrical

coordinates as in the domain Equation 1:

ψ = {(r,θ,z):R1 ≤ r ≤ R2,0 ≤ θ ≤ 2π,−h/2 ≤ z ≤ h/2} (1)

At the beginning, the plate is in a state of no tension, no strain,
and is at a consistent room temperature T0. The neutral plan is kept
on the plan of (r,θ), and the z-axis is sitting normally on the plan of
(r,θ), as in Figure 1 [33].
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FIGURE 1
A simply supported viscothermoelastic micro-circular ring.

Hence, the components of the displacement have the following
form [6]:

(ur,uθ,uz) = (−z
∂w
∂r
,− z

r
∂w
∂θ
,w) (2)

wherew = w(r,θ, t) in Equation 2 is the lateral deflection function in
the general form.

The temperature increment based on the reference temperature
T0 is:

φ(r,θ,z, t) = (T−T0),where 
(T−T0)

T0
≪ 1 (3)

According to Hook’s solid state, the stress components are [4,
29–33]:

σrr =
E(εrr + υεθθ)

1− υ2
−
αTEφ
1− υ

(4)

σθθ =
E(υεrr + εθθ)

1− υ2
−
αTEφ
1− υ

(5)

σrθ =
Eεrθ
1+ υ
,σzz = σzθ = σrz = 0 (6)

The strain components take the following formulations:

(εrr,εθθ,εzz) ≡ (
∂ur
∂r
,
ur
r
+ 1
r
∂uθ
∂θ
,
∂uz
∂z
) ≡ (−z ∂

2w
∂r2
,−z( 1

r2
∂2w
∂θ2
+ 1
r
∂w
∂r
),0) (7)

(εrθ,εrz,εzθ) ≡ (−2z
∂
∂r
(1
r
∂w
∂θ
),0,0) (8)

The equation of motion is [33]:

( ∂
2

∂r2
+ 2
r
 ∂
∂r
) Mr +(

2
r2
 ∂
∂θ
+ 2
r
 ∂

2

∂r∂θ
) Mrθ

+( 1
r2
 ∂

2

∂θ2
− 1
r
 ∂
∂r
) Mθ − ρ h ẅ = 0 (9)

where

Mr =
h/2

∫
−h/2

z σrrdz = −
h3E

12(1− υ2)
[( ∂

2

∂r2
+ υ
r
∂
∂r
+ υ
r2

∂2

∂θ2
)w+ (1+ υ)αTMT]

(10)

Mθ =
h/2

∫
−h/2

zσθθdz = −
h3E

12(1− υ2)
[(υ ∂2

∂r2
+ 1
r
∂
∂r
+ 1
r2

∂2

∂θ2
)w+ (1+ υ)αTMT] (11)

Mrθ =
h/2

∫
−h/2

zσrθdz = −
h3E

12(1+ υ)
[ ∂
∂r
(1
r
∂w
∂r
)] (12)

MT =
12
h3

h/2

∫
−h/2

zφdz (13)

In the Equations 3–13, υ is the Poisson’s ratio, ρ is the density, T
gives the absolute temperature,αT gives the coefficient of the thermal
expansion, the Young’smodulus isE,MT is the thermalmoment, and
Mr is the flexure moments of torsion.

In the context of Lord-Shulman theory based on the
viscothermoelastic definition, the generalized heat conduction
equation is given by [7, 33]:

(∇2 + ∂2

∂z2
)φ = ( ∂

∂t
+ τ0

∂2

∂t2
)(

ρCυ

K
φ−

αTT0E
K(1− 2ν)

z∇2w) (14)

where τ0 in Equation 14 is known as the thermal relaxation time, and
∇2 = ∂2

∂r2
+ 1

r
∂
∂r
+ 1

r2
∂2

∂θ2
.

