
TYPE Original Research
PUBLISHED 22 January 2025
DOI 10.3389/fphy.2024.1508465

OPEN ACCESS

EDITED BY

Fei Yu,
Changsha University of Science and
Technology, China

REVIEWED BY

Yousef Azizi,
Independent Researcher, Zanjan, Iran
Andrei Khrennikov,
Linnaeus University, Sweden

*CORRESPONDENCE

Andrey Dmitriev,
a.dmitriev@hse.ru

RECEIVED 09 October 2024
ACCEPTED 24 December 2024
PUBLISHED 22 January 2025

CITATION

Dmitriev A, Lebedev A, Kornilov V and
Dmitriev V (2025) Self-organization of the
stock exchange to the edge of a phase
transition: empirical and theoretical studies.
Front. Phys. 12:1508465.
doi: 10.3389/fphy.2024.1508465

COPYRIGHT

© 2025 Dmitriev, Lebedev, Kornilov and
Dmitriev. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.
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exchange to the edge of a phase
transition: empirical and
theoretical studies

Andrey Dmitriev1,2*, Andrey Lebedev1, Vasily Kornilov3 and
Victor Dmitriev1

1Big Data and Information Retrieval School, HSE University, Moscow, Russia, 2Cybersecurity Research
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Our study is based on the hypothesis that stock exchanges, being nonlinear,
open and dissipative systems, are capable of self-organization to the edge of
a phase transition. To empirically support the hypothesis, we find segments
in hourly stock volume series for 3,000 stocks of publicly traded companies,
corresponding to the time of stock exchange’s stay to the edge of a phase
transition. We provide a theoretical justification of the hypothesis and present
a phenomenological model of stock exchange self-organization to the edge
of the first-order phase transition and to the edge of the second-order
phase transition. In the model, the controlling parameter is entropy as a
measure of uncertainty of information about a share of a public company,
guided by which stock exchange players make a decision to buy/sell it. The
order parameter is determined by the number of buy/sell transactions by
stock exchange players of a public company’s shares, i.e., stock’s volume. By
applying statistical tests and the AUC metric, we found the most effective
early warning measures from the set of investigated critical deceleration
measures, multifractal measures and reconstructed phase space measures.
The practical significance of our study is determined by the possibility of
early warning of self-organization of stock exchanges to the edge of a
phase transition and can be extended with high frequency data in the
future research.

KEYWORDS

phase transition, self-organized criticality, early warning signals, sandpile cellular
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1 Introduction

More than 35 years ago, P. Bak together with C. Tang suggested that in nonlinear
systems far from equilibrium, complex holistic properties may emerge through their
self-organization into a critical state [1]. Subsequently, the theory of self-organized
criticality (SOC) was formed, the main provisions of which have found application
in sociology, biological evolution, seismology, economics and other sciences (e.g.,
see the papers [2–7, 7–9]). The theory of self-organization at the edge of phase
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transitions has found applications in cognitive and social science
(e.g., see the papers [10, 11]).

The basic model of SOC theory is the sandpile cellular
automaton (SCA), which demonstrates how complex holistic
properties emerge in a model system with simple rules as a result
of self-organization of the automaton into a critical state (e.g., see
the papers [12, 13]). The simplest model of SCA is the following
model. Suppose that the nodes of the lattice graph are assigned
integer numbers (the number of grains of sand in the cells). Then we
increase by one the numbers assigned to randomly chosen nodes of
the graph (add one grain of sand in the cells). If the number (grains
of sand), zk,l, for some node (k, l) exceeds some threshold value,
zc, for instance zc = 4, then this node is unstable and its toppling
occurs. As a result of node toppling (k, l) numbers for neighbouring
nodes, zk±1,l±1, are increased by 1, i.e., zk±1,l±1→ zk±1,l±1 + 4. Thus
zk,l→ zk,l − 4. Collapses occur until the SCA becomes stable, that is,
until at each node zk,l < 4.

Each iteration of the SCA simulation is followed by its
perturbation, by adding one grain of sand to randomly selected
cells at a time, and relaxation, by collapsing unstable cells.
Starting from some critical iteration, ic, a single added grain
of sand in a randomly selected cell can cause an avalanche of
collapses of any size, continuing until all cells regain stability.
In the subcritical phase (i < ic) avalanches rapidly decay in
time and space.

In the context of mean-field theory of phase transitions, the
control parameter of the SCA is determined by the ratio of the
number of particles in the cells to the total number of cells
of the SCA, the order parameter is determined by the ratio of
the number of unstable cells to the total number of cells of
the SCA (e.g., see the paper [14]). The transition of the SCA
from the subcritical phase to the critical state corresponding to
the critical value of the control parameter occurs as a result
of self-organization of the SCA and does not require precise
adjustment of the control parameter to the critical value. This is
a fundamental difference between self-organization into a critical
state and a classical phase transition of the first or second kind,
for which precise tuning of the control parameters to critical values
is required.

Our study is based on the hypothesis that stock exchanges, being
nonlinear, open and dissipative systems, are able to self-organize into
a critical state. The theoretical justification of the hypothesis and a
phenomenological model of stock exchange self-organization into
a critical state are presented in Subsection 3.2. This econophysical
model is based on the isomorphism of the SCA model and the stock
exchange in the context of systems theory. In the model, the control
parameter is defined by entropy as a measure of uncertainty of
information about a stock of some public company, based on which
the stock exchange traders make a decision to buy/sell it. The order
parameter is determined by the number of buy/sell transactions
by stock exchange traders of shares of some public company, i.e.,
stock’s volume.

