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Broadband continuous absorber
based on dual-mode coupling
resonance

Haixia Liu1, Yu Liu1, Wenjie Li1, Tianqi Li1 and Shashi Zhang2*
1School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China,
2School of Optoelectronics, Army Engineering University of PLA, Xuzhou, Jiangsu, China

The continuous detection of visible to near-infrared light is a critical focus
in optics due to its broad application value. To address this challenge, we
present a graphene-based gradient groove metasurface (GGM) that enables
efficient broadband absorption by simultaneously exciting surface plasmon
polariton (SPP) resonance and Fabry-Pérot (FP)-like cavity resonance within
multiple grooves. This dual-mode coupling effectively mitigates SPP losses and
overcomes the size constraints of FP cavities, allowing for broadband, angle-
insensitive absorption from 600 to 1,100 nm with an average absorption rate
of 87.5%. Finite element simulations further show that variations in groove fillet
radius variations from 5 nm to 20 nm and sidewall inclination variations from
0.02 to 0.22, result in absorption deviations of less than 2% and 6%, respectively,
demonstrating the structure’s robustness against industrial processing errors.
These findings suggest that the proposed GGM structure can significantly
expand the application range of photodetectors in the visible to near-infrared
wavelength bands, offering a promising solution for optical sensing applications.
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1 Introduction

Optoelectronic devices capable of detecting wavelengths from visible to near-infrared
hold significant application value [1–3]. Graphene, a two-dimensional material with unique
optoelectronic properties, has garnered substantial attention from researchers due to its
ultrafast carrier mobility and broad absorption spectrum [4–9]. However, its intrinsic
absorptivity of only 2.3% significantly hinders its application in optoelectronic devices
[10–13]. Consequently, research on enhancing graphene absorption has been ongoing,
with current studies focusing on mechanisms such as surface plasmon resonance [14, 15],
Fabry-Pérot resonance [16–19], guided-mode resonance [20, 21], and optical Tamm states
[22, 23]. Notably, some researchers have proposed using a combination of metasurface
and plasmonic nanostructures to construct broadband continuum absorbers with high
absorption rates [24, 25]. This absorber type is achieved by integrating multiple graphene
resonators of similar sizes, enabling broadband light absorption through the fusion of
resonance responses with subtle frequency differences [26–28]. Additionally, graphene
resonator units with gradient size variations can induce a continuous plasmon excitation
response [29–31]. By precisely designing the physical dimensions of graphene resonators,
effective light absorption over a more comprehensive frequency range can be realized.

Broadband continuous detection has always been a research hotspot in optics [32–35].
Several approaches have been explored to achieve efficient light absorption, including
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photonic structures, thin-film materials, and metasurface. Photonic
crystal structures, for instance, are effective at trapping light via
the bandgap effect, but their narrow bandwidth and fabrication
complexity often limit their practical applications [36]. Thin-
film absorbers, while popular for their simple structure and high
transmittance, are constrained by issues such as material stability
and scalability, which restrict their range of applications [37,
38]. Besides, Huang et al. [39] designed a broadband tunable
absorber based on graphene, employing a complementary cross-
crossed ellipsoidal graphene (CCOSG) metasurface structure.
This design achieves broadband absorption with an absorption
rate exceeding 90% in the range of 1.2 THz to 1.8 THz, with the
high absorption bandwidth reaching over 40%. The tunability
of the absorption operating band is realized by adjusting the
Fermi energy level of graphene through an applied voltage. The
absorber unit structure designed by Dang et al. [40] is in a
single-layer metal truncated pyramid resonator-dielectric-metal
configuration, with an absorption of 98% at normal incidence
in the wavelength range of 417–1,091 nm and greater than 99%
in the range of 822–1,054 nm. The absorbance is maintained
in the transverse electric (TE) and transverse magnetic (TM)
modes with slight variations in the incident angle. Meanwhile, its
unique structure also leads to difficulties in industrial processing.
Sang et al. [41] developed an angle-insensitive graphene broadband
absorber covering the visible spectrum by integrating graphene
sheets with a multi-groove structure separated by a polymethyl
methacrylate (PMMA) spacer layer.This design achieved an average
absorption efficiency of 71.1% in the 450–800 nm spectral range.
However, its performance in the near-infrared wavelength range
is suboptimal, indicating significant potential for improvement
in overall absorption efficiency. These research findings offer
significant theoretical and practical references for developing
novel broadband-absorbing materials. Most research in graphene
broadband continuous detection is concentrated on the terahertz
band, with substantial potential for improvement in the visible
and near-infrared bands. Detection within visible and near-
infrared wavelengths is essential in biomedical, military, and
other applications. Therefore, advancing research on broadband
detection within this range is of considerable prospective
significance.

