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Systems of partial differential equations (PDEs) comprising a combination
of constraints and evolution equations are ubiquitous in physics. For both
theoretical and practical reasons, such as numerical integration, it is desirable to
have a systematic understanding of the well-posedness of the Cauchy problem
for these systems. In this article, we first review the use of hyperbolic reductions,
where the evolution equations are singled out for consideration. We then
examine in greater detail the extensions, namely, systems in which constraints
are evolved as auxiliary variables alongside the original variables, resulting in
evolution systems with no constraints. Assuming a particular structure of the
original system, we provide sufficient conditions for the strong hyperbolicity of
an extension. Finally, this theory is applied to the examples of electromagnetism
and a toy model of magnetohydrodynamics.
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1 Introduction

In this work, we continue [1–4] the study of first-order systems of equations in
which there are more equations than unknowns, but with a structure that permits, in
principle, splitting suitable linear combinations of them into “evolution” and “constraint”
equations. We restrict to the case of consistent systems, in which the number of equations
is equal to the number of constraints plus the number of independent variables, and
furthermore to the special case in which the number of independent variables matches
the number of evolution equations. The latter means that we do not consider systems with
gauge freedom remaining, which would imply the existence of variables with unspecified
equations of motion. In this case, one can attempt a solution by carefully restricting
the initial data and then directly solving the evolution equations. For an introductory
review, see Hilditch [5]. One must then check that the constraint equations are satisfied
in the time development. For this, integrability identities among the whole system of
equations must be satisfied. These conditions will be assumed and spelled out in detail
below. This “free evolution approach” requires us to establish the well-posedness of the
Cauchy problem Gustafsson et al. [6]; Kreiss and Ortiz [7] (for a review of well-posedness
applied to general relativity, see Sarbach and Tiglio [8]). We restrict ourselves to the
concepts arising from the theory of strongly hyperbolic systems, in which well-posedness
is determined by algebraic properties of the principal symbol of the equation system.
For first-order systems, the principal symbol is simply the set of matrices multiplying
the derivatives of the variables. The algebraic properties leading to well-posedness have
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several equivalent characterizations summarized in the Kreiss
matrix theorem Kreiss [9]. To assert well-posedness for the systems
under consideration, we need to find a suitable square system, that
is, a system where the number of variables equals the number of
equations. This can be achieved by taking a subset of the equation
system, called a reduction, resulting in a pure evolution system.
The use of reductions is customary, but another possibility, which
is often employed in numerical schemes, consists of making an
extension, that is, extending the system by adding more variables.
These extensions are commonly referred to as divergence cleaning
[10]; Munz et al. [11, 12], from their use inmagnetohydrodynamics,
or as λ [13] or Z-systems [14] from their use in general relativity.

A paradigmatic example is given by the Maxwell equations,

∇aFab = Jb, εdabc∇aFbc = 0, ∇aJa = 0,

where the unknowns are the components of the Faraday tensor Fab,
an anti-symmetric tensor (so there are a total of six independent
variables). Ja, the current vector, is a given vector fixed in space-
time, which has vanishing divergence. This is necessary due to
the integrability identity ∇b(∇aFab) = 0. We work here in four-
dimensional space-time (M,gab) with the Levi–Civita derivative ∇a
associated with gab. There are thus a total of 8 = 4+ 4 equations for
Fab, so six of them should be evolution equations, and the remaining
two should be constraints. Introducing a time-like covector na,
one finds that contraction with that vector on both equations
gives constraint, that is, equations which have derivatives only
in directions perpendicular to na; while projection on the space
perpendicular to na gives equations that have derivatives along
na for each of the independent components of Fab. Thus, in the
terminology introduced above, a reduction is obtained by taking
only these projections as the evolution equations. The integrability
identity anddivergence property of Ja together imply that constraints
are satisfied in the time development if they are at an initial surface.