By inserting Equations 10–12 into the Equation 9, we obtain the
equation of motion as follows:

E∇2∇2w+
12αT(1+ υ)

h3
E∇2(

h/2

∫
−h/2

φzdz)+
12ρ(1− υ2)

h2
ẅ = 0 (15)

For the viscothermoelastic material based on the fractional
order derivative, Young’s modulus has the following form [34, 35]:

E = E0(1+ ταD
α
t ) (16)

where τ is a small value which gives the mechanical relaxation
time, and the operator Dα

t =
dα

dtα
in Equation 16 is a fractional order

derivative and is given by the classical Caputo (C-C), Caputo-
Fabrizio (C-F), and normal derivative, respectively, as in the
following unified form [25, 27, 36–43]:

Dα
t f(t) =

{{{{{{
{{{{{{
{

f′(t) α = 1  NormalDerivative (N−D)
1

Γ(1− α)

t

∫
0

f′(ξ)
(t− ξ)α

dξ 0 ≤ α < 1 ClassicalCaputo (C−C)

1
1− α
∫
t

0
exp(−

α(t− ξ)
1− α
) f′(ξ)dξ 0 ≤ α < 1 Caputo− Fabrizio (C− F)

}}}}}}
}}}}}}
}

(17)

Therefore, the equation of motion Equation 15 takes the
following form:

(1+ ταDα
t )∇

2∇2w+
12αT(1+ υ)(1+ ταD

α
t )

h3
∇2(

h/2

∫
−h/2

φzdz)

+
12ρ(1− υ2)

h2E0
ẅ = 0 (18)

The formula of the heat conduction Equation 14 will be in the
following form:

(∇2 + ∂2

∂z2
)φ = ( ∂

∂t
+ τ0

∂2

∂t2
)(

ρCυ

K
φ−

αTE0T0(1+ τ
αDα

t )
K(1− 2ν)

z∇2w)

(19)
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The formulations of the stress components Equations 4–6will be
in the following forms:

σrr = E0(1+ ταD
α
t )[

εrr + υεθθ
1− υ2
−

αT
(1− υ)

ϕ] (20)

and

σθθ = E0(1+ ταD
α
t )[

υεrr + εθθ
1− υ2
−

αT
(1− υ)

ϕ] (21)

Now, for the axisymmetric circularmicro-ring, the displacement
components Equation 2 are as follows [6]:

(ur,uθ,uz) ≡ (−z
∂w(r, t)

∂r
,0,w(r, t)) (22)

Hence, from Equations 20–22, the components of the strain
Equations 7, 8 are as follows:

εrr = −z
∂2w
∂r2
,εθθ = −

z
r
∂w
∂r
,εzz = 0,εrθ = εrz = εzθ = 0 (23)

and from Equations 23, we obtain:

ε = εrr + εθθ + εzz = −z∇2w (24)

where ∇2 = ∂2

∂r2
+ 1

r
∂
∂r
.

Because no heat flux exists across the two sides of the circular
beam ±h/2 , hence, we have:

∂
∂z

φ(r,z, t)|
z=− h

2

= ∂
∂z

φ(r,z, t)|
z= h

2

= 0 (25)

For the very thin circular micro-beam h≪ R1, the temperature
varies regarding a sin( πz

h
) function along the thickness direction. So,

according to Equation 25, we can consider the following function:

ϕ(r,z, t) = sin(πz
h
)φ(r, t) (26)

Thus, by inserting Equation 26 into the equation of motion
Equation 18 it will be changed to the following form:

(1+ ταDα
t )∇

2∇2w+
12αT(1+ υ)(1+ τ

αDα
t )

h3
∇2φ(

h/2

∫
−h/2

z sin(πz
h
)dz)

+
12ρ(1− υ2)

h2E0
ẅ = 0 (27)

After executing the integration in the second termof Equation 27,
we obtain:

(1+ ταDα
t )∇

2∇2w+
24αT(1+ υ)(1+ ταD

α
t )

π2h
∇2φ+

12ρ(1− υ2)
h2E0

ẅ = 0

(28)

Byusing theEquations 14, 24, 26, the heat conductionEquation 19
could be written in the form:

(∇2 − p2)φ = ( ∂
∂t
+ τ0

∂2

∂t2
)[

ρCυ
K

φ−
T0αTE0z

K(1− 2ν) sin (pz)
(1+ ταDα

t )∇
2w]

(29)

where p = π
h
.