In this paper, we design a gradient groove metasurface structure
(GGM) based on graphene and analyze the absorption spectra of
a single groove structure to study the absorption principle from
visible light to near-infrared band and the influence of structural
parameter changes on the absorption of the target band. We
realized that increasing the width of the groove can increase the
absorption rate while making the absorption peak blue-shifted.
Increasing the depth of the groove can increase the absorption
rate while making the absorption peak red-shifted. Therefore, we
gradient the multiple-groove structure from wide to narrow and
from shallow to deep to achieve broadband continuous absorption,
effectively solving the problem of low absorption rate of traditional
absorber structures in the visible to near-infrared wavelength range.
The structure achieves an overall average absorption of 87.5%
in the wavelength range of 600 nm–1,100 nm and 60.3% in the
wavelength range of 600 nm–1,200 nm for the graphene layer, truly
realizing a broad-spectrum continuum of absorption from the
visible to the near-infrared wavelength bands. Finally, we use the

finite element method to simulate the effect of common industrial
processing errors on the designed structure’s spectral absorption,
demonstrating the structure’s engineering utility.The findings reveal
that the structure tolerates groove right-angle errors and vertical
sidewall errors to a significant extent; this dramatically extends the
range of applications for detectors in the visible to near-infrared
wavelength bands. Compared to photonic structures and thin
films, GGM structure brings broader continuum absorption in the
visible to near-infrared wavelength bands with higher reliability and
scalability.

2 Structure, numerical and theoretical
model

As shown in Figure 1, a GGM structure is constructed. The
primary operating band of the structure is 600–1,100 nm, which
is particularly significant in fields such as military applications,
agriculture, and biomedical imaging [42, 43]. However, within
this band, graphene exhibits quasi-semiconducting electromagnetic
properties, with limited absorption and insufficient excitation of SPP
resonance. To address these limitations, we have precisely tuned
the electromagnetic response of graphene using a metasurface,
successfully exciting dual-mode Fabry-Pérot (FP) and SPP
resonances within the operating range, thereby enhancing
graphene’s absorption. Additionally, we incorporated a dielectric
material SiO2 into the structure to facilitate SPP resonance while
mitigating the issue of high losses. This combination ultimately
enables the designed structure to achieve efficient broadband
absorption across the 600–1,100 nm range. The GGM structure
consists of a series of structural units cascaded with multiple metal
grooves varying in depths (denoted as d) and widths (denoted
as w). The upper material is a ten-layer monolayer graphene
overlay. The substrate material is SiO2, and a layer of Ag metal
grating is positioned on top of the substrate. The grating grooves
are also filled with SiO2, and a spacer layer of thickness t is
formed above them. SiO2 exhibits low optical loss in the visible
and near-infrared wavelength bands, effectively allowing it to
conduct light signals without significant absorption. Additionally,
it possesses excellent high-temperature resistance and mechanical
strength, which considerably broadens the application scenarios for
optoelectronic devices.

In the experimental setup, a transverse magnetic (TM) wave
is incident from one end of the air medium at an angle θc. The
period of the metal grating is Λ, and the thickness of the film
layer at the bottom of the metal grating is D. The structure utilizes
a sub-wavelength metal Ag grating where the period Λ satisfies
Λ < λ
(1+sin θc)

, ensuring sufficient optical thickness D (here set as
D = 100nm) to minimize transmission losses within the targeted
research band, considering the skin depth of Ag.The absorption rate
is defined as A = 1−R where R represents reflectivity.