On the other hand, an extension is given by adding two auxiliary
constraint variables (Z1,Z2), one for each Maxwell constraint, and
making a choice for their equations of motion. To accomplish this
in a covariant fashion, we need to define two tensor fields (g1,g2).
The proposed extended system is

∇aF
ab + gba1 ∇aZ1 = J

b, εdabc∇aFbc + g
ba
2 ∇aZ2 = 0, ∇aJ

a = 0,
(1)

It turns out that if the symmetric parts of (g1,g2) are Lorentzian
metrics whose cones have non-zero intersections among each other
and with the cone of g, then the extended system is well-posed.
(We use the mathematical notion of a cone; when needed, we use
the term light cone to refer to their boundaries). The equations
that were constraints are now evolution equations for (Z1,Z2), and
the others acquire spatial derivatives of these fields. As mentioned
above, such extensions have been employed with enormous success
in numerical relativity [15–20] and computational astrophysics, with
works introducing this approach for magnetohydrodynamics [11,
12]; Dedner et al. [10] is particularly influential. Here, we investigate
the space of possible extensions that lead to well-posed Cauchy
problems and how to construct them in a natural, covariant fashion.

The article is organized as follows. In Section 2, we define
the type of systems to be considered, including the necessary
conditions they must satisfy in order to have a well-posed Cauchy

problem. In Section 3, we introduce the Kronecker decomposition
ofmatrix pencils and explain its implications to the study of strongly
hyperbolic systems. In Section 4, we formalize the framework for
extensions. Given the considerable freedom in choosing them, we
use the Kronecker decomposition as a guide for making these
choices. In Section 5, we demonstrate how this framework applies
to two concrete examples: Maxwell’s electrodynamics and a toy
model of magnetohydrodynamics (MHD). Finally, in Section 6, we
conclude with discussions and provide comments on how this line
of research is being further developed.

2 Preliminaries and notation

To fix notation, we specify the systems we consider, following
the notation of Geroch [1]; Abalos and Reula [3]; Abalos [4]. We
consider a manifold M of dimension n, and the following system
of the quasi-linear first-order partial differential equations on the
fields ϕ,

EA ≔NAa
α (x,ϕ)∇aϕ

α − JA (x,ϕ) = 0, (2)

where the indices A, a, α are abstract, grouping several tensorial
indices into one and merely indicating where the contractions are.
We use lower-case Latin indices to denote single vector indices,
lower-case Greek indices to indicate variable fields, and upper-
case Latin to label the equations space. The | ⋅ | function on indices
indicates their total dimension.

We impose the following conditions onNAa
α (x,ϕ):

Condition 1: the generalized Kreiss condition.
We assume that the matrixNAa

α (x,ϕ) is smooth in all arguments
and that there exists a hypersurface orthogonal covector na such that
for all values of ka, not proportional to na, the matrix pencil

NAa
α la (λ) =NAa

α (λna + ka) ,

has a kernel only for a finite set of real values {λi(k)} of λ (the term
matrix pencil refers here to the uni-parametric combination λN+B,
whereN andB arematrices that do not depend on the parameter λ).

In addition, the corresponding singular values of NAa
α la(λ)

approach zero in a linear way, that is, σ(λ) ≥ ci|(λ− λi)|, with ci > 0
in a neighborhood of λi. We recall that the singular values are the
square roots of the eigenvalues of (NAa

α la)
T(NAb

β lb). Because this is
an |α| × |α| matrix, there are |α| singular values (see Abalos [2] for
more details and for a more general definition).

These conditions imply two things: i) the rank of NAa
α (x,ϕ)na

is maximal. Therefore, by defining any vector ta transversal to the
surface flat defined by na (i.e., tana ≠ 0), we can obtain all field
derivatives along ta from their values and their derivatives at that
surface. This means that we have enough evolution equations for
each field ϕα. Observe that once we have a choice of na satisfying
Condition 1, then there is an open set of covectors satisfying
the same condition. Thus, we can always form hypersurfaces in a
neighborhood of any point, leading to a local initial value problem;
ii) In the case that the number of equations equals the number
of variables, these conditions imply there is a well-posed Cauchy
problem, in the usual sense for strongly hyperbolic systems, off of
the mentioned surface. This is the classic Kreiss condition.
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In case there aremore equations than variables, we need tomake
sure that there are no more linearly independent equations having
derivatives along the transversal vector ta; otherwise, we would have
an inconsistency because two equations could give different values
for the same transversal derivative. To accomplish that, we impose:

