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Hyperboloidal approach to
quasinormal modes

Rodrigo Panosso Macedo™* and Anil Zenginoglu?*

!Niels Bohr International Academy, Niels Bohr Institute, Copenhagen, Denmark, ?Institute for Physical
Science and Technology, University of Maryland, College Park, MD, United States

Oscillations of black hole spacetimes exhibit divergent behavior near
the bifurcation sphere and spatial infinity. In contrast, these oscillations
remain regular when evaluated near the event horizon and null infinity.
The hyperboloidal approach provides a natural framework to bridge these
regions smoothly, resulting in a geometric regularization of time-harmonic
oscillations, known as quasinormal modes (QNMs). This review traces the
development of the hyperboloidal approach to QNMs in asymptotically
flat spacetimes, emphasizing both the physical motivation and recent
advancements in the field. By providing a geometric perspective, the
hyperboloidal approach offers an elegant framework for understanding
black hole oscillations, with implications for improving numerical
simulations, stability analysis, and the interpretation of gravitational wave
signals.
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1 Introduction

When a black hole (BH) spacetime is perturbed, gravitational waves (GW) carry the
energy of the perturbation towards the BH horizon and to infinity. These perturbations
show oscillations that decay exponentially at characteristic frequencies and are called
quasinormal modes (QNM) [1-4]. Studying these QNMs is central to the black hole
spectroscopy program [5-7], which aims to measure the oscillation frequencies from
GW detections and thereby probe the BH geometry and its surrounding environment
[1, 3, 4, 8]. The dominant quadrupole QNMs have already been measured in
gravitational wave signals [9-11], while the detection of higher modes remains under
debate [12-25].

Mathematically, the QNM problem is often formulated as an eigenvalue problem,
where QNM frequencies appear as the eigenvalues of a second-order differential operator.
However, in their traditional representation, the corresponding QNM eigenfunctions grow
exponentially near the black hole and at spatial infinity, which does not seem physically
acceptable for small perturbations of a background spacetime [26]. Reformulating the
problem using hyperboloidal surfaces—regular spacelike surfaces that extend smoothly
from the black hole event horizon to null infinity—reveals that QNMs are globally regular
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[27, 28]. This geometric regularization' of time-harmonic black hole
perturbations has found many recent applications, which we review
in this paper.

2 The traditional approach to QNMs

The Schwarzschild solution, the simplest black-hole (BH)
solution to Einstein’s equations, is given by

2M

1 with f(=1-24,
;

f()

where d@? = d6? + sin? Gdgbz is the metric on the unit sphere, and M
the black-hole’s mass. Perturbations of this solution are described by

ds? = —f(r)de* + ar’ + r’da?,

the Regge-Wheeler-Zerilli type wave equation:

(97 +32 - V(r,))u(tr,) =0, (1)
where r+ € (—00,00) is the tortoise coordinate and V(r«) is the
effective potential that behaves as V ~ f(r) near the black-hole
horizon and as V ~ 1/7* toward spatial infinity.

Solutions to (Equation 1) evolve through a transient phase,
followed by a ringdown characterized by exponentially damped
vibrations (QNMs) [34], and eventually a polynomial, non-
oscillatory decay known as the tail [35, 36].

To analyze the QNM phase, one typically considers time-
harmonic solutions

u(t,r,) =e“R(r,), 2
that reduce the wave equation to a Helmholtz equation,
(d—2 +w2—V(r*)>R(r*):0. 3)
dr’

Sommerfeld recognized in 1912 that the Helmholtz equation, in
stark contrast to the elliptic case, does not admit unique solutions
even when we require that the solution vanishes at infinity [37, 38].
To ensure uniqueness, an outgoing radiation condition must be
imposed. In the BH context, a Sommerfeld condition applies also
near the BH. We therefore impose

(3

Ty

lim
7, —+00

iiw)R(r*) =0 & R(r,)~e"™asr, >+co. (4)

It turns out, however, that the boundary conditions (Equation 4)
are not sufficient [2, 39] and a more precise notion of purely outgoing
solution is needed to uniquely define the QNMs [40]. The formal
definition of QNMs followed a different route than the intuitive
notion of QNMs as the eigenvalues of a given differential operator.