In the field of electromagnetic wave simulation, the two
most commonly used research methods are the finite element
method (FEM) and the finite-difference time-domain (FDTD)
method. This article mainly uses the finite element method to
numerically simulate and analyze the absorption spectrum and
local electromagnetic field of the target structure in the frequency
domain. In the FEM simulation, we combined periodic boundary
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FIGURE 1
Structural diagram (A) Schematic structure of graphene-based GGM and cross-section of periodic structural units in three dimensions. (B) Structural
parameters of grooves.

conditions and perfectly matched layers to enhance the accuracy
of the results. Periodic boundary conditions were applied to the
left and right sides of the structure to simulate the optical behavior
of the GGM structure under infinite repetition. The top boundary
serves as the excitation port for the wave source, and absorption
coefficients of the structure are calculated using area partitioning
to assess the absorption contributions of different active layers. A
perfectly matched layer is applied to the lower boundary to prevent
electromagnetic wave reflections, approximating an infinite space
condition. To optimize computational efficiency, a non-uniform
mesh with a minimum grid size of 0.1 nm is used for the graphene
layer. The structure is irradiated by TE-polarized plane waves
(parallel to the y-axis) at an incidence angle. This configuration not
only improves simulation accuracy but also allows for an efficient
evaluation of the structure’s light absorption properties in practical
applications.

To rigorously simulate the optical properties of graphene across
a broad spectral range, this study employs the Kubo formula,
incorporating both interband and intraband electronic transitions.
This approach is extensively utilized in the electromagnetic
modeling of graphene [44, 45]. In the visible to near-infrared
wavelength band, the refractive index of SiO2 is 1.46, while
the complex refractive index of Ag is referenced to Palik’s
data [46]. The dielectric constant of graphene is εg =

1+iσg
(ωε0t0)

,
the thickness of the graphene layer is t0, and the conductivity
of graphene σg(ω) = σintra(ω) + σinter(ω), which consists of both
the in-band and inter-band conductivities, is denoted by
Equations 1, 2 [47]:

σintra(ω) = −i
e2kBT

πℏ2(ω− 2iΓ)
[

μc
kBT
+ 2 ln(e−

μc
kBT + 1)] (1)

σinter(ω) = −i
e2

4πℏ
ln[

2|μc| − (ω− i2Γ)ℏ
2|μc| + (ω− i2Γ)ℏ

] (2)

Where e and ℏ are the elementary charge and reduced Planck’s
constant, respectively. kB is the Boltzmann constant, μc is the
chemical potential, T is set to 300 K, Γ = 1

(2τ)
is the scattering rate

of the carriers, the momentum relaxation time τ is set to 0.5ps, and
the chemical potential of graphene μc = 0.15eV.

Thematerial dielectric constant of the Ag layer can be described
by the Drude model, as shown in Equation 3 [48]:

εAg(ω) = 1−
ω2
p

ω2 + iγω
(3)

Where ωp is the plasma frequency and γ is the damping coefficient,
for the study band in this paper, the ωp = 9.1eV = 1.37× 1016rad/s,
γ = 0.018eV = 0.27× 1014rad/s, TM waves of Ag are incident at an
angle of incidence θc from the air side, which excites the surface
plasmon polariton (SPP) resonance on the surface of the metallic
Ag layer, at which time the wavevector conditions are satisfied
Equation 4:

kSPP =
ω
c
sin θc −m

2π
Λ

(4)

Where c is the vacuum speed of light, kSPP = ω
√

εAg
(1+εAg)

c
is the SPP

wavevector, m is the grating diffraction level taken ±1, and the
corresponding resonance wavelength is denoted by Equation 5:

λSPP = Λ√
εAg
(1+ εAg)

(5)

Furthermore, in order to be able to visually explore the
absorptivity of graphene and the absorptive contribution of the
graphene layer in this structure, the light absorption of the graphene
layer is distinguished from the total light absorption of the overall
structure, and the corresponding absorptivity is expressed by
Equation 6 [48]:

Agraphene =
[Pup(λ) −Pdown(λ)]

Pin(λ)
(6)

Where Pin denotes the incident optical power, Pup(λ) and
Pdown(λ) denote the optical power of the incident light with
wavelength λ passing through the interface between the top
and bottom of the graphene layer, respectively. All these values
can be extracted from the total physical field simulated in the
finite element software simulation.
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FIGURE 2
(A) Total absorption spectrum of metal single groove graphene structure and absorption spectrum of graphene layer, two consistent absorption peaks
appeared. (B) Magnetic field distribution of the structure at absorption peak wavelength λ = 508nm. (C) Magnetic field distribution of the structure at
absorption peak wavelength λ = 779nm.

3 Results and discussion

3.1 Research on the absorption of the
single groove structure

The single groove structure is analyzed first. Figures 2A, B show
the enhanced absorption spectra and the magnetic field distribution
at the peak position of the single groove structure, with the structural
parameter Λ = 500nm,D = 100nm,w = 50nm, d = 50nm, t = 10nm.
When TM-polarized light is incident perpendicular to the surface,
as shown in Figure 2A, the absorbance of the entire structure
reaches peaks at two wavelengths, λ1 = 508nm and λ2 = 779nm,
corresponding to 24.7% and 56.6% absorption by the graphene layer,
respectively. These values represent a significant improvement over
the intrinsic light absorption of graphene.