Condition 2: the Geroch constraint condition.
If the number of equations is larger than the number of variables
|A| > |α|, then we assume there exists a set of matricesCΓa

A , which are
labeled by upper-case Greek indices, with

CΓ(a
A N|A|b)α = 0,

and that rank(CΓa
A na) = |A| − |α| = |Γ|. This condition ensures that

the rest of the equations do not have derivatives off of the surface
defined by na, so that the system is consistent. Indeed, the following
linear combination of equations, called constraints,

ψΓ ≔ CΓa
A na (NAb

α ∇bϕα − JA) ,

have only derivatives on the flat defined by na.
There is a further consistency condition that would guarantee

that if the initial data are such that constraint quantities vanish at
the initial surface, then they would also vanish along evolution [4].
We require the following:

Condition 3: integrability.

∇d (C
Γd
A EA) = LΓ1A (x,ϕ,∇ϕ)E

A (x,ϕ,∇ϕ) ,

In other words, there is a particular on-shell identity among
derivatives of our equation system. In most cases of physical
interest, this identity is a consequence of gauge or diffeomorphism
invariance.

3 Kronecker decomposition

When studying the well-posedness of the Cauchy problem, the
relevant aspect is the behavior of the system in the limit of high
frequencies. We can thus restrict our attention to a neighborhood
of each point and work in the frequency domain, employing
the Fourier–Laplace transform in space and time, respectively.
Explicitly, we consider a time function t and a foliation given by its
level surfaces. We define na = (dt)a and take a vector ta transversal
to the foliation and adjust it such that tana = 1. We choose covectors
ka such that taka = 0 and define la = λna + ka. We perform Fourier
in ka, and Laplace in λ. Thus, we replace space derivatives by ika
and time derivatives by iλ. Furthermore, in what follows, once any
particular ka is chosen, we take a coordinate base so that na = (dx0)a,
and ka = (dx1)a, and so la = (λna + ka) = (λdx

0 + dx1)a. Finally, in the
high frequency limit, we obtainNAa

α la ̃ϕ
α = 0.

The Kronecker decomposition of a matrix pencil is a canonical
transformation that generalizes the Jordan decomposition of a
squarematrix pencil. Considering the (square or non-square) pencil
Nλ+B, the Kronecker decomposition is achieved by multiplying
this pencil by specific matricesW and Q, which are independent of
λ (as in the square Jordan decomposition case). This transformation
results in a new pencil (WNQ)λ+ (WBQ) that has a block structure
with particular canonical blocks (see Gantmakher [21, 22], for a
detailed description and Equation 3 for an example).

It turns out that the Kronecker decomposition can be
used naturally in the analysis of systems with constraints
or gauge freedom. With the first two conditions assumed
above, the Kronecker decomposition of the pencil NAa

α la(λ)
is given by

NAa
α la =

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

[

λ− λ1 0 0 0 … 0
0 … 0 0
0 0 λ− λd 0 … 0
0 … 0 λ 0 … 0
0 … 0 1 0 … 0
0 … 0 0 λ … 0
0 … 0 0 1 … 0
0 … … … 0
0 … … … 0
0 … … 0 λ
0 … … 0 1
0 0 0 … 0 0 0
… … … … … …
0 0 0 … 0 0 0

]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]

]

(3)

Ultimately, this represents a change of basis of both the
variable and equation spaces, which depends on ka but not
on λ. The first block is a diagonal d× d block, this diagonal
represents the true degrees of freedom of the entire system. It
contains as many elements as the “zeros” of the singular value
decomposition, counting their multiplicity. The 2× 1 blocks, called
LT1 in the literature, are due to the constraints; there are a total
of r = |α| − d blocks. Because each block occupies two rows, we
see that the number of zero rows is s = |A| − d− 2r. The zero
rows are present in many systems; they represent differential
constraints among the constraints themselves.The numbers defined
above also satisfy:

d: = dim(right_ker(CΓa
A naN

Ai
α ki)) ,

r: = rank(CΓa
A naN

Ai
α ki) ,

s = :dim(left_ker(CΓa
A naN

Ai
α ki)) .