The time-harmonic Ansatz (Equation 2), closely related to a
Fourier transformation, provides a general formalism oblivious to

1 Note that we focus here on the geometric developments around the
hyperboloidal framework in asymptotically flat spacetimes. The analytic
aspects of QNM regularity beyond the mere coordinate singularity
of standard time slices were clarified in a series of papers [29-33],

discussed in Section 3.3.
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the specific form of initial data causing the perturbation. To define
QNMs formally, one considers an initial value problem. Then, a
Laplace transformation [2, 39, 41, 42] leads to a inhomogeneous
spatial differential equation, with a source term accounting for the
initial data. One must then ensure that the spacetime solution u(t, 7+ )
remains bounded as t — co [43]. In the Laplace formalism, the
solution u(t, rs ) results from the convolution of the Green’s functions
with the source term carrying information from the initial data.
The inverse Laplace transformation requires an integration along
a frequency values w; > 0, and there is only one possible choice
of homogenous solutions R, (r+; ) to construct the correct Green’s
function: they must satisfy the boundary conditions (Equation 4)
at both ends r« — +00. Once the Green’s functions are fixed in the
complex half-plane w; > 0, one analytically extends them into the
region w; < 0. The QNMs are then uniquely defined as the poles of
Green’s functions, or equivalently in the one-dimensional case, the
roots of the Wronskian.

The Laplace approach uniquely defines QNMs via Green’s
functions, bypassing the notions of eigenvalues and eigenfunctions.
Such definition via this Green’s functions is also understood under
the Lax-Phillips approach [44, 45]. However, this definition still
allows QNM functions to blow up asymptotically, creating a puzzle:
while black hole stability demands that linearized perturbations
decay over time, the associated time-harmonic perturbations remain
singular in the asymptotic regions.

The resolution lies in the global structure of spacetime. The
QNM behavior at asymptotic boundaries results from the singular
properties of the coordinates used in Equation 3. In Schwarzschild
coordinates, as r« — +00, the limits correspond to spatial infinity
i and the bifurcation sphere B. These loci connect to future and
past null infinity at i and white and black hole horizon at B, and
the blow-up of QNM eigenfunctions is a coordinate effect due to the
accumulation of infinitely many time surfaces thereon.

When QNMs are represented on regular, hyperboloidal time
slices, they do not exhibit this unbounded growth1 [27, 28, 33], as
we discuss in the next section.

3 The hyperboloidal approach to
QNMs

The singularity of Schwarzschild time slices at the bifurcation
sphere is well-known today, but understanding its causal structure
took over four decades [46-49]. Given this singularity, it is not
surprising that QNMs blow up near the black hole, but they also blow
up near spatial infinity. Thus, switching to regular coordinates at the
bifurcation sphere does not resolve the issue.

Part of the historical confusion about BHs was that it takes
infinite Schwarzschild time for radiation to fall into a BH. The
same statement is true concerning spatial infinity: it takes infinite
Schwarzschild time for outgoing radiation to reach spatial infinity.
Because this is “reasonable” from a physical point of view, it has been
widely accepted that QNMs have a singular representation at both
asymptotic regions.

The first suggestion that outgoing perturbations are regular in
the frequency domain toward null infinity was made by Friedman
and Schutz in a 1975 paper on the stability of relativistic stars [50].
Friedman and Schutz recognize the problem with standard time
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slices where outgoing modes behave asymptotically like e~

implying that stable modes with w; < 0 grow exponentially as r —
00. To make the representation finite, they recommend to use null
hypersurfaces. In a footnote, they comment that the representation
is regular also “if one uses a spacelike hypersurface that is only
asymptotically null”

Schmidt picked up this idea in a 1993-essay for the Gravity
Research Foundation on relativistic stellar oscillations [26] arguing
that QNM:s on hyperboloids “are represented by proper eigenvalues
and eigenfunctions” However, the presentation includes no details
beyond the 1975 paper.

To understand why it took almost 20 years from Schmidt’s
essay [26] to the construction of a regular geometric framework
to describe QNMs in asymptotically flat spacetimes' [27,
28, 33], we provide a short historical review of hyperboloidal
coordinates.

3.1 A brief history of hyperboloidal
coordinates

The central role of spacetime hyperbolas in relativity was
recognized already by Minkowski in 1908 [51]. The Milne model
from 1933 [52] or Dirac’s point-form of quantum field theory
from 1949 are hyperboloidal [53]. In the 1970s, hyperboloidal
studies were performed for the analysis of wave equations [54-56]
and quantum field theory [57-60]. However, these early studies
use a time-dependent formulation in which time freezes at
null infinity.