As shown in Figure 2B, at the first absorption peak in
the short-wavelength band, the light field energy is primarily
concentrated on the surface of the metal grating, indicating the
excitation of SPP resonance. The SPP resonance wavelength λSPP =
519nm, calculated according to Equation 5, coincides with the
short-wavelength band absorption peak position λ1 = 508nm. This
strong correlation confirms that the first resonance absorption
enhancement in the short-wavelength band originates from the
SPP resonance excited by the metal surface. When the SPP is
successfully excited, electromagnetic coupling occurs in the metal
groove, causing the light field energy to be strongly localized and
gradually released. The graphene layer on top absorbs part of this
energy, leading to an increased absorption rate. However, the SPP
also determines that the light field energy is perpendicular to
the interface direction between the metal and the medium and
decays rapidly. This rapid decay results in a small full width at half
maximum (FWHM) for the first enhancement, leading to a narrow
absorption spectral width.

From Figure 2C, it is evident that the field enhancement
mainly occurs in the metal groove for the second absorption peak,
displaying typical cavity resonance characteristics. Based on the
Fabry-Pérot (FP) cavity resonance model, the resonance position is
primarily influenced by the metal groove’s depth d and the groove’s

effective refractive index ne f f . This relationship can be expressed by
Equation 7:

2ne f fd+
1
2
λ =Mλ (7)

Where ne f f is the effective refractive index of the metal groove, M
is a positive integer representing the resonance mode, and ne f f is
a parameter related to the width of the groove w. The resonance
is also influenced by the permittivity of the spacer layer (SiO2)
and the dielectric constant of the metal Ag layer. This effective
refractive index can be equated to the mode refractive index of the
metal/insulator/metal (MIM) waveguide structure. The variation of
the effective refractive index can be determined by Equation 7.

With the structural parameters shown in Figure 1, the estimated
Fabry-Pérot resonance wavelength is located at λFP = 667nm, which
deviates from λ2 = 779nm in Figure 2A. This deviation occurs
because the presence of the spacer layer effectively extends the cavity
length. When the thickness of the spacer layer is included in the
calculations, the corrected resonance position aligns well with the
actual measured value.

Figure 3A illustrates the effect of varying the groove widths d
on the absorption spectra of graphene while keeping the depth
of the metal groove constant. The other structural parameters are
consistent with those in Figure 1. In the short-wavelength region,
the resonance absorption properties are not significantly affected by
the groovewidthwhen it is variedwithin the range of 20–70 nm.The
absorptance of the graphene layer is slightly affected by the groove
width, but the position of the absorption peak remains almost
unchanged, which can be explained by Equation 5.

However, for the second absorption peak in the long wavelength
band, the position, size, and absorption bandwidth of the peak are
indeed influenced by the width of themetal groove.When the width
of the metal groove increases, there is a decrease in the effective
refractive index ne f f , resulting in a blueshift of the absorption peak
position. Moreover, there is a notable enhancement in absorption as
the groove width increases.

As shown in Figure 3B, the absorption spectra of graphene layers
with different depths d of the metal groove are depicted when
the width of the groove is fixed at 50 nm, with other parameters
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FIGURE 3
(A) Absorption spectrum of graphene layer with changes in metal groove width w, as w increases, the absorption peak appears to be significantly
blue-shifted. Magnification: magnified view of the first absorption peak. (B) Absorption spectrum of graphene layer with changes in metal groove depth
d, as d increases, the absorption peak appears to be significantly red-shifted. Magnification: magnified view of the first absorption peak. (C) Absorption
spectra of the total structure, graphene layer, and Ag layer of GGM structure. (D) Magnetic field distribution of the structure at absorption peak
wavelength λ = 498nm.
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consistent with Figure 1. Increasing the depth d of the metal groove
from 40 nm to 90 nm primarily affects the resonant wavelength
of the SPP resonance. This resonance wavelength is influenced by
the angle of incidence θc and the grating period Λ, as the optical
field energy corresponding to the SPP resonance concentrates
mainly at the junction between the metal surface and the medium.
The change in metal groove depth d has minimal impact on the
absorption of the graphene layers in the short-wavelength region.
However, in the long-wavelength region, variations in groove depth
d significantly affect the position, size, and absorption bandwidth
of the absorption peaks. In this scenario, absorption enhancement
primarily originates from the Fabry-Pérot resonance of the metal
groove. They are increasing the cavity length by increasing d results
in a decrease in resonance frequency for each cavity, leading to a
significant redshift in the position of the absorption peaks. This
flexibility allows for precisely regulating graphene layer absorption
properties by selecting different groove widths w and depths d.