The following dimensionless variables will be used to simplify
the governing Equations 28, 29 as following [44, 45]:

(h′, 1
p′
, r′,z′,w′) ≡ ηco(h,

1
p
, r,z,w),(τ′o,τ

′, t′) ≡ ηc2o(τo,τ, t),

σ′ = σ
E0
,φ′ =

φ
To
,c2o =

E0
ρ
,η =

ρCυ

K

Hence, we obtain:

(1+ ταDα
t )∇

2∇2w+ α1(1+ ταD
α
t )∇

2φ+ α2ẅ = 0 (30)

(∇2 − p2)φ = ( ∂
∂t
+ τ0

∂2

∂t2
)[φ− α3 (1+ ταD

α
t )∇

2w] (31)

σrr = (1+ ταD
α
t )[

εrr + υεθθ
1− υ2
−

αTT0

(1− υ)
ϕ] (32)

and

σθθ = (1+ ταD
α
t )[

υεrr + εθθ
1− υ2
−

αTT0

(1− υ)
ϕ] (33)

where α1 =
24(1+υ)αTT0

π2h
, α2 =

12(1−υ2)
h2

, α3 =
E0αT
(1−2υ)Kη

z
sin (pz)

, and

α3|z→0 = −
E0αT

Kη(1−2υ)
lim
z→0
( z

sin (pz)
) = E0αT

Kη(1−2υ)p
.

For simplicity, all the primes have been removed.
The Laplace transform will be used, which is given as:

L[ f(r, t)] = f (r, s) =
∞

∫
0

f (r, t)e−s t dt (34)

For the fractional derivative, the Laplace transforms Equation 34
which is defined in Equation 17 and given by [27, 36–38]:

L[Dα+1
t f(r, t)] =

{{{{{{{{{
{{{{{{{{{
{

s2 f(r, s) α = 1 NormalDerivative (N−D)

sα+1 f(r, s) −(
n−1

∑
k=0

sα−k f(k)(r,0+)) 0 ≤ α < 1 ClassicalCaputo (C−C)

s2 f(r, s)
s+ α(1− s)

−(
s f(r,0+) + f′(r,0+)

s+ α(1− s)
) 0 ≤ α < 1 Caputo− Fabrizio (C− F)

}}}}}}}}}
}}}}}}}}}
}

.

(35)

The initial conditions have been considered as follows:

ϑ(r, t)|t→0+ =
∂ϑ(k)(r, t)
∂t(k)
|
t→0+
= 0,w(r, t)|

t→0+
=

∂w(k)(r, t)
∂t(k)
|
t→0+
= 0.

(36)

After applying the Laplace transform and the initial conditions
Equation 36, the three types of derivatives in Equation 35 will be in
the following form:

L[Dα+1
t f(r, t)] =

{{{
{{{
{

s2 f(r, s) α = 1  NormalDerivative (N−D)
sα+1 f(r, s) 0 ≤ α < 1 ClassicalCaputo (C−C)
s2

s+ α(1− s)
f(r, s) 0 ≤ α < 1 Caputo− Fabrizio (C− F)

}}}
}}}
}

. (37)

To use the formula in Equation 37, we must add a first-
order derivative concerning time for the Equation 30 to be in the
following form:

( ∂
∂t
+ ταDα+1

t )∇
2∇2w+ α1(

∂
∂t
+ ταDα+1

t )∇
2φ+ α2

···
w = 0

and re-write the Equations 31–33 in the following form:
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FIGURE 2
The studied function distributions are based on different types of derivatives. (A) The temperature increment. (B) The lateral deflection (vibration). (C)
The deformation. (D) The average stress.

(∇2 − p2)φ = (1+ τ0
∂
∂t
)
∂φ
∂t
− α3(1+ τ0

∂
∂t
)( ∂

∂t
+ ταDα+1

t )∇
2w

∂σrr
∂t
= ( ∂

∂t
+ ταDα+1

t )[
εrr + υεθθ
1− υ2
−

αTT0

(1− υ)
ϕ]

and

∂σθθ
∂t
= ( ∂

∂t
+ ταDα+1

t )[
υεrr + εθθ
1− υ2
−

αTT0

(1− υ)
ϕ]

After applying Laplace transform, we obtain:

(s+ ταω)∇2∇2w+ α1(s+ ταω)∇2φ+ α2s3w = 0 (38)

(∇2 − p2)φ = (1+ τ0s)sφ− α3 (1+ τ0s)(s+ τ
αω)∇2w (39)