The first hyperboloidal coordinates foliating null infinity are
implicit in Penrose’s work on the global causal structure of
spacetimes via conformal compactification [61, 62]. Indeed, one
can obtain a hyperboloidal surface from any textbook discussing
the Penrose diagram simply by looking at the level sets of Penrose
time [63]. In the context of numerical relativity, it was recognized
that hyperboloidal time functions that asymptotically approach
the retarded time should be beneficial for the computation of
gravitational waves [64, 65]. Explicit hyperboloidal coordinates
in black-hole spacetimes were constructed in the context of the
analysis of constant mean curvature foliations [66]. A remarkable
but largely ignored paper by Gowdy in 1981 includes many key
elements of the hyperboloidal approach used today in black-hole
perturbation theory [67], including the height function approach
to preserve time-translation symmetry, compactification fixing
null infinity (scri-fixing), hyperboloidal solutions to the wave
equation, and the structure of time-harmonic solutions relevant
for the frequency domain. These ideas were not picked up by the
community at the time.

The first systematic study of the hyperboloidal initial value
problem for Einstein equations was initiated by Friedrich in 1983
[68]. Friedrich devised a reformulation of the Einstein equations
with respect to a conformally rescaled metric that is regular across
null infinity. The conformal field equations are well-suited for the
analysis of the asymptotic behavior of Einstein’s equations and have
led to seminal results such as the nonlinear, semi-global stability
of de Sitter-type and Minkowski-type spacetimes [69, 70]. The
developments around conformal field equations and attempts to use
them numerically are reviewed in [71, 72].
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Twenty years after Gowdy’s paper, Moncrief presented the
hyperboloidal compactification of Minkowski spacetime using time-
shifted hyperboloids in an unpublished talk [73] leading to the
first numerical studies using hyperboloidal foliations in Minkowski
spacetime [74-77]. Around this time, various suggestions for
hyperboloidal coordinates and numerical simulations in black-hole
spacetimes were made [78-83].

The construction widely used today in black-hole perturbation
theory is based on scri-fixing coordinates with time-shifted
hyperboloids presented in 2008 [84]. The idea is to combine the
height function technique that preserves the time-symmetry of
the underlying spacetime with an explicit radial compactification
whose singular Jacobian at infinity is proportional to a prescribed
conformal factor. In the following years, this method was used
primarily in the time domain for solving wave-propagation
problems [85-97].

The translation of the hyperboloidal method to the frequency
domain was presented in [27], where it was demonstrated that
hyperboloidal time functions regularize the QNM eigenfunctions
in the asymptotic domains. Warnick used a related idea in [31] for
AdS spacetimes in which spatial slices are naturally hyperbolic (see
also [29, 30]). The first detailed analysis of QNMs in asymptotically
flat black-hole spacetimes using the hyperboloidal approach was
presented in [28]. We summarize the basic ideas of the hyperboloidal
approach below.

3.2 A geometric framework

The construction of globally regular coordinates consists of
a time transformation respecting the time symmetry of the
background, a suitable spatial compactification, and conformal
rescaling [84]. We first introduce the time function 7 via [67, 82, 84].

T=t+h(r). (5)

The time transformation implies an exponential scaling
[27]. the
with to
coordinate in Equation 5, we get

time-harmonic
the

in frequency domain Writing

ansatz in Equation 2 respect new time

u(t,r,) = e “R(r,) = e " R(r,) = e “R(r,).

The rescaled radial function R(r+) = e“"R(r+) is regular both
near the event horizon and toward null infinity. To see this in
an explicit example, consider the height function for the so-called
minimal gauge [98-100]

hyg (r) = —=r+2Mlog

L —1|—4M10g(L) ——r*—4M10g(L).
2M 2M 2M

The minimal gauge height function has the following
asymptotic behavior
hyig ~ -1, for r — oo,

hyg ~ +r, for r — 2M.