Furthermore, cascading multiple metal grooves within the same
unit structure, each with individually designed depths and widths
tailored to different wavelength bands, enables the superposition of
absorption properties across different metal grooves. This approach
provides a viable solution for achieving continuous broadband
absorption from the visible to near-infrared wavelength bands.
Optimizing the unit structure design also holds promise for further
expanding the absorption spectrum.

In summary, for a consistent groove depth, increasing the
groove width decreases the effective refractive index and increases
the absorption rate, resulting in a blue shift of the absorption
peak. Conversely, increasing the groove depth lowers the resonant
frequency and enhances the absorption rate for a consistent groove
width, causing a red shift of the absorption peak. However, it
is essential to note that micro-nanostructure dimensions impose
limitations on infinitely varying the groove width and depth to
achieve optimal absorption. Additionally, by cascading multiple
metal grooves within the same unit structure and individually
designing the depth and width of each groove to target different
wavelength bands, the absorption characteristics of different metal
grooves can be superimposed, thereby achieving continuous
absorption across the visible to near-infrared wavelength range.

3.2 Research on the absorption of
multi-groove metasurface structures

Based on the above study, multiple metal grooves with different
widths can be incorporated into a single periodic structural unit
to achieve multiple resonance enhancements within the same
structure. This approach does not consider the mutual influence
of the actual absorption between the grooves. The structure is a
cascade of multiple gratings with the same period but different
duty cycles. By designing the depths of the grooves accordingly, the
absorption spectra of the final overall structure can be regarded as
a superposition of the absorption spectra of these multiple cascade
structures.

As shown in Figure 1, the schematic diagram of the GGM
structured cell integrates several metal grooves with different
depths and widths. The widths of the grooves are w1 = 70nm, w2 =
60nm, w3 = 50nm, w4 = 40nm, w5 = 40nm and the depths are d1 =

40nm, d2 = 50nm, d3 = 65nm, d4 = 80nm, d5 = 90nm, respectively,
from left to right, and wgap = 48nm. Figure 3C illustrates the
absorption spectrum for TM waves incident perpendicularly. The
absorption enhancement at short wavelengths originates from
the SPP resonance excited on the metal surface. The incidence
angle θc and the grating period Λ determine the resonance
wavelength λSPP.

Consequently, even after superposing the absorption spectra of
multiplemetal grooves, a pronounced absorption spike remains, and
the overall absorption rate in the 400–600 nm wavelength range
exceeds 55%. Figure 3D displays the magnetic field distribution
at the peak wavelength λ = 498nm. The light field localization on
the metal surface indicates clear SPP resonance. The absorption
enhancement is due to the Fabry-Pérot resonance ofmultiple cavities
for the long wavelength range. The positions and magnitudes of
the absorption peaks vary with the widths and depths of the metal
grooves, resulting in different absorption peaks. This superposition
of absorption peaks achieves a continuous broad spectrum, with
an overall average absorbance of 87.5% in the 600–1,100 nm
wavelength range.

Additionally, it is observed that the absorption contribution at
short wavelengths primarily comes from the Ag layer, while at long
wavelengths, it predominantly comes from the graphene layer. In
the long wavelength range, the energy of the incident light is mainly
dissipated in the graphene layer rather than in the Ag layer, resulting
in an average absorption rate of 60.3% for the graphene layer in the
600–1,200 nm wavelength range. Figures 4A–C show the magnetic
field distribution at wavelengths of 680 nm, 880 nm, and 1,050 nm,
respectively. Clear cavity resonance is evident, with the light field
confined within the metal grooves. Different grooves correspond to
different resonance modes. Specifically, for shorter wavelengths, the
field enhancement is concentrated in the shallower grooves, and as
the wavelength increases, the field enhancement position shifts to
the deeper grooves.