To quantitatively substantiate the hypothesis, we determined
time intervals corresponding to the time of the stock exchange’s
stay in a critical state, ∆tc. The main signs of the system being in
a self-organized critical state (in the interval ∆tc or ∆ic for the SCA)
are ρ(1) = 1, S( f) = f−β where 1 ≤ β ≤ 2 and p(ξ) = ξ−2 (e.g., see the
paper [13]). Here ρ(1) is the autocorrelation at lag-1, S( f) is the

power spectral density, p(ξ) is the probability density function for
the values of the dynamic series ξ in the interval ∆tc, corresponding
to the order parameter of the system. The identification of ∆tc
from the values β requires a significant computational cost in
estimating S( f). Recall that we investigated hourly stock volume
series for more than 2,600 stocks of publicly traded companies. In
addition, the estimation of p(ξ) is obtained only in the intermediate
asymptotic region, which is bounded due to the finiteness of the
size (number of stock exchange traders and the links between
them) of the stock exchange. Therefore, to identify ∆tc in stock
volume series, we used the features of 100-hour moving average
(MA100) behavior in the vicinity of tc followed by verification using
critical deceleration, multifractal and chaotic measures. Features
of MA100 behavior for test series (series of unstable nodes of
the SCA) in the vicinity of tc are presented in Subsection 2.1.
Peculiarities of MA100 behavior for stock volume series in the
vicinity of tc and detected ∆tc for stock exchanges and their features
are presented in Subsection 3.1.

The practical significance of our study is determined by
the possibility of early warning of self-organization of stock
exchanges into a critical state (e.g., see the papers [15, 16]).
We identified the most effective early warning measures from a
wide range of investigated early warning measures (the simplest
critical slowing down measures, multifractal measures and
chaotic measures). The methods for computing the measures
and extracting the most effective early warning measures are
presented in Subsection 2.3. The results obtained and their
discussion are presented in Subsection 3.3. The detection of a
precursor to such self-organization gives investors a reason to
pay attention to a stock that is likely to have a large trading
volume expected after some time (early warning time). To
the stock exchange trading regulator, precursors provide a
tool to distinguish between normal market behavior and large
one-off manipulations in investigations. We investigated the
effectiveness of a wide range of early warning measures: simple
critical slowing down measures, multifractal measures and
chaotic measures.

The main conclusions, as well as the possibilities and limitations
of the empirical results obtained and the proposed model are
presented in Conclusion.

Existing studies on the empirical validation of stock market
self-organization into a critical state are limited to the analysis of
daily world stock indices (e.g., see the papers [17–23]) or daily
stock prices of public company shares (e.g., see the papers [24–29]).
Studies of financial series with daily intervals allow us to identify
time intervals of the critical state only in the case of slow self-
organization of the stock exchange into a critical state, when the
time interval corresponds to several days. We used a 1 hour interval
series, which enabled us to identify a large number of time intervals
of several hours corresponding to stock exchange critical states, as
well as intervals of several days. We also analyzed stock exchange
samples of larger size (dynamic series at 1 hour intervals for stocks
of more than 2,600 public companies) and used a larger number of
early warning measures. Accordingly, the results we obtain are more
reliable and representative than those obtained earlier. In addition,
we provide a theoretical justification of the critical behavior of
stock exchanges within the framework of the proposed model
of self-organization into a critical state with an order parameter
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corresponding to the number of exchange transactions on shares of
a public company.

2 Data set and methods

2.1 Model time series generated by
sandpile cellular automata

As test dynamic series, that is, series to determine the required
number of iterations in moving average and moving variance in
the effective detection of critical iteration, ic, we used the series
of the number of unstable nodes (i ∈ [0,n],n ∈ N) of the SCA
on the Chung-Lu graph with two-parameter degree distribution
of graph nodes’ degrees (e.g., see the paper [30]) and Manna
rule (e.g., see the paper [31]). Series ξi demonstrate the exact
value ic, ρ(1) = 1, S( f) = f−β (1 ≤ β ≤ 2) and p(ξ) = ξ−2 in the
critical state (at i > ic), which is one of the reasons for their
use as test series. The rationale for the choice of the specified
graph topology and rule in the context of stock exchanges is
presented in Subsection 3.2.

There are two main reasons why we examined the sandpile
model and the time series that the model generates. First, on the
sandpile model we managed to find out under which conditions
we can talk about similarity in critical transitions between model
and real financial data, which will be discussed in more detail in
Subsection 2.2. Secondly, we used the sandpile model as a model
of the stock exchange, which allowed us to theoretically justify the
possibility of self-organization of the exchange at the edge of a phase
transition (see Subsection 3.2).

Let zk,l be the number of particles (grains of sand) in the
node (k, l) of the Chung-Lu graph, zc be the critical number of
grains. If zk,l ≥ zc, the node (k, l) is unstable. In general, the self-
organization of the SCA into a critical state is determined by
perturbation (pumping) and relaxation of the automaton. At the
beginning of iteration 0, a perturbation of the automaton takes
place in the form of randomly pouring grains of sand into its
randomly chosen nodes. If some nodes have zk,l ≥ zc, they are
considered unstable and their collapse occurs with sand grains
moving to neighboring nodes until all nodes are stable (zk,l < zc). In
this way the automata are relaxed. The next iteration 1, as well as
the iterations following it, also start with perturbation and end with
relaxation.

The feature of the Manna rule that distinguishes it from
other rules is that each unstable vertex transmits to neighboring
(connected) vertices a random number of particles that is equal to
the total number of edges of that vertex.