The height function regularizes the QNM eigenfunctions in the
asymptotic domains. The regularity of the QNM eigenfunctions
is directly related to the regularity of the minimal gauge at the
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FIGURE 1

10.3389/fphy.2024.1497601

Penrose diagrams of the exterior domain in Schwarzschild spacetime contrasts the level sets of the standard Schwarzschild time (left panel) and the
hyperboloidal minimal gauge (right panel). Schwarzschild time slices intersect at the bifurcation sphere, B, and spatial infinity, i°. Minimal gauge slices
provide a smooth foliation of the future event horizon, #"+, and future null infinity, Z*.

asymptotic boundaries near the horizon and near infinity (see
Figure 1). The minimal gauge is unique in its simplicity and appears
in different setups as a natural construction [101, 102]. Surprisingly,
the minimal gauge was implicitly used by Leaver in his papers
on QNMs in BH spacetime [103, 104]. Related hyperboloidal
regularization procedures have been suggested over the years by
various authors without an explicit recognition of the geometric
background of their construction [105-111].

In [27], it was shown that the time translation must be combined
with a suitable rescaling to arrive at a regular representation of
QNMs. The rescaling takes into account the asymptotic fall-off
behavior of the QNM eigenfunctions toward the BH and toward
infinity. The resulting equations have short-range potentials suitable
for compactification of the exterior black region from the radial
coordinate r € [r,00) — or equivalently, r+ € (—00,+00) — into
a compact domain o € [0y,,07.]. This rescaling is related to the
conformal compactification of black-hole spacetimes.

The
automatically satisfied in terms of a radially compact hyperboloidal

external boundary conditions (Equation4) are
coordinates (7,0)[27, 100], when the underlying function R(0)
is regular at the black-hole horizon (0;) and future null infinity
(07+). Thus, we no longer need to impose boundary conditions to
the wave equation by hand. The boundary condition is replaced
by a regularity condition on the underlying solution R(c) in the
entire domain o € [05,,07:]. In practical terms, one derives the
regularity condition at the boundary directly from the hyperboloidal
differential equation. When formulating the frequency-domain
problem in coordinates (7,0), the resulting differential equation
equivalent to Helmoltz Equation 3 assumes a generic form [28, 99,
100].

2

(“2 e

with coefficients «,, &, and &, depending on the particular choice

+a, (0)% +a0(a)>§(a) =0, (6)

for the hyperboloidal height function. The most important property
of the above equation is that it is a singular ordinary differential
equation, i. e., its principal part behaves as a, ~ (6—07.)*(0— 0y,
and therefore «,(0;,) = a,(07+) =0. Hence, at the boundaries,
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Equation 6 provides us directly with the relation between the field
and its first o-derivatives serving as boundary data ensuring a
bounded solution. From the spacetime perspective, and the resulting
wave equation, the same condition «,(0},) = «,(07+) = 0 ensures that,
at the boundaries, the light cones point outwards the numerical
domain, or equivalently, that the characteristic speeds of incoming
modes vanish [27, 100].

The finite behaviour of the function R(c) is one of the most
important aspects in the hyperboloidal approach. As we discuss
below, this feature allows us to unveil new properties of the QNM
eigenfunctions, develop novel numerical algorithms and attack new
problems relevant to black-hole physics and gravitational wave
astronomy.

3.3 From geometry to analysis

The hyperboloidal framework regularizes solutions to the
Helmbholtz problem Equation 3. In fact, any bounded solution
satisfying the singular ordinary differential Equation 6 automatically
fulfills the Sommerfeld conditions (Equation 4). One would naively
think that bounded solutions exist only at the QNMs frequencies.
However, we saw in Section 2 that the conditions (Equation 4)
are necessary, but not sufficient to specify the QNM problem
uniquely. In the traditional formulation, the QNM eigenfunctions
grow asymptotically. The complex plane spanned by the frequency
w might contain regions with solution satisfying (Equation 4),
but contaminated by unwanted solutions that decrease at the
boundaries. Removing the asymptotic blow-up allows us to peek
directly into these unphysical solutions, which exist in the entire
half-plane Im(w) < 0 [28, 31].

The left panel of Figure 2 shows two solutions to Equation 6
which are bounded in the entire exterior BH domain, from o=
0 representing future null infinity and ¢ =1 the BH horizon: the
solution in blue is obtained at a given QNM frequency wqnyp
whereas the solution in red corresponds to a given frequency
in the half-plane Im(w) < 0, but with w # wqyy- These solutions
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Regular Radial Functions for Im(w) < 0: Chebyshev coefficients

Regular Radial Functions for Im(w) < 0: Taylor coefficients
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FIGURE 2

panel) or the asymptotic decay of the Taylor coefficients |a,|.