σrr =
ω
s
[
εrr + υεθθ
1− υ2
−

αTT0

(1− υ)
ϕ] (40)

σθθ =
ω
s
[
υεrr + εθθ
1− υ2
−

αTT0

(1− υ)
ϕ] (41)

ε = εrr + εθθ = −z
∂2w
∂r2
− z1

r
∂w
∂r
,= −z∇2w (42)

where

ω =
{{{{
{{{{
{

s+ τs2 α = 1  NormalDerivative (N−D)
s+ ταsα+1 0 ≤ α < 1 ClassicalCaputo (C−C)

s+ ταs2

s+ α(1− s)
0 ≤ α < 1 Caputo− Fabrizio (C− F)

}}}}
}}}}
}

.

(43)

Equations 38, 39 give:

(∇2∇2 + α4)w+ α1∇2φ = 0 (44)

and

(∇2 − α5)φ+ α6∇2w = 0 (45)

where α4 =
α2s

3

ω
, α5 = p2 + (s+ τ0s2),α6 = α3 (1+ τ0s)ω .

Equations 44, 45 after elimination, give the following equation:

(∇6 − (α5 + α6α1)∇4 + α4∇2 − α4α5){w,φ} ≡ 0 (46)

The solutions of the Equation 46 where r > 0, has the
following forms [33]:

ϑ (r, s) = −α6
3

∑
i=1

k2i [AiI0(kir) +BiK0(kir)] (47)
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FIGURE 3
The studied function distributions are based on different types of fractional derivatives with different values of ramp-time heat parameter. (A) The
temperature increment. (B) The lateral deflection (vibration). (C) The deformation. (D) The average stress.

and

w (r, s) =
3

∑
i=1
(k2i − α5)[AiI0(kir) +BiK0(kir)] (48)

where I0(kir),K0(kir) are the modified Bessel functions of the first
kind and second kind and both are of order zero, respectively.
Moreover,±k1,±k2,±k3 give the three complex roots of the following
characteristic equation:

k6 − (α6α1 + α5)k4 + α4k2 − α4α5 = 0 (49)

We consider the micro-circular ring to be simply supported,
moreover, it is thermally loaded on the outer surface r = R2, while the
inter surface r = R1 has no temperature increment as follows [33]:

w(0, t) = ∇2w(r, t)|r=R1
= w(a, t) = ∇2w(r, t)|r=R2

= 0 (50)

and

ϑ(R1, t) = 0 and ϑ(R2, t) = ϑog(t) (51)

By applying the Laplace transform defined above on the
boundary conditions Equations 50, 51, we obtain:

w(R1, s) = ∇2w(r, s)|r=R1
= w(R2, s) = ∇2w(r, s)|r=R2

= 0 (52)

and

ϑ(R1, s) = 0 and ϑ(R2, s) = ϑ0G(s) (53)

where ϑ0 is constant and gives the intensity of the thermal loading.
By applying the given boundary conditions Equations 52,

53 in the Equations 47, 48, we obtain the following system of
linear equations:

3

∑
i=1

k2i [AiI0(kiR1) +BiK0(kiR1)] = 0 (54)

3

∑
i=1
(k2i − α5)[AiI0(kiR1) +BiK0(kiR1)] = 0 (55)

3

∑
i=1

k2i (k
2
i − α5)[AiI0(kiR1) +BiK0(kiR1)] = 0 (56)
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FIGURE 4
The studied function distributions based on Caputo-Fabrizo (C-F) of fractional derivatives with different order. (A) The temperature increment. (B) The
lateral deflection (vibration). (C) The deformation. (D) The average stress.

3

∑
i=1

k2i [AiI0(kiR2) +BiK0(kiR2)] = −
ϑ0G(s)
α6

(57)

3

∑
i=1
(k2i − α5)[AiI0(kiR2) +BiK0(kiR2)] = 0 (58)

3

∑
i=1

k2i (k
2
i − α5)[AiI0(kiR2) +BiK0(kiR2)] = 0 (59)

By solving Equation 49 and the above system of linear equations
in Equations 54–59 by using MAPLE-21 software, we obtain the
parameters (see the Appendix 1).