Starting from iteration ic the SCA self-organizes into a critical
state. At that, the dynamical series ξi (i > ic) is characterised by the
above-mentioned power laws for ρ(1), S( f) and p(ξ).

The considered scenario of self-organization of the automaton
to the critical state corresponds to its self-organization to the edge
of the second-order phase transition. For self-organization of the
automaton to the edge of the first-order phase transition, it is enough
to consider in the Manna rule that the collapse of an unstable node
(k, l) occurs not only at zk,l ≥ zc, but also in the case of transferring
to node (k, l)more than one grain of sand from neighbouring nodes
(e.g., see the paper [32]).

2.2 Stock volume series and time intervals
for critical state

As the source of the real data, we elected to utilize hourly
volumes of stock trading for the assets comprising the Russell 3,000
index (exclusive of pre- and post-market data, given their markedly
lower liquidity levels), for the preceding 2 years, with the exclusion
of companies experiencing data unavailability.This resulted in 2,667
time series, each comprising 3,498 observations.We elected to utilize
volumes as they aremore conducive to the viability assessment of the
model, given that these series are more proximate to the theoretical
ones and exhibit a paucity of trends in the data. As an alternative data
frequency, 1-minute and 30-minute data were considered. However,
both data sets exhibited an issue of mass automatic trade executions
close to the astronomical hour end, resulting in a large number
of singular spikes. It is possible to mitigate the impact of these
automatic spikes to some extent by providing researchers with direct
access to the market bids data, rather than statistical aggregates.
However, in this case, we were constrained to working with the final
time series.

In order to define critical transitions for systems it is necessary
to create additional rules that define the criteria for such transitions.
The primary criterion is that the moving average of the time
series (MA100) increases by 20% in comparison to the volumes of
the preceding five iterations. The secondary criterion is that this
regime change persists for a minimum of 10 iterations following
the transition. It should be noted that the logic described may
require modification for systems exhibiting significantly different
characteristics. However, in the base case scenario, it should remain
equally effective.

The rationale behind the selection of these parameters
is as follows:

• MA100 – modification of the first moment of the
distribution, which is a well-established early warningmeasure.
Furthermore, 100 iterations were chosen as a highly stringent
threshold, enabling the removal of outliers in the data set.

• A 20% increase was selected as it defines the severity of the
shift and was chosen based on the simulations with sandpile
automaton with Manna rules on the Chung-Lu random graph
in comparison to white noise and random walk. The 20% level
was deemed appropriate for filtering jumps that occurred in the
random time series, while also enabling the identification of
transitions from the time series generated by complex systems.

• A comparison to the five iterations preceding the current
iteration allows for the filtration of trends and the isolation of
actual transitions from the data set.

• A minimum of ten iterations following the transition permits
the filtration of sudden outliers that do not result in short- or
mid-term changes to the system.

In order to filter time series for modelling purposes, we have
elected to employ a further criterion, namely, that there must be a
minimum of 800 iterations prior to the critical transition (e.g., see
the paper [26]), without the occurrence of other transitions. This
thresholdwas selected on the basis that themajority of early warning
measures necessitate the availability of sufficiently wide windows in
order to function effectively, without the introduction of artefacts. In
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this particular case, the initial 500 iterations will be utilized for this
purpose, with the remaining 300 employed for prediction purposes,
given that all relevant metrics have been duly calculated.

2.3 Early warning measures

In Subsection 2.3 we present a brief description of methods
for computing early warning measures (EWMs) for the self-
organization into a critical state. The analysis of the behavior of
EWMs as the system approaches tc makes it possible to detect early
warning signals for the self-organization of the stock exchange into a
critical state.We also introduce the notion of effectiveness of EWMs,
using which we determine the most effective EWMs.

Let {t = 0,n,n ∈ ℕ} be the dynamic series for the number
of unstable vertices of the SCA on the Chung-Lu graph and
Manna rule (see Subsection 2.1), {t = t0, t f} be the stock volume
series with step ∆t equal to 1 h. We obtained the dynamic series
for EWMs, {t = 0,n−w0} for the series ψt and {t = t0, t f −w0} for
the series vt, computing the measures in a sliding window of
width w0 = 500 iterations for the series ψt and w0 = 500 hours
for the series vt. For example, for the series vt, we obtain a
sequence of values of some measure m, mt0 ,mt1 ,mt2 ,…,mtf−w0

, the
terms of which are calculated in the segments of the series vt,
[t0, t0 +w0], [t1, t1 +w0], [t2, t2 +w0],…,[t f −w0, t f].

We investigated the behavior of EWMs directly related to the
critical slowing down of the system (SCA and stock exchange) as it
approaches tc (e.g., see the paper [33]), as well as multifractal EWMs
(e.g., see the papers [25, 34]) and EWMsbased on the reconstruction
of the phase space of the dynamical system (e.g., see the papers
[35, 36]).

2.3.1 Measures of critical slowing down
Computationally, the simplest measures of critical deceleration

are variance, σ2, and autocorrelation at lag-1, ρ, whose series show a
sharp increase as the system approaches tc followed by saturation
in the time interval ∆tc, as well as kurtosis, κ, and skewness, γ,
whose series are characterised by a sharp switch from increasing to
decreasing in the vicinity of tc. Moreover, the series ρt takes values
close to 1 in the interval ∆tc.