Solutions to hyperboloidal radial equation (left panel). Bounded solutions exist in the entire half-plane for Im(w) < O, regardless whether w is a QNM or
not. The continuous lines were obtained with a spectral method code based on a Chebyshev representation of the solution. Independently, the dots
result from a Taylor representation of the solution as power series around the horizon (Leaver's strategy). The QNM eigenfunctions are characterised by
the solutions with a higher degree of regularity, heuristically verified via the faster decay of the corresponding Chebyshev coefficients |c,| (middle

100 1000

are obtained with two different numerical approaches: the solid
line results from solving the ODE with a Chebyshev collocation
point spectral method [112], whereas the dotted points arise when
using Leaver’s Taylor expansion, which corresponds to a frequency
domain hyperboloidal formulation in the minimal gauge [28, 99,
113]. Both strategies yield the same results. At first glance, there
is nothing special in the behavior of the solutions that allows us
to distinguish a QNM from a non-QNM eigenfunction. Indeed, it
is even possible to specify a hyperboloidal initial data such that
the corresponding time evolution has an arbitrary exponentially
damped oscillation [28].

What distinguishes a QNM from a non-QNM solution is
their regularity class. By studying the convergence rate of their
discrete numerical representation, one can infer that these functions
belong to different regularity classes. The middle panel of Figure 2
shows the Chebyshev coefficients from the Chebyshev collocation
point spectral method. These coefficients decay exponentially for
C? analytic functions or algebraically for C* singular functions.
We observe an intermediary decay, suggesting the regularity
class of these functions is between CF and C®. The Chebyshev
coefficients for QNM eigenfunctions decay faster than for non-
QNM eigenfunctions, indicating QNM eigenfunctions belong to a
better regularity class. A similar conclusion arises from the Taylor
expansion coefficients (right panel 2). For QNM eigenfunctions,
|a,| decays asymptotically. For non-QNM functions, |a,| grows
asymptotically. Even though the series does not converge absolutely,
it converges conditionally due to oscillations in Im(ay) (left panel
of Figure 2). These conclusions are formalized by interpreting QNM
as a formal eigenvalue problem of the generator of time translations
for a null foliation, acting on an appropriate Hilbert space [29-33,
114-116], where QNM eigenfunctions belong to the Gevrey-2
regularity class.

4 Applications
The QNM problem plays a fundamental role in the era of

gravitational wave astronomy. The BH spectroscopy program
faces three main challenges: (i) the measurability of the QNMs

Frontiers in Physics

05

frequencies, limited by the GW detection

ratios; (ii) the relevance of nonlinear effects to the ringdown

signal-to-noise

dynamics; and (iii) the QNMs spectral instability. As discussed
in the previous sections, hyperboloidal formalism provides
crucial theoretical tools to tackle different aspects of these
challenges.

4.1 QNM excitation factors and tail decay

Even though challenge (i) mainly concerns the GW detection’s
signal-to-noise ratio, it heavily relies on accurate predictions
for the expected QNM excitations [117]. The excitation of each
QNM depends on the particular initial perturbation triggering
the dynamics. This perturbation also excites the late-time
power-law tail decay. Determining these excitation factors has
always been challenging due to the blow-up of the underlying
modes at the bifurcation sphere and spatial infinity [118]. A
common approach to avoid the infinities at the bifurcation
sphere when calculating integrals along the physical coordinate
7+ € (—00,00) is to deform the integration path into the complex
plane [119-121].

The hyperboloidal formalism offers an alternative strategy
to determine such excitation factors due to the globally regular
behavior of the QNM eigenfunctions. The direct identification
of Leaver’s continued fraction strategy with spacetime solutions
defined on hyperboloidal hypersurfaces allows the further
development of the Leaver method to calculate QNMs (and
tail decay) excitation factors for problems formulated on
hyperboloidal slices [28, 99]. While Leaver’s method relies on
a Taylor expansion around the horizon for the underlying
hyperboloidal functions, the strategy can be adapted to directly
solve a linear partial differential equation having the QNM
excitation amplitude as an unknown parameter in the equation
[122], or alternatively via the so-called Keldysh scheme [123].
The hyperboloidal formalism is also essential for recent advances
in the understanding of the role played by the tail decay in BH
spectroscopy [124-126].
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4.2 Quadratic QNMs