With this decomposition at hand, it is easy to see how to choose
among them linear combinations that give evolution equations for
all ϕα. Observe that the equations (rows) with a λ are certain
to contain derivatives transversal to the na flats. So, we must
include them, but we can add any combination of the other rows
to them. It turns out that, by simply adding to each of these
rows the immediate row below, multiplied by any number πi, i =
1,…, r, and discarding all the remaining rows, we obtain the
evolution equations.

hβAN
Aa
α la: =

[[[[[[[[[[[[[

[

λ− λ1 0 0
0 ... 0
0 0 λ− λd

λ− π1 0 0
...

0 0 λ− πr

]]]]]]]]]]]]]

]

.
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Thus, we have constructed a map from the equation space to
the variable space, which we refer to as a reduction and denote
by hβA. Thus, hβAN

Aa
α la is a map from the variable space into

itself consisting of a set of diagonal matrices satisfying the classic
Kreiss conditions (see point ii. within Condition 1). Notice that
we can choose the extra roots of λ (i.e., the {πi}) as we please.
They are the propagation speed of extra constraint modes. This
simple observation is the principle behind the results in Reula
[23]; Abalos [4].

Thus, there is a reduction (a linear combination of the equations)
such that the Cauchy problem of the system is well-posed.
Furthermore, Condition 3 asserts that if the initial data satisfy all
equations (including the vanishing of the constraints), then all the
equations are satisfied for all times as long as the solution exists.
See Abalos [4] for details.

4 Extensions

A generic extension would imply the addition of an
extra matrix, ̃NΔAa (x,ϕ) (and extra variables ZΓ), to obtain
a square system

NAa
α (x,ϕ)∇aϕα + ̃NΓAa (x,ϕ)∇aZΓ − JA (x,ϕ) +BA (x,ϕ,Z) = 0. (4)

Here, BA (x,ϕ,Z) is a term we can also freely choose that does
not include derivatives of ϕ or Z and that goes to 0 when Z goes
to 0. In general, BA represents damping terms [13]; [10]; [24],
which are important in numerical applications. For simplicity in our
discussion, however, we omit it.

Because we are interested in solving Equation 2 for ϕ, our
extension proposal only makes sense if we can show that for
suitable initial data (for (ϕ,Z)), the solution of Equation 4 has
Z = 0 throughout the development, thereby ensuring that ϕ is a
solution of Equation 2.

As we explained before, if we assume Conditions 1, 2, and 3
and take any initial data for ϕ satisfying the constraints, we know
that the initial value problem for Equation 2 is “well-posed” and
has a unique solution ϕsol. (Here, by well-posed, we mean that the
map from Cauchy data to solutions is continuous. To establish this,
one finds a hyperbolic reduction from which we may assert that
the reduced system is well-posed for arbitrary initial data. Then,
one shows that if the initial data satisfy the constraints, then the
solutions of the reduced system also satisfy them. Thus, they are
solutions to the whole system, and we call the whole system well-
posed).Therefore, if we choose ̃NΓAa such that the extended system,
Equation 4, is well-posed, then for any initial data, there will be
a unique solution. If we choose as initial data (ϕsol|t=0, Z|t=0 = 0),
then (ϕsol,Z = 0) will be a solution, and by uniqueness is the
solution. Therefore, we only need to show that system Equation 4
satisfies Kreiss’s condition.

4.1 Strong hyperbolicity of the extensions

A particularly interesting set of extensions is obtained
by noticing the symmetry between the Kronecker

decomposition of NAa
α la(λ) and (C

Δa
B la(λ))

T. So, we start by
computing it:

(CΓb
A lb)

T =

[[[[[[[[[[[[[[[[[[[[[[[[

[

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−1
λ
…
−1
λ

λ− ρ1
…

λ− ρs

]]]]]]]]]]]]]]]]]]]]]]]]

]

Recalling that the matrices CΔa
B la can be thought of as a basis,

labeled by Δ, for the kernel of NAa
α la, it is easy to understand its

structure. Here, the rows with zeros are d in number. This is so
because the diagonal part of NAa

α la cannot contribute to the kernel.
We then have r blocks [−1 λ]T, observing that they have a minus
sign on them.This is because they are kernels for the corresponding
LT1 blocks of NAa

α la. Finally, there is a block that is a kernel of the
zero rows ofNAa

α la.This part is completely undetermined, sowe have
simply added a diagonal matrix.