The power-law scaling exponent, β, of the power spectral
density and generalized Hurst exponent, h, are also EWMs, whose
significant increase as the system approaches tc, is an early warning
signal of its critical slowing down (e.g., see the papers [22, 33]).
Also, the series βt and ht, tend to take nearly constant values in
the interval ∆tc. In particular, it is shown that 1 ≤ β ≤ 2 for t ∈
∆tc (e.g., see the paper [36]). We computed the β values in all
sliding windows by the Welch’s method (e.g., see the paper [37]).
For each window, the ψt and vt series were segmented using the
longest and most overlapping segments, followed by estimating the
power spectral density, S( f), for each segment and averaging these
estimates. Next, the exponent β for the power law S( f) = f−β was
calculated. To estimate h we used detrended fluctuation analysis
(e.g., see the paper [38]), which gives the most reliable estimate
of Hurst exponent for nonstationary series. For the dynamic series
under study, e.g., vt, in each ith sliding window, the profile V(k) =
ti+w0

∑
t=ti
(vt − ⟨v⟩) was calculated. Hereinafter, the symbol ⟨∙⟩ denotes

the mean value of some quantity. Next, segmentation of the profile
V(k) into non-overlapping segments of length n and determination
of the linear trend, Vn(k), for each segment was performed. For
different n, the standard deviation of V(k) fluctuations relative to
Vn(k), F(n) = √(1/n)∑

ti+w0
t=ti [V(k) −Vn(k)]

2, followed by estimation
of the exponent h for the power law F(n) = nh.

2.3.2 Multifractal measures
The specific features of the behavior of multifractal EWMs as

the system approaches tc are probably also related to the critical
slowing down of the system (e.g., see the paper [34]), but there is
no theoretical justification of this connection yet. Full information
on the multifractal properties of the dynamical series is given by
the multifractal spectrum, D(h), as a dependence of the fractal
dimension, D, on the values of Holder exponents, h. The spectrum
D(h) cannot be used as an EWM, calculated in a sliding window, but
its three main parameters characterising the geometry of the D(h)
dependence can be used. Such parameters are the position of the
spectrummaximum, h0, thewidth of the spectrum,W = hmax − hmin,
and the slope of the spectrum, S = (hmax − h0)/(h0 − hmin). As the
system approaches the edge of the phase transition of the second
kind, an increase in h0, W and S (see the paper [36]).

To calculate the parameters of the multifractal spectrum, we
used the wavelet leader method and D(h) = qh(q) − τ(q), where τ(q)
is the scaling exponents of the structure function Z(q, s) (e.g., see
the paper [39]). Following the algorithm of the method, Z(q, s) is
represented in the Equation 1 as the sum of qth powers of the
largest coefficients, or leaders, of the discrete wavelet transform of
the dynamic series vt, corresponding to the scale s:

Z(q, s) = 1
ns

ns
∑
k=1

L(s,k)q, (1)

where L(s,k) = |d(s,k)| the leaders of wavelet coefficients d(s,k) of
scale 2s and time shift k, 3λs,k = [(k− 1)2s,k2s)⋃[k2s, (k+ 1)2s)⋃
[(k+ 1)2s, (k+ 2)2s) is the time neighborhood. If the series vt is a
multifractal series, then the scaling relation Z(q, s) ≃ sτ(q) is satisfied
at all scales s. Decomposing the function τ(q) into a∑(Clq

l)/l! series
allows us to compute the first log-cumulant (C1), which corresponds
to h0, the second log-cumulant (C2), which corresponds to W, and
the third log-cumulant (C3), which corresponds to S. Therefore, we
used the first three log-cumulants as multifractal EWMs.

2.3.3 Measures of reconstructed phase space
As EWMs, for the calculation of which requires the

reconstruction of the phase space of the dynamical system, we used
the correlation dimension of the phase space, Dc, and the largest
Lyapunov exponent, λ. The dimension of Dc is an estimate of the
fractal dimension of the reconstructed attractor of the dynamical
system, which increases as the system approaches tc (e.g., see the
paper [36]). The exponent λ, being a measure of the chaotic nature
of the dynamical system, increases, taking positive values, as the
system approaches tc (e.g., see the paper [40]).

We used the Takens theorem (see the paper [41]) to reconstruct
the phase space of the stock volume series, P = (P1,P2,…,PM) ∈ RM,
over the stock volume series from a sliding window of widthw0,V =
(v1,v2,…,vw0

). The phase space Pwas reconstructed from the series
V, using as missing coordinates the l-th state vector, Pl, the series V,
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taken with some lag τ:

Pl = (vl,vl+τ,…,vl+(M−1)τ), (2)

where τ is the time delay, M is the embedding dimension, l =
1,2,…,w0 − (M− 1)τ. Takens’ theorem does not answer the question
of how to calculate the value τ and M.

The time τ for the Equation 2 was chosen so that the correlation
between vl and vl+τ was minimal. The delay τ was chosen equal to
the time of the first zero crossing of the autocorrelation function
(w0 − τ)

−1∑w0−τ
k=1 (vk − ⟨v⟩)( v k+τ − ⟨v⟩) (e.g., see the paper [42]).

To estimate the values ofM andDc we calculated the correlation
sum (e.g., see the paper [42]):

C(ε) = 1
p(p− 1)

p−2

∑
i=0

p−1

∑
j=i+1
θ(ε − |Pi − Pj|), (3)

where p = w0 − (M− 1)τ, θ =
{
{
{

1, ε − |Pi − Pj| ≥ 0

0, ε − |Pi − Pj| < 0
. The sum

C(ε) from the Equation 3 was calculated for different values of
distances, ε, between vectors Pi and Pj of the reconstructed phase
space. This procedure was repeated for several dimensions M.
The criterion for stopping the procedure is the fulfillment of the
power law C(ε) ≃ εDc . As the value of M increases, the correlation
dimension increases. At someM, the value ofDc comes to a constant
level. The estimate of the dimensionality of Dc is the tangent of the
slope of the straight line approximating the correlation sum C(ε) in
a double logarithmic scale. At the same time, only linear parts of the
dependence were investigated.