Regarding the function of the thermal loading, we
consider the micro-circular ring to be subjected to a ramp-type
heat with ramp-time heat parameter t0 ≠ 0 as in the
following function:

g(t) =
{
{
{

t
t0

0 < t < t0

1 t ≥ t0

}
}
}

(60)

In the Laplace transform domain, the thermal loading
function in Equation 60 will take the form:

G(s) = 1− e
−st0

s2t0
(61)

From Equations 40–42, it is available to obtain the average stress
distribution as follows:

σ̃ = 1
2
(σrr + σθθ) =

ω
s(1− υ)
[ ε
2
− αTT0ϕ] (62)

where ω is defined in Equation 43. After inserting the Equation 61
in the solutions, we obtain the complete solutions in the Laplace
transform domain.

Numerical results and discussion

In the following numerical calculations and to obtain the
numerical results, a micro-circular ring made of ceramic (Si3N4)
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FIGURE 5
The studied function distributions based on classical-Caputo (C-C) of fractional derivatives with a different order. (A) The temperature increment. (B)
The lateral deflection (vibration). (C) The deformation. (D) The average stress.

has been considered. Thus, the mechanical and thermal material
properties will take the following values [6, 33]:

K = 8.0 W/(mK) , αT = 3.0× 10
−6K−1, ρ = 3200 kg/m3,

T0 = 300K, Cυ = 937.5 J/(kgK), E0 = 250 GPa,
τ = 6.7× 10−12s, υ = 0.44.

The Laplace transform inversions could be calculated for
the Equations 47, 48, 62 by using the following Riemann-sum
approximation method of Tzou [46]:

f(r, t) = L−1[ f(r, s)] =
eκt f(r,κ)

2t
+ e

κt

t
Re

N

∑
j=1
(−1)j f(r,κ+

jπ
t
i) (63)

“Re” denotes the real part, while “i = √−1” is well-known as the
imaginary number unit.

To get convergence with faster steps, the value “κ” must satisfy
the relation κt ≈ 4.7.

Themathematical softwareMAPLE 21 is suitable to compute the
inversions of the Laplace transform by applying the formula in the
iteration Equation 63.

For the non-dimensional values of the parameters a = R2 −R1,
h = a

5
, z = h/4, t = t0 = 1.0, and τ0 = 0.02, the results have been

figured into six groups each group represents the temperature
increment, the lateral deflection (vibration), deformation, and
average stress, respectively.

Figure 2 is the first group and contains four Figures 2A–D, the
results have been figured for four following cases:

(a) The non-viscous case (N-V) in black lines when τ =
0.0 and α = 1.0.

(b) The normal-derivative (N-D) and viscothermelastic case in
blue lines when τ = 0.02 and α = 1.0.

(c) The Classical-Caputo (C-C) of fractional viscothermelastic
case in red lines when τ = 0.02 and α = 0.6.

(d) The Caputo-Fabrizio (C-F) of fractional viscothermelasticity
case in green lines when τ = 0.02 and α = 0.6.

Figure 2A shows that the fractional derivatives do not impact the
temperature increment distribution and all the studied cases give the
same value even the non-visco case.
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FIGURE 6
The studied function distributions based on Caputo-Fabrizo (C-F) of the fractional derivative with different thickness z when α = 0.6. (A) The
temperature increment. (B) The lateral deflection (vibration). (C) The deformation. (D) The average stress.

The lateral deflection of the resonator is shown in Figure 2B.
The fractional order parameter plays a significant role in the
vibration of the resonator, and the absolute values of the peak points
of the lateral deflection distributions have been arranged in the
following order in Equation 64:

|wC−C| > |wC−F| > |wN−D| > |wN−V| (64)

The resonator vibration reaches its maximum amplitude in the
classical Caputo definition before it reaches its maximum amplitude
in the non-viscous definition. Furthermore, the magnitudes of the
vibration in the setting of the two definitions, classical-Caputo and
Caputo-Fabrizo, exhibit a higher degree of similarity compared to
the other two scenarios.

Figure 2C illustrates the deformation of the resonator, where the
fractional order parameter significantly influences its vibration.The
deformation’s maximum points are ordered based on the absolute
values as in Equation 65:

|εC−C| > |εC−F| > |εN−D| > |εN−V| (65)

Accordingly, the non-viscus definition yields the least
deformation value while the classical-Caputo definition yields the

largest. The deformation values are also more closely packed in the
setting of the two classical Caputo and Caputo-Fabrizo formulations
compared to the other two instances.