To make more apparent the extension we proposed, we
reorganize the rows ofNAa

α la and (C
Γb
A lb)

T such that

NAa
α la =
[[[[[

[

J 0
0 λIr
0 Ir
0 0

]]]]]

]

, (CΓb
A lb)

T =
[[[[[

[

0 0
−Ir 0
λIr 0
0 Jc

]]]]]

]

. (5)

Here, all the matrices are blocks matrices where J =
(λ− λ1,…,λ− λd) of size d× d, Jc = (λ− ρ1,…,λ− ρs) of size s× s,
and Ir is the identity matrix of size r× r. The zero rows ofNAa

α la are
of size s× |α|, and the zero rows of (CΓb

A lb)
T are of d× |Γ|.

From this reorganization, it is apparent that a natural choice of
̃NΓAa is given by

̃NΓAa = GABCΓa
B ,

where GAB now must be chosen to render the system
diagonalizable. This is, of course, not the most general extension
but is a natural and fully covariant proposal for ̃NΓAa. The
principal symbol of Equation 4 becomes then

MAa
D la = [NAa

α GABCΔa
B ] la,

a |A| × |A| square matrix.
We now propose a particular expression for GAB, namely,

GAB =
[[[[[

[

Id 0 0 0
0 −D2 0 0
0 0 Ir 0
0 0 0 Is

]]]]]

]

, (6)

whereD = diag(π1,…,πr) is of size r× r, and Is is the identity matrix
of size s× s.

Frontiers in Physics 04 frontiersin.org

https://doi.org/10.3389/fphy.2024.1517192
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Abalos et al. 10.3389/fphy.2024.1517192

Using expressions Equations 5, 6, we conclude

MAa
D la =
[[[[[

[

J 0 0 0
0 λI D2 0
0 I λI 0
0 0 0 Jc

]]]]]

]

,

It is easy to verify that this matrix is pencil-similar to the following
diagonal matrix:

MAa
D la ∼ diag(…,λ− λi,…,λ+ πj,λ− πj,…,λ− ρk,…)

and so it satisfies Kreiss’s condition. The extra 2r eigenvalues
{πi,−πi}, introduced by GAB, come in pairs, which means that there
are r new null cones as characteristic. We shall see this in the
examples below, where Lorentzian metrics are used to realize these
null cones.

5 Examples

In this section, we present two implementation examples of
our proposal, showing that they produce well-posed systems while
largely preserving the covariance of the original theories. In all
cases, extra Lorentzian metrics are introduced to avoid light cone
intersections.

5.1 Maxwell’s equations

We start with the example given in the introduction Equation 1.
For them, we have a space of variables Fab (anti-symmetric tensors),
which is |α| = 6 dimensional in a four-dimensional space-time of
metric gab. The space of equations is |A| = 8, namely, two space-time
vectors. We have (see Geroch [1])

NAa
α = (

δa[c δ
q
d]

εpabc
) CbΓ

A = (
δbq
δbp
) CbΓ

A lb = (
lq
lp
)

Given a time-like na, we have

NAa
α na = (

n[c δ
q
d]

εpabcna
).

So, it is the map Fab→ (Ea,Ba), which is of the maximal rank.
This system satisfies Condition 1; see Abalos and Reula [3] for
more details.

The tensor CbΓ
A lb is also of maximal rank for any lb1. Since the

dimension of the image is 2-dimensional, we have |A| = |α| + |Γ|, and
the system is consistent, satisfying Condition 2.

We also have

∇b(C
bΓ
A NAa

α ∇aϕα) = ∇b(
δa[c δ

b
d]∇aF

cd

εbacd∇aFcd
) = (
∇bJb

0
) = 0

and so Condition 3 is also satisfied.

1 Here the target space is two copies of R4, and the image is 1-dimensional

on each one of them.

A suitable reduction is

hβB = (gq[r t s],−
3
2 εparst

a).