There exists a spectrum of Lyapunov exponents characterizing
the separation rate of infinitely close phase space trajectories (e.g.,
see the paper [43]). The largest Lyapunov exponent, λ, defines
the notion of predictability of the dynamical system. Let δ(0) be
the minimum value of the distances between the vectors of the
reconstructed phase space, i.e., δ(0) = |Pi − Pj|.The distance between
vectors after time t is δ(t) = exp (λt). The linear regression for λt
is an estimate of the largest Lyapunov exponent. Regardless of the
dimensionality of the phase space, this procedure was repeated
for several dimensions to ensure that λ does not depend on the
dimensionality of the space.

Previously (see the paper [44]), we introduced the notion of
EWM, defined in terms of the number of false early warning signals,
ν, for the zero-mean dynamic series of EWM increments, ∆mt, and
the early warning time,∆τEW, for the seriesmt. For example, EWM1
is more effective than EWM2, if ν1 < ν2 and ∆τEW1 > ∆τEW2. In the
context of the presented study, this measure was modified to the
AUC (area under curve for all of the combinations of false positive
rate and true positive rate for all possible thresholds of separation
between predicted classes) as a more stable measure in case of
problems with class balance in the sample.

3 Results and their discussion

3.1 Time intervals for critical state of stock
exchange

Following the implementation of all filters mentioned in
Subsection 2.2, a total of 967 time series were identified as exhibiting

critical transitions in accordance with the predefined criteria. For
all of the aforementioned time series, metrics were calculated
in accordance with the specifications outlined in Subsection 2.3.
Additionally, the 8-hour dynamics and variance of these instruments
were calculated (as daily trading sessions on the US stock exchanges
last for 8 h), which further reduced the sample size. However,
the resulting observations still numbered nearly 281.4 thousand.
Subsequently, observations in the time series are divided into two
categories: those that are close to a critical transition and those
that are not. Eight distinct closeness horizons (H) were considered,
ranging from 1 to 8 iterations. This allowed for the classification
of observations as either predicting a critical transition in not
more than H iterations, or otherwise. Given the imbalanced nature
of the dataset, we opted to down sample it via bootstrapping
(see the book [45]), with positive observation shares of 5%, 10%,
15% and 20% and 500 random separations for each of the H-share
combinations, in order to demonstrate the stability of the random
sampling and modelling results.

In order to predict the probability of an iteration belonging to
the “close to the critical transition” group, the probit model has been
selected (see the paper [46]).The simplicity and high interpretability
of the model would facilitate the straightforward observation of the
efficiency of the measures and their derivatives. Two sets of models
were constructed: one using all variables, and another with only one
variable at a time. This was done to ascertain whether there were
any differences in the final impact on quality prediction. In the first
set of models, the importance of each variable was calculated as
a share of those where the p-value of the coefficient was less than
5%. In the second set, the metric was the largest time horizon that
would still achieve anAUChigher than 0.75. In addition to theAUC,
two sample Kolmogorov-Smirnov (KS) tests (see the paper [47])
were employed to measure the capacity of our models to effectively
differentiate between positive and negative observations.

Table 1 shows us that all of the variables (white–no
statistically significant impact on the quality of the prediction,
yellow–significant in some of the modifications of the variable,
green–significant in most of the modifications) except for the
Hurst exponent, correlation dimension and the second cumulant of
wavelet leader can be at least partially useful for the task of critical
transition prediction, which mostly follows previous research on
this topic and tells us that at least for the financial data classification
models can be applied with high level accuracy and interpretability.

3.2 Phenomenological model of stock
exchange self-organization into a critical
state

As shown in Subsection 3.1, a stock exchange self-organizes
into a critical state and stays in this state for a certain number
of hours, determined by the share of a public company that is
traded on the exchange. In other words, each segment of a stock
exchange has a different time duration for it to be in a critical
state. By a stock exchange segment we mean a set of trading
platforms (world stock exchanges) and market traders involved in
buying/selling a share of some public company. Hereinafter we use
the term stock exchange and understand it as a segment of the
stock exchange.
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TABLE 1 Efficiency comparison for EWM and their modifications on the stock market data.

Early warning
measure

Share of united models where the p-value of
the coefficient was less than 5%

Largest time horizon that would still achieve an
AUC higher than 0.75 for models with separated

variables (or AUC for horizon 1)

Original
measure
value

Dynamics of
measure over
8 iterations

Variance of
measure for 8

iterations

Original
measure
value

Dynamics of
measure over
8 iterations

Variance of
measure for 8

iterations

Hurst exponent 0.06 0.28 0.12 −(0.52) −(0.51) −(0.50)

Correlation
dimension

0.01 0.06 0.30 −(0.52) −(0.49) −(0.52)

Lyapunov exponent 0.71 0.01 0.14 −(0.65) −(0.51) −(0.68)

Variance 0.00 1.00 0.04 −(0.53) 5 1

Skewness 0.96 1.00 0.95 −(0.74) 1 5

Kurtosis 0.96 1.00 0.98 −(0.73) −(0.71) 5

Power-law scaling
exponent of power
spectral density

0.97 0.15 1.00 −(0.53) −(0.52) −(0.52)

Autocorrelation at
lag-1

0.06 0.18 0.99 −(0.54) −(0.53) 4

First log-cumulant 0.09 1.00 0.99 −(0.53) −(0.55) −(0.52)