This approach realizes the cascading of multiple metal grooves
within the same structural unit to enhance both the graphene
layer’s absorbance and the structure’s overall absorbance. This
enhancement is achieved through the excitation of SPP resonance
and Fabry-Pérot resonance, further validating the physical
mechanism behind the continuous broadband absorption of
graphene based on theGGM.However, the number ofmetal grooves
that can be integrated into the metasurface structural unit is limited
for a fixed period. As the number of grooves increases and the
spacing between them decreases, the electromagnetic interaction
between different grooves has a more significant impact on the
absorption performance of the graphene layer and the overall
absorption performance of the structure. Therefore, achieving an
infinite expansion of the absorption spectral width is not feasible
through simple superposition of grooves.

To flexibly control the absorption performance of graphene
and the overall structure, it is essential to adjust the number,
width, and depth of grooves in the structural unit. This adjustment
allows for optimization of the absorption properties to meet specific
requirements and enhance the overall efficiency of the structure.

The absorption spectra of the GGM structural unit
cascaded with four, six, and seven metal grooves are
presented in Figures 4D–F, respectively. Compared with the
absorption shown in Figure 3C, which integrates five grooves,
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FIGURE 4
Magnetic field distribution of structures at wavelengths (A) λ = 680nm (B) λ = 880nm (C) λ = 1050nm. Absorption spectrum of graphene metasurface
with different number of grooves (D) 4 grooves. (E) 6 grooves. (F) 7 grooves.

it is evident that fewer metal grooves result in more significant
fluctuations in the absorption spectra and more uneven absorption
bands.This phenomenon is attributed to the dispersion of the single-
groove absorption spectra, where the absorption peaks of each
single groove are widely spaced at different wavelengths, preventing
them from superimposing to form broad and flat absorption bands.
As the number of metal grooves increases, individual grooves’
absorption spectra become closer. Consequently, the features of
single grooves are less pronounced in the combined absorption
spectrum of multiple grooves, leading to a more uniform and flat
overall absorption line with no significant difference in the average
absorption rate.

Additionally, increasing the number of grooves does not
significantly broaden the absorption spectra. Beyond a wavelength
of 1,100 nm, the absorption rates begin to show a decreasing trend,
and the absorption peaks no longer exhibit the characteristics
of single-groove absorption. This phenomenon suggests that the
structural units have a fixed period, which limits the local
enhancement of the light field in the deeper grooves.

Based on the structure of the 7 grooves, Figure 5A illustrates
the influence of the spacing between each metal groove wgap
on the total and the graphene layer absorption rate, respectively.
The figure shows that as the spacing between the metal grooves
decreases, the absorption of the graphene layer also decreases.
This reduction in absorption is attributed to the proximity of
the metal grooves, which leads to electromagnetic solid coupling
between neighboring grooves. This coupling results in mixing,
which consequently lowers the absorption rate.

To further evaluate the absorption performance of the graphene
layer in the GGM-integrated structure, Figure 5B shows the effect
of the spacer layer thickness t on the absorption properties of
the graphene layer. The other structural parameters are the same
as those in Figure 1. As the thickness of the spacer layer t increases
from 5 nm to 20 nm, the broad absorption band is maintained,
but there is a noticeable decrease in absorption. This reduction
occurs because as the thickness of the spacer layer increases, the
top graphene layer gradually moves away from the light field. The
spacer layer also acts as a buffer, attenuating the electromagnetic
coupling between the metal and the graphene to some extent, which
leads to a decrease in the absorption rate. Moreover, the increase in
the spacer layer thickness extends the length of the Fabry-Pérot-like
cavity, causing a redshift in the absorption band. For optimal overall
absorption rate of the structure, a spacer layer thickness of t = 10nm
is selected.

Figure 5C shows the absorption spectra of the overall structure
and the graphene layer for different incident angles θc. The other
structural parameters are consistent with those in Figure 1. The
structure demonstrates insensitivity to changes in the incident
light angle. Even when the incident angle is increased to 60°,
the overall structure maintains a high absorption level and
stable broadband performance. In the long-wavelength range,
field enhancement primarily occurs within the metal grooves,
and changes in the incident angle θc have minimal impact
on the Fabry-Pérot resonance, which remains robust against
angle variations. However, the SPP resonance is more affected
by changes in the incident angle. When the incident light is
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FIGURE 5
(A) Absorption spectra of the total structure and graphene layer with changes in the spacing of metal grooves wgap. (B) Absorption spectra of the total
structure and graphene layer with changes in interlayer thickness t. (C) Absorption spectra of the total structure and graphene layer with changes in
incident angle θc.
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oblique, the simplicity of the SPP resonance, which corresponds
to the ±1 diffraction order, is disrupted. They are causing
the two corresponding absorption peaks to shift in opposite
directions, flattening the superimposed absorption spectrum.
Unlike many previous graphene-based absorbers, this structure
achieves continuous broadband absorption that is insensitive to
the angle of light incidence. This feature is highly significant for
applications in various fields, such as broadband detection and
omnidirectional absorbers.