This renders the evolution equations symmetric hyperbolic. As we
saw above, a simple extension is obtained introducing two tensors
(gpq1 ,g

pq
2 ) and defining

GAB = (
gpq1 0
0 gpq2
)

If we take their symmetric parts to be any two Lorentzian
metrics, each one of them sharing a common time-like covector na
with gab, but not touching their null cones (for brevity, we do not
consider here such degenerate cases), then the system is strongly
hyperbolic and so has a well-posed Cauchy problem. To check this,
we compute the characteristics of the system and the corresponding
eigenvectors and see when we get a complete set, that is, a total of
eight eigenvectors.

The characteristic equations are

lbδF
ab + gab1 lbδZ1 = 0

εabcdlbδFcd + g
ab
2 lbδZ2 = 0,

where we need to solve these equations for λ with la = λna + ka and
na,ka given and for the eigenvectors δFab and δZ1,2. The solutions
split into three cases: first, when la is null with respect to gab (physical
case), then when it is null with respect to gab1 or gab2 (extended cases),
as we explain below.

We already know four of the eigenvectors, namely, the physical
ones arising from the original system. To recover these, we set δZ1 =
δZ2 = 0 and search for the value of δFab. The second equation then
implies that δFcd = 2l[cAd] for some vectorAd, while the first implies
that (lal

a)Ab − (laA
a)lb = 0 where indices are raised with the space-

timemetric. BecauseAa cannot be proportional to la (otherwise δFcd
would vanish), both terms must vanish and so we conclude

gablalb = 0,

which admits two real solutions for λ. Hence, Aa is orthogonal to la,
which leaves two options remaining forAa for each of the two values
of λ.

Now, we want to find the rest of the eigenvectors. For that, we
first choose δZ1 = 1, δZ2 = 0. Contracting the first equation with lb,
and using the anti-symmetry of δF, we get a condition for la,

gab1 lalb = 0, (7)

which again admits two real values of λ. Repeating the argument
above, the first equation becomes

(lal
a)Ab − (laA

a) lb + gab1 lb = 0 (8)

Because the null cones of gab and gab1 are by assumption not
touching, we have gablalb ≠ 0. It follows that Aa = − gab1 lb/(lclc)
satisfies Equation 8 provided that Equation 7 holds. Observe
furthermore that Aa + αla satisfies the same equations and results in
the same Faraday tensor δFab for any α. Thus, Equation 7 gives two
additional eigenvectors.
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If we drop the assumption that the null cones of gab and gab1
are non-touching and assume that they touch at la, then to have a
solution, we need that gablb must be proportional to gab1 lb.

The final case is similar to the second. We choose δZ1 = 0, δZ2 =
1 and obtain

gab2 lalb = 0

and the same equations for the dual of δFab, so we need not discuss
it separately.

In summary, we have obtained the eight eigenvectors we require
to satisfy the Kreiss condition and conclude that the system is
strongly hyperbolic.

5.2 Toy MHD

Here we look at the evolution of a magnetic field ba driven by a
given velocity field ua in a space-time (M,gab). The system is

∇a(b[a u b]) = 0 (9)

Here, we take ua to be time-like and of norm one, uaubgab = − 1.
We also take uabbgab = 0. This last is a gauge condition to make
the solutions unique for the whole system because otherwise, if
(ua,ba) is a solution, then (ua,ba + ηua) also is a solution, with η an
arbitrary function.

We observe that there are four equations for three variables.
Three of them are evolution equations for the three components of
bc. We shall see below that the other is a constraint.Thus, Condition
2 is also satisfied.

The principal part of system Equation 9 is

Nba
c ∇ab

c = u[a∇ab
b] = δ[ac u b]∇ab

c.

It is easy to check that Condition 1 is satisfied. The Geroch
matrices are also easy to obtain as Cd

bld ≔ δ
d
bld. They form a

basis of the left kernel of Nba
c la and, as we explained before,

this means that when Equation 9 is contracted with Cd
bud = ub, a

constraint is generated; this is

∇aba − baaa = 0,

where aa ≡ ub∇bua. We notice that this is the spatial divergence of ba

in disguise.
On the other hand, the following integrability condition

Cd
b∇d∇a(b

[a u b]) = ∇b∇a(b[a u b]) = 0 holds trivially; thus, the system
satisfies Condition 3.