Second
log-cumulant

0.04 0.00 0.68 −(0.52) −(0.50) −(0.52)

Third log-cumulant 0.72 0.01 0.03 −(0.50) −(0.50) −(0.50)

A stock exchange in a critical state is characterized by a near-
1 autocorrelation for stock’s volume and a power law for the
power spectral density of stock’s volume with degree exponent
from 1 to 2. The dynamics of a system with such characteristics
is known as the avalanche-like dynamics of the system observed
when it is in a critical state, also known as the edge of a
phase transition (e.g., see the paper [14]). One of the first
and most studied models of self-organization of systems into a
critical state is the SCA model, which explains the spontaneous
emergence of a system into a critical state with its avalanche-
like behavior. Therefore, we used SCA not only as a system
generating test dynamical series (see Subsection 2.1), but also as
a basic, systemically isomorphic model of SCA in the context of
systems theory, the stock market model. In other words, when
building a stock exchange model, we use the analogy of structure
(Chung-Lu graph of SCA and complex network of exchange
transaction network), the nature of elements (stable/unstable
vertices of SCA and passive/active stock exchange traders) and
links (collapse of unstable vertices of SCA and buy/sell transaction
of a public company share) between the elements of SCA and
stock exchange.

Let Γ be a planar graph of exchange transactions with nodes
(k,m), for which k,m ∈ ℤ are the ultrametric coordinates of the
exchange traders. As Γ we used Chung-Lu graphs with two-
parameter degree distribution of edges as the most common and

empirically validated model determining the topological structure
of exchange transactions (e.g., see the papers [48–53]).

Let h(k,m) ∈ ℤ+ ∪ {0} be the entropy as ameasure of uncertainty
of information about the share of some public company, which is
available to the stock exchange trader (k,m). Let h(k,m) be denoted
by hc, which defines the threshold value of entropy for a trader (k,m)
to sell a share to its nearest neighbour, for example, (k+ 1,m), in the
graph Γ.

Thus, each exchange trader with some number of shares can
be in both an active state, denoted (ka,ma), and a passive state,
denoted (kp,mp). Trader (ka,ma) is in the active state if the
corresponding entropy h(kp,mp) is not less than a critical value,
hc. Otherwise, trader (k,m) is in the passive state. Trader (ka,ma),
having uncertainty about a stock at least hc, seeks to get rid of such
stocks. As a result, trader (ka,ma) sells the shares to his nearest
neighbour in the graph Γ, e.g., trader (kp,mp) = (ka + 1,ma), who
is in the passive state and has uncertainty about the share less
than hc. In this case, trader (kp,mp) has more information about
the tendencies of the price behavior of the bought stock. After the
local exchange transaction of buy/sell (ka,ma) → (kp,mp) the trader
(ka,ma) becomes passive until he receives some information which
increases the uncertainty of information about tendencies of price
behavior of the share.The source of such information can be a report
of a public company, mass media news or some insider information.
On the contrary, after the exchange transaction (ka,ma) → (kp,mp)
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FIGURE 1
Local exchange transactions leading to self-organization of the stock exchange to the edge of the second-order phase transition (A) and to the edge
of the first-order phase transition (B). The symbol h denotes the entropy. Model series of exchange volume corresponding to self-organization of the
stock exchange to the edge of the second-order phase transition (C) and to the edge of the first-order phase transition (D). The gray region indicates
the edge of a phase transition.

trader (kp,mp) enters an active state in which he is ready to sell the
stock to some of his passive nearest neighbours. Figure 1A shows
local exchange collapses.

Self-organization of the stock exchange into a critical state
occurs as a result of its pumping (perturbation) and relaxation
at each iterative step. Each iteration starts with pumping and
ends with complete relaxation of the stock exchange. Information
pumping of the stock exchange leads to an increase in entropy
or to an increase in the volatility of the stock, i.e., to an increase
in the possibility of the stock price to change in any direction.
Relaxation of the stock exchange occurs as a result of local exchange
transactions of buying/selling a share and is formally defined by the
following rules:

h(k,m) ≥ hc(k,m)

h(k,m) → h(k,m) − hc(k,m)

h(Ne(k,m)) → h(Ne(k,m)) + δp
zc(k,m)

∑
p=1

δp = hc(k,m),δp ≥ 0

, (4)

where hc(k,m) is the critical for trader (k,m) entropy value
equal to the number of its nearest neighbors in the graph Γ;
Ne(k,m) is the nearest neighbour of trader (k,m) in the graph
Γ; δm is a random number taking values from the set ℤ+ ∪
{0}.

The model based on the Equation 4 explains the phenomenon
of self-organization of the stock exchange into a critical state
starting from some critical iteration ic. Starting from initial public
offering (i = 0) and up to the moment of completion of the
subcritical phase (0 < i < ic), the stock exchange observes a small
number of share buy/sell transactions, which quickly decay in

ultrametric space and time. The global information pumping of
the stock exchange to a critical entropy value Hc brings the
stock exchange into the critical state (i ≥ ic). Staying in a small
neighbourhood of Hc the stock exchange is unstable to small
information perturbations. In such an unstable state, a small
entropy increment (Hc ± δH) is sufficient for the stock exchange
to experience avalanches of stock buy/sell transactions. The stock
volume series, Vi, in the critical state of the stock exchange (i ≥ ic)
is characterised by ρ(1) = 1, S( f) = f−1, and p(ξ) = ξ−2. The dynamic
series Vi, demonstrating the dynamics of such self-organization, is
presented in Figure 1C.