3.3 The influence of machining accuracy
on absorption

The preparation and processing accuracy of micro-nano
structures is crucial in the application of optoelectronic devices.This
precision not only influences the optical performance, operational
stability, and reliability of the device but also impacts the degree
of integration, which in turn affects the device’s operational
performance and efficiency.Therefore, to achieve high-performance
light-absorbing structures, it is essential to employ high-precision
preparation and processing technologies.These technologies ensure
the accuracy, consistency, and stability of themicro-nano structures.
Additionally, a deep understanding of the optical properties of these
micro-nano structures is necessary to optimize the performance and
efficiency of the devices. These properties involve comprehensive
studies and analyses to fine-tune the structural parameters, ensuring
the devices meet the desired specifications and performance criteria
in various applications.

In practical applications, the minimum number of unit
cells in the metasurface array structure must not only satisfy
electromagnetic performance requirements but also account for the
precision of theMEMSmachining process andmanufacturing costs.
According to related research, the local electromagnetic response is
generally considered to stabilize after the array reaches a scale of 11 ×
11 [49, 50]. Furthermore, from aMEMS processing perspective, this
metasurface array is achievable with current processing precision.
To more directly understand the impact of processing accuracy on
the overall structure and the absorption properties of the graphene
layer, we simulate actual processing errors by artificially introducing
geometrical inaccuracies into the model. For the GGM structure
proposed in this paper, the preparation of gradient groove metallic
gratings is the most complex. Considering the machining errors of
the micro-nano deep grooves, factors such as right-angle machining
accuracy, the vertical accuracy of the sidewall of the deep groove,
positional accuracy of the groove, and surface roughness may
affect the absorption of the structure. Here, we have specifically
simulated and analyzed the grooves’ right-anglemachining accuracy
and the sidewalls’ vertical accuracy. Rounded corners are added
at the bottom of the metal grooves to simulate the actual right-
angle machining errors. The specific changes are illustrated in
Figures 6A, B, with the radius of the rounded corners set to r.
As shown in Figure 6C, we present the absorption properties of
the overall structure and the graphene layer for variations in r
from 5 nm to 20 nm. When the deep grooves have no right-angle
machining errors, the average absorption of the overall structure is
78.96% in the 400–1,200 nm range and 87.68% in the 600–1,200 nm
range. The average absorption of the graphene layer is 50.04% in

the 400–1,200 nm range and 62.48% in the 600–1,200 nm range.
When the radius of the fillet changes from 5 nm to 20 nm, the
corresponding absorption rate changes are detailed in Tables 1, 2,
showing deviations of no more than 2%. Therefore, it can be
concluded that without changing the depth of the metal grooves,
the right-angle machining accuracy has minimal effect on the
absorption performance. The structure can maintain a broad
absorption band and achieve continuous broadband absorption.

Additionally, in the machining process, the deep straight groove
may maintain a different width at the top and bottom, resulting
in inclined sidewalls. This inclination affects the absorption of
the structure. To simulate the perpendicularity error in actual
processing, an inclination angle is added to the model’s sidewall
of the metal groove. The specific structural changes are shown
in Figures 6D, E, where the slope of the sidewall is set to k. As
shown in Figure 6F, the influence of the sidewall inclination on
the overall absorption performance and the absorption properties
of the graphene layer is displayed. It can be observed that, with
the gradual increase of k, i.e., the increase of the perpendicularity
error of the sidewall, the absorption rate of the graphene layer
significantly decreases.This phenomenon occurs because the size of
the groove opening remains unchanged, and the perpendicularity
error results in a decrease in the adequate width of the groove. As
illustrated in Figure 3A, decreasing the groove width reduces the
absorption rate. When the groove sidewall’s tilt changes from 0.02
to 0.22, the corresponding change in absorption rate is provided
in Tables 3, 4; when the tilt is less than 0.2, the deviation can be
controlled within 10%. This data indicates that when the vertical
error is kept within a specific range, the decrease in absorption
rate remains within an acceptable range. Overall, as long as the
adequate depth and width of each metal groove are maintained, the
specific shape characteristics of each groove haveminimal impact on
the absorption properties of the overall structure and the graphene
layer. This property significantly reduces the requirements for fine
processing of micro- and nanostructures, greatly enhancing the
manufacturability and practicability of the devices.