The extended system consists of adding a term
gba1 ∇aZ to Equation 9, with gba1 as in the previous example and with
the extra variable Z. Its principal part is u[a∇ab b] + gbc1 C

d
c∇dZ = 0,

with Ca
b = δ

a
b. The characteristic equation is

1
2
(ualaδbb − ublaδba) + g

bd
1 ldδZ = 0 (10)

where we need to solve this equation for la = − λua + ka with ka
given, and for the eigenvectors δZ and δba (with uaδb

a = 0).
Without loss of generality, we choose ka such that uaka = 0,

and we rewrite the characteristic equations projecting on to ua and
perpendicular to it (with the projector hab ≡ gab + uaub). We obtain

1
2
kaδb

a + uag
ab
1 lbδZ = 0

1
2
λδba + hacg

cb
1 lbδZ = 0

The physical solution comes from choosing λ = 0, and the
eigenvectors δZ = 0 and δba orthogonal to ka. Because δba has two
possible directions, we obtain two eigenvectors.

The remaining eigenvectors come from choosing λ such that

lag
ab
1 lb = 0, (11)

and δZ = 1
2
λ, δba = hacg

cb
1 lb. This expression satisfies the second

characteristic equation trivially, and it is easy to verify that the first
one reduces to

1
2
kaδb

a + uag
ab
1 lbδZ =

1
2
lag

ab
1 lb = 0.

Because, as before, there are two solutions for λ from
Equation 11, we obtain two more eigenvectors. In summary, we
have obtained the four eigenvectors we require to satisfy the
Kreiss condition and conclude that the extended system is strongly
hyperbolic. Finally, we notice that Equation 11 can also be rederived
from the integrability condition, i.e., by multiplying Equation 10 by
Cd
bld = lb.

6 Conclusion

Similar extensions to those proposed here were previously
known, starting with the divergence cleaning used in
magnetohydrodynamics and later generalized as λ-systems for
generic symmetric hyperbolic systems. To implement them, it
was necessary to break the covariance of the system in the
usual sense of performing a 3+ 1 decomposition. For symmetric
hyperbolic systems, such extensions can be obtained in our
framework by committing to a frame and a reduction and
adding an extra term that annihilates the time component of
the constraint basis. This results in an extended symmetric
hyperbolic system.

In this article, we have presented an extension scheme for first-
order PDEs.With appropriate adaptation, however, these results can
be applied to systems of two or even more orders. We will show
in future articles how to apply these ideas to gravity theories to
extend the system and to fix the gauge, allowing us to reinterpret and
generalize known results such as those of Bona et al. [25]; Hilditch
and Richter [26]; Kovács and Reall [27].

Although the existence of a strongly hyperbolic extension
is performed in Fourier space and results in a system of
pseudodifferential equations, our examples show that in cases of
physical interest, one may obtain differential extensions. These
extensions furthermore retain covariance of the theory in the
sense that, contrary to earlier λ-system extensions, at least in the
principal part, they do not rely on a preferred time direction but
instead the addition of other Lorentzian metric tensors. Further
details and a complete proof will be provided in a longer version
of this work.

In our analysis, we resorted to previous work to argue that
the constraints, if initially satisfied, are satisfied at later times. This
helped us conclude that ZΓ remains zero throughout the evolution.
There are, however, more elegant ways to show this when the
constraints do not have any kernel from the left, that is, no set
of zero rows in their Kronecker decomposition (see Equation 3).
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In such cases, it can be shown that the ZΓ fields satisfy a second-
order evolution system that is decoupled from ϕα and has a well-
posed initial value problem. Choosing these fields to vanish at the
initial surface and the ϕα fields satisfy the original constraints of
the system, all derivatives of ZΓ vanish on the initial surface, in
particular any transversal derivative, so the unique solution to the
second-order system is 0, and the constraints are satisfied for all
times. Unfortunately, the presence of zeros may prevent the second-
order system from being well-posed, so more care is needed. This
will be further considered in the aforementioned longer article.
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