The above described self-organization of the stock exchange
corresponds to its self-organization to the edge of the second-
order phase transition. To describe the self-organization of the
stock exchange to the edge of the first-order phase transition,
the following changes in the rules of model (1) are sufficient.
Any stock exchange trader (k,m), who is in the passive state
(kp,mp), can move to the active state (ka,ma) if h(k,m) ≥
hc(k,m), and if he has purchased a share from at least one of
his nearest neighbours. The latter is characteristic of the stock
exchange during the period of increased activity of its traders,
i.e., when each trader (kp,mp), having bought a share from a
neighboring trader, passes to the state (ka,ma) independently of
the entropy value h(k,m). Being in the state (ka,ma) a trader
immediately tries to sell the bought share. Such a stock exchange
is dominated by speculative buy/sell transactions of the stock.
Figure 1B demonstrates the corresponding local stock exchange
collapses. The dynamic series Vi, demonstrating the dynamics of
self-organization of the stock exchange to the edge of the first-
order phase transition, is presented in Figure 1D. Local exchange
transactions of buying/selling a stock are formally determined by the
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following rules:

h(k,m) ≥ hc(k,m) ∨ 2 ≤ h(k,m) < hc(k,m)

h(k,m) ≥ hc(k,m):

{{{{{{
{{{{{{
{

h(k,m) → h(k,m) − hc(k,m)

h(Ne(k,m)) → h(Ne(k,m)) + δp
zc(k,m)

∑
p=1

δp = hc(k,m),δp ≥ 0

2 ≤ h(k,m) < hc(k,m):

{{{{{{{{{
{{{{{{{{{
{

h(k,m) → h(k,m) − hc(k,m)

h(Ne(k,m)) → h(Ne(k,m)) + δp
zc(k,m)

∑
p=1

δp = hc(k,m),δp ≥ 0

h(Ne(k,m)) → h(Ne(k,m)) + 1

. (5)

Note that the proposed models which are based on the Equation
5 determine the self-organization of the stock exchange into a critical
state, which does not require fine-tuning of the control parameter
H to the critical value Hc. Exit to the critical state is achieved as
a result of perturbation and relaxation of the stock exchange, as
well as the above-described nonlinear interactions between the stock
exchange traders.

3.3 Early warning signals for stock
exchange self-organization into a critical
state

One of the results of our calculations is the independence of the
behavior of the series for any of the EWMs in the vicinity of the
critical onset from the specific public company for which the EWM
series was calculated. The EWMs series differ only in their noise
and early warning time (see Subsection 3.1). Apparently, the self-
organization of a stock exchange into a critical state is a universal
phenomenon. Therefore, we will limit ourselves to discussing the
behavior of a series of EWMs for stock exchange transactions of, for
example, Ameris Bancorp.This company is a bank holding company
that, through its subsidiary Ameris Bank, provides banking services
to its retail and commercial customers.

Figure 2 shows the behavior of the moving average smoothed
series of EWMs that are obtained for the stock volume series
of Ameris Bancorp from 10:30 7 February 2022 to 15:30 p.m. 5
February 2024. The smoothing of these series reduced the number
of false early warning signals.

TheMA100 series obtained for the stock volume series increases
sharply in the vicinity of the critical point, tc, i.e., the time
when the stock exchange starts to self-organize into a critical
state (see Figure 2A). The time tc corresponds to 15:30 10 March
2023. The MA100 series increased by 20% compared to the volumes
of the previous 5 hours at 11:30 10 March 2023. Therefore, no
more than 4 h are given to take preventive measures to avoid self-
organization of the stock exchange into a critical state.

The above described behavior of the MA100 series is a
consequence of the critical slowdown of the stock exchange, the
manifestation of which is an increase in the average amplitude
of stochastic fluctuations of the order parameter (stock volume).
Indeed, in the vicinity of tc there is an increase in the average

amplitude of stochastic fluctuations of stock volume, which leads to
an increase in MA100.

Other evidence of the critical slowing down of the stock
market in the vicinity of tc is the behavior of window variance
(see Figure 2B), kurtosis (see Figure 2C), skewness (see Figure 2D),
autocorrelation at lag-1 (see Figure 2E), and power-law scaling
exponent of the power spectral density (see Figure 2F) characteristic
of the critical slowing down. These measures increase sharply in
the neighborhood of tc. At the same time, kurtosis and skewness
take positive values, which is a consequence of the increase in
the amplitude of stochastic fluctuations of stock volume. Moreover,
autocorrelation at lag-1 and power-law scaling exponent of the
power spectral density take values close to 1 in the time interval from
15:30 10 March 2023 to 15:30 p.m. 27 March 2023. Thus, the stock
exchange has been in a critical state for 17 trading days. In Figure 2,
the interval corresponding to the critical state, or the edge of the
phase transition, is shown as a gray region. The stock exchange in
this interval is characterized by abnormal fluctuations of the stock
volume and strong, close to 1, correlation between neighboring
elements of the sequence of values of the stock volume.

Another sign of the stock volume series approaching tc is a sharp
increase of the generalised Hurst exponent to the value of 0.63
in the interval corresponding to the critical state (see Figure 2G).
Consequently, if the stock volume series is considered as a real-
time series, the sequence of values of the stock volume becomes
more correlated as the stock volume series approaches tc. The stock
volume series corresponding to the critical state is a time series
with long-term positive autocorrelation. Based on the fact that the
position of the center of the multifractal spectrum, h0 = C1, shifts
to the right as the stock approaches tc (see Figure 2H), the stock
volume series becomes more singular in the vicinity of tc. The
width, W = C2, and skewness, S = C3, of the multifractal spectrum
increase as the stock volume series approaches tc (see Figures 2I,
J). The multifractal spectrum becomes symmetric, C3 = S = 1, at t =
tc (see Figure 2J). Since S < 1 at t < tc,the multifractal spectrum for
the subcritical phase, t < tc, is asymmetric with small fluctuations
dominating the stock volume. Consequently, in the neighborhood
of tc the stock volume series becomes a more inhomogeneous series
with dominance of large fluctuations. Thus, the described behavior
of multifractal measures and Hurst exponent are early warning
signals for the stock exchange self-organization into a critical state.