4 Discussion

In this paper, we design a structure that integrates a graphene
layer with a gradient groove metasurface (GGM). Firstly, we
investigate the absorption spectrum of a single groove structure,
demonstrating its capability for dual-band absorption across
visible to near-infrared wavelengths. Building on this, we explore
the impact of varying structure parameters on absorption
characteristics. Subsequent expansion to gradient groove structure
and achieve continuous absorption across the visible to near-
infrared wavelength bands through systematic parameter design
for each groove. In the wavelength range of 600 nm–1,100 nm, the
overall average absorption of the structure reaches 87.5%, and in the
range of 600 nm–1,200 nm, the average absorption of the graphene
layer reaches 60.3%. This structure also exhibits insensitivity to
incident angle variations. Finally, we investigate the fabrication
process of the metasurface and the influence of groove processing
accuracy on absorption. Our findings reveal that the structure can
tolerate deviations such as groove right-angle errors and sidewall
vertical errors to a significant extent. This tolerance effectively
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FIGURE 6
(A) Schematic diagram of metal groove fillet error (B) Schematic diagram of structural unit cross-section with added fillet error. (C) Absorption spectra
of the overall structure and graphene layer of metal grooves with different sizes of right-angle machining errors at the bottom (D) Schematic diagram
of verticality error of metal groove sidewall. (E) Schematic diagram of structural unit cross-section with added sidewall verticality error. (F) The overall
structure and absorption spectrum of the graphene layer of the metal groove sidewall with different processing errors in perpendicularity.
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TABLE 1 The influence of right-angle machining error on absorption in the range of 400–1200 nm.

Rounding radius r (nm) Graphene layer absorption rate Total absorption rate

5 nm 50.19% 78.68%

10 nm 50.28% 78.53%

15 nm 50.17% 78.28%

20 nm 49.84% 77.84%

TABLE 2 Effect of right-angle machining error on absorption in the range of 600–1100 nm.

Rounding radius r (nm) Graphene layer absorption rate Total absorption rate

5 nm 62.52% 87.35%

10 nm 62.54% 87.15%

15 nm 62.35% 86.77%

20 nm 61.90% 86.13%

TABLE 3 Effect of machining error on absorption of groove sidewall verticality within the range of 400–1200 nm.

Slope of groove sidewall k Graphene layer absorption rate Total absorption rate

0 50.04% 78.96%

0.02 49.43% 78.52%

0.07 48.12% 77.92%

0.12 46.50% 77.36%

0.17 44.52% 77.12%

0.22 40.92% 76.36%

TABLE 4 The influence of machining errors in the perpendicularity of groove sidewalls within the range of 600–1100 nm on absorption.

Slope of groove sidewall k Graphene layer absorption rate Total absorption rate

0 62.48% 87.68%

0.02 61.86% 87.17%

0.07 60.64% 86.58%

0.12 58.91% 85.64%

0.17 56.46% 84.24%

0.22 51.38% 81.69%

mitigates the complexity and cost of device applications andprovides
a theoretical basis for large-scale preparation. The GGM structure
demonstrates high scalability due to its compatibility with industrial
processing tolerances and its inherent modular, periodic design.

Nevertheless, material constraints represent a primary challenge in
advancing GGM structures toward practical application. Although
CVD enables precise graphene deposition, it encounters substantial
difficulties when scaled for large-area fabrication. Specifically,
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the deposition and transfer processes of large-area graphene are
susceptible to issues such as wrinkling and cracking, which can
negatively impact absorption properties. Furthermore, the high
costs associated with producing high-quality graphene and silver
continue to pose significant barriers to the practical implementation
and commercialization of GGM structures.

In general, most currentmetasurface designs still rely on a single
resonance mode to enhance absorption, which typically results in a
narrow operating band and limits broadband absorption [51–53].
In contrast, this study introduces an innovative approach to achieve
broadband absorption by coupling dual-mode resonance with a
metasurface. This design significantly broadens the absorption
bandwidth while reducing fabrication complexity and cost, without
introducing additional structural complexity. The concept of multi-
mode coupled metasurface offers new insights and potential for the
future design of broadband absorbers.
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