Since GR is a nonlinear theory, challenge (ii) emphasizes that
BH spectroscopy must also account for second-order, quadratic
perturbations [21, 127-136]. The quadratic coupling of first-order
solutions dictates the dynamics at second order in perturbation
theory [137-139]. When formulated in the standard ¢ slices,
the blow-up of QNM eigenfunctions at the bifurcation sphere
and spatial infinity imposes severe restrictions for second-order
studies, both at theoretical and numerical levels. The hyperboloidal
framework for black-hole perturbations beyond the linear order
becomes indispensable for regular evolutions [23, 132, 140], as well
as for studies in the frequency domain [134, 141].

4.3 QNM instability and the
pseudospectrum

Apart from his groundbreaking work in QNM [34],
Vishveshwara also highlighted that the QNM spectra is very
sensitive to small modifications in the black-hole potential [142,
143]. At the same time, the QNM spectra destabilisation was also
observed by Nollter and Price [144, 145], but the phenomenon’s
impact in the BH spectroscopy programme has been largely
overlooked over the past decades. Only recently has the challenge
(iii) gained a greater attention [112, 146-155].

Small modifications in oscillatory frequencies for wave
equations result in minor spectral responses only if the wave
operators are self-adjoint. However, the flow of GWs into the
BH and out into the wave zone places BH perturbation theory
within the framework of non-self-adjoint operators. The successful
application of non-self-adjoint operator theory to gravitational
systems was only made possible by the hyperboloidal approach to
black-hole perturbations [112] (see also Ref. [156] for an alternative
approach akin to “complex scaling”). In this approach, one can use
the mathematical formalism of pseudospectra [157] to study the
QNM spectral instability [112] and perform a non-modal analysis
[151] that a traditional mode analysis might overlook. Since the
breakthrough offered by the hyperboloidal framework, the analysis
of QNM pseudospectra has been performed in several different
contexts, from astrophysically relevant scenarios to applications in
the gauge-gravity duality [158-167].

5 Discussion

The hyperboloidal approach to QNMs offers a geometric
regularization of black-hole perturbations. By connecting the
regular oscillations near BHs with those observed far away, this
method bypasses the problematic divergences inherent in the
traditional approach at the bifurcation sphere and spatial infinity.

With hindsight, the hyperboloidal approach relies on a simple
coordinate transformation that resolves the asymptotic singularity
of the standard time [84]. It is astonishing that it took decades
for relativists to adopt regular coordinates to describe black-
hole perturbations. We suspect that part of the confusion arose
from the asymptotic behavior of time functions. It is not widely
appreciated that the standard time coordinate in flat spacetime
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is singular at infinity with respect to the causal structure. Large-
scale wave phenomena demand coordinates tailored to wave
propagation—characteristic or hyperboloidal. This approach is
critical not only for gravitational waves but also for addressing
general wave propagation problems.

In recent years, the hyperboloidal approach has led to
significant breakthroughs in the study of black-hole perturbations.
As discussed, the regularity of the QNM eigenfunctions in the
frequency domain enables a direct identification of the QNM
excitation factors and tail decay 4.1, facilitates the efficient
computation of second-order perturbations 4.2, and supports the
analysis of the QNM pseudospectrum 4.3. Moreover, recent work
has demonstrated that the hyperboloidal method can be extended
to non-relativistic operators [168], further broadening its scope and
applicability.

From a numerical perspective, finding the optimal choices
among the many ways to construct hyperboloidal coordinates,
particularly for high-precision and large-scale simulations, remains
a challenge. Exploring gauge conditions and optimizing numerical
algorithms to leverage advanced computational resources will
be essential for practical applications, going beyond linear
perturbations and including the numerical solution of the full
Einstein equations along hyperboloidal surfaces [169, 170].

Much of the current work has focused on asymptotically flat,
vacuum spacetimes. The formalism for black hole perturbation
theory is fully developed for spherically symmetric spacetimes, but
the same concepts are also valid for the Kerr solution [102, 113]. The
hyperboloidal approach is versatile and extendable to more general
settings, including those with different asymptotic structures, and
nonvaccum spacetimes. Developing these extensions will be crucial
for applying this framework to a broader range of physical scenarios.
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