Let us consider the behavior of the series of EWMs, the
calculation of which is based on the reconstruction of the phase
space of the stock exchange. As the stock exchange approaches tc
the correlation dimension of the reconstructed attractor increases
(see Figure 2K), hence the fractal structure of the attractor becomes
more complex and the chaotic behavior of the stock exchange
becomes more complicated. The most complex chaotic behavior
of the stock exchange, corresponding to the highest value of the
correlation dimension, is observed in its critical state. An indication
of the increasing complexity of the chaotic behavior of the stock
exchange is also an increase in the largest Lyapunov exponent, which
is positive, as the stock volume series approaches tc (see Figure 2L).
The most complex chaotic dynamics of the stock exchange also
corresponds to its critical state, since the largest value of the
exponent is observed in the time interval corresponding to the
critical state.
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FIGURE 2
Moving average series for the stock volume series (A), variance (B), kurtosis (C), skewness (D), autocorrelation at lag-1 (E), power-law scaling exponent
of the power spectral density (F), generalized Hurst exponent (G), position of the multifractal spectrum maximum (H), multifractal spectrum width (I),
multifractal spectrum skewness (J), correlation dimension (K), and largest Lyapunov exponent (L). The gray region indicates the edge of a phase
transition.

4 Conclusion

The stock exchange self-organizes to the edge of a phase
transition. The duration of a stock exchange at the edge ranges from
7 to 19 trading hours and depends on the public company whose
shares are traded on the stock exchange. We set such durations
for public company stocks from the Russel 3,000 index, which
measures the performance of the 3,000 largest US companies by
market capitalization. Perhaps the result of finding time intervals
corresponding to the edge of a phase transition for more public
company stocks would be a longer range of trading day durations.
In addition, further research of the time intervals should be focused
on the analysis of the stock volume series with higher frequency,
such as every second and every minute series, but adjusted for
the volumes of pre-planned execution of deals. Analyzing such
series will allow you to identify the time intervals that cannot be
identified in hourly stock volume. For example, high-frequency
trading implies the conclusion of a large number of buy/sell
transactions in a fraction of a second and it may take several
seconds for the stock exchange to self-organize to the edge of
a phase transition. If the duration of the stock exchange on the
edge of a phase transition is less than 1 h, the analysis of the
hourly stock volume series will not allow to identify the time

interval corresponding to the edge. The best identification will be
obtained when analyzing the second-by-second series for the stock
volume. In addition, the transition to more frequent stock volume
series will allow to obtain segments of series corresponding to the
edge, of longer length and possibly of sufficient length to obtain a
reliable estimate for the power-law scaling exponent of the power
spectral density. Comparison of such estimates will allow us to
determine which of the critical states, i.e., the edge of the phase
transition of the first or second kind, corresponds to the detected
time interval.

The sandpile cellular automaton model of self-organization to
the edge of a phase transition is based on the idea that information
drives stock markets (e.g., see the paper [54]). Self-organization
of a stock exchange occurs in a discrete number of steps, each
of which begins with an information perturbation of the stock
exchange and ends with its relaxation. If the information pumping
results in supra-critical uncertainty, or entropy, in the price behavior
of a stock for some traders, then the stock exchange relaxation
occurs as a result of these traders’ execution of stock buy/sell
transactions, which reduces the uncertainty in the price behavior of
the stock for the traders. We have considered implementations of
the model under the assumption that all traders are characterized
by a single critical level of uncertainty. In the context of effective
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market hypothesis such assumption is quite reasonable, but it is not
applicable when analyzing the stock market in the context of fractal
market hypothesis. Therefore, further improvement of the model
should be focused on the study of the influence of the type and
parameters of the probability distribution of critical uncertainty on
the behaviour of the stock volume series when the stock exchange
approaches the edge of a phase transition, as well as on the edge.
Another direction of the model improvement is the introduction of
an assumption about the existence of some critical uncertainty of
price behaviour, which determines the condition of buying a share
of a public company.Moreover, the critical uncertainty when buying
a share is not equal to the critical uncertainty when selling it.

The studied early warningmeasures, first of allMA100, variance,
kurtosis and skewness as the most effective ones, can be used
to detect early warning signals for self-organization of the stock
exchange to the edge of a phase transition in real-time early
warning systems. Such signals are important for the regulator
of trading on the stock exchange, as they allow detecting illegal
exchange operations. The volume indicator reflects an increase or
decrease in the activity of traders on the stock exchange. Therefore,
early detection of the time interval in the stock volume series
corresponding to the stock exchange’s edge will allow a trader to
make reasonable and timely changes in his trading strategy. As
a rule, traders correlate the volume indicator with the direction
of the stock price movement. If the stock price is rising along
with the volume, the price growth is likely to continue. High
volume (25% higher than average) when the stock price reaches
a new high is a harbinger of a strong increase in the stock price.
Traders should refrain from selling existing shares and/or buy shares
while they are cheap and sell them when they rise in price. If the
share price is declining while volume is rising, the stock market
is dominated by stock sellers - the trader should refrain from
speculating in the stock.
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