As seen in Figure 2D, the average value of the stress components
is significantly affected by the fractional order parameter.
In addition, the average stress’s absolute values follow this
sequence as in Equation 66:

|σ|averageC−C | > |σ|
average
C−F | > |σ|

average
N−D | > |σ|

average
non−viscus| (66)

Figure 3 is the third group and contains four Figures 2A–D in
which the impacts of the ramp-time heat parameter have been
studied in the context of the four studied cases of the derivatives
as in the first group of figures but for two different values of the
ramp-time heat parameter t0 = (0.8,1.2) which gives two cases t0 <
t and t0 > t.

The ramp-time heat parameter has a pronounced effect on
the temperature rise, vibration, absolute deformation value, and
absolute average stress distributions shown in the figures.The values
of all these distributions, including the outer border of the micro-
circular ring resonator, drop as the ramp-time heat parameter’s value
increases.
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Figure 4 is the fourth group which contains Figures 4A–D, in
which the results have been figured for the studied functions in the
context of the Caputo-Fabrizo fractional derivatives for four values
of fractional order parameter α = (0.1,0.3,0.5,0.7)when τ0 = 0.02 to
stand on its effects.

Figure 4A shows that the fractional order parameter does not
affect the distribution of temperature increments. Nevertheless,
it has a major impact on the vibration, deformation, and stress
distributions, as seen in Figures 4B–D. Specifically, as the fractional
order parameter rises, the magnitude of deformation, vibration, and
average stress decreases.

Figure 5 is the fifth group which contains Figures 5A–D, in
which the results have been figured for the studied functions in the
context of the classical-Caputo fractional derivatives for four values
of fractional order parameter α = (0.1,0.3,0.5,0.7)when τ0 = 0.02 to
stand on its effects.

Figure 5A shows that the distribution of temperature increase
remains unchanged regardless of the fractional order parameter.
Nonetheless, it has a substantial impact on the vibration,
deformation, and stress distributions, as seen in Figures 5B–D: as
the value of the fractional order parameter increases, the magnitude
of deformation, vibration, and average stress diminishes.

Figure 6 is the last group which contains Figures 6A–D in which
the results have been figured for the studied functions in the
context of the Caputo-Fabrizo fractional derivatives for four values
of the micro-circular ring’s thickness z = (h/3,h/4,h/5,h/6) when
τ0 = 0.02 and α = 0.6 to stand on its effects.

The value of z does not affect the palate’s vibration as in
Figure 6B, while it has significant effects on the temperature
increment, deformation, and stress distributions where increasing
in the value of z leads to an increase in the values of the vibration,
absolute value of deformation, and absolute value of average
stress as in Figures 6A, C, D.

Conclusion

The conclusions can be drawn from the analysis of the vibration
of the simply supported micro-circular ring resonator made of
viscothermoelastic ceramic: The fractional order parameter and
the ratio of the plate’s radius to its thickness do not have a
significant impact on the distribution of temperature increment.
This conclusion is based on the definitions of viscothermoelasticity,
classical Caputo, and Caputo-Fabrizo of the fractional derivative
were taken into consideration.

The distribution of the temperature increase is significantly
affected by the ramp-time heat parameter.

The fractional order parameter in the context of the two studied
definitions of fractional derivatives does not affect the thermal wave
while it has significant effects on the mechanical waves.

The distribution of the temperature increase is significantly
affected by the thickness of the micro-circular ring resonator.

Themechanical relaxation time parameter has significant effects
on the mechanical waves while it does not affect the thermal wave
in the context of the two studied definitions of the fractional
derivatives.

The vibration, deformation, and stress distributions of the
micro-circular ring resonator are significantly influenced by the
fractional order, thickness of the resonator, and the ramp-time heat
parameters.

The ramp-type heat parameter serves as a regulator for the
energy dissipation process inside the micro-circular ring resonator.

The studied functions are significantly influenced by the ramp-
type heat parameter, which plays a crucial role in determining the
amount of energy created by the resonator’s material.
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