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Hamiltonian maps are considered a class of dynamical systems that hold
meticulous properties used to model a large number of complex dynamical
systems. When time flows in dynamical systems with two-dimensional degrees
of freedom, the trajectories in phase space can be analyzedwithin bidimensional
surfaces known as Poincaré sections. The Chirikov–Taylor standard map for two
canonical dynamical variables (momentum and coordinate) is themost renewed
map characterized by a family of area-preserving maps with a single parameter
that controls the degree of chaos. In this study, a generalization of the standard
map for two different problems is presented and discussed. The first problem
deals with the higher-order derivative Hamiltonian system (up to the fourth
order) since the fourth-order characteristic provides the possibility of chaotic
behavior at all scales including nanoscales where high-order derivatives take
place in nanosystems. The second problem concerns the time-dependent δ-
kicked rotor in fractal dimensions characterized by a time-dependent potential
due to its important implications in quantum chaos. This study shows that
higher-order derivative maps and fractal dimensional δ-kicked rotor maps
apparently exhibit a large number of chaotic orbits and fractal patterns, including
the spiral fractal patterns comparable to the Julia set. Moreover, these problems
are characterized by additional parameters which can be used to control
chaos. Some of these parameters lead to chaos, and others lead to fractal
patterns.

KEYWORDS

standardmap, δ-kicked rotor, higher-order derivative Hamiltonians, fractal dimensions,
chaos

Introduction

Classical mechanics is successfully described based on the Lagrangian and
Hamiltonian formalisms, which fulfill the locality basic property. The trajectory
of any body and its associated derivatives depend on a single point. The
most significant results of both formalisms, including Noether’s theorem for
dynamical systems with an infinite number of degrees of freedom, are well-
known in the literature [1]. A classical local dynamical system consists of a set
of possible local states described by one or a set of second-order differential
equations. A basic account of these equations can be obtained by means of
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the discrete time framework modeled through maps, e.g., the
kicked-rotor problem, which plays an important role in dynamical
systems. These discrete maps alternate a system of differential
equations and are practical in computational modeling of complex
dynamical systems [2, 3]. In case of higher-order differential
equations, e.g., the fourth-order differential equations, they offer
the possibility of chaotic behavior in contrast to second-order
autonomous differential equations, principally since such systems
do not have an adequate amount of degrees of freedom. Hence,
one naturally expects that nth-order differential equations will offer
a rich variety of patterns and chaotic structures than the second-
order differential equations. In general, any system described by
a second-order Lagrangian leads to a fourth-order Lagrangian
[4–8]. A supplementary advance in the theory of differential
equations both facilitates applications and offers new insights in
applied mathematics. The penultimate motive for this study is
to understand the causal structure of higher-order differential
equations, in particular of fourth-order equations, to study their
associated standard map, and finally to understand the impacts
of fractal dimensions on them. The reason to consider fractal
dimensions in this study is based on the fact that fractals are a type
of dynamic system generated by recursion. They depend on initial
conditions and generate a kind of non-periodic orbits. Fractals,
therefore, belong to chaotic dynamical systems. Let us stress that not
all chaotic systems are fractals, e.g., stochastic dynamical systems.
In phase space, a chaotic orbit traces out a fractal dimensional
strange attractor, i.e., strange attractors exhibit the fractal structure
[9]. Substantial attention is given, in this study, to two main types
of problems, which generalize the basic standard map, known as the
Chirikov–Taylor standard map [2].These problems are expressed as
follows:

1. The problem of the fourth-order differential equation is
expressed as follows:

−γu(4)(x) + βu″(x) +K sin u(x) = 0, (1)

where u = u(x) is a function of the space x and β ∈
ℝ+ and γ ∈ ℝ+ are assumed to be small parameters.
We will prove that the limit of the problem will
lead to the “kicked rotor” problem in higher-order
derivative theory. Higher-order dynamical systems play a
pertinent role in theoretical physics, applied mathematics,
and numerical analysis. This problem is of particular
importance since it may have motivating implications in
the understanding of the kicked-rotor problem, formed by
periodically pulsing on the optical higher-order standing
waves [10, 11].

2. The problem of “time-dependent δ-kicked rotor” formulated
in fractal dimensions. We are interested on fractal calculus
concepts introduced in [12, 13], where the derivatives of
two given functions are given by f(x) and g(t), which are
expressed as dα f(x)/dxα = (x1−α/α)(d f(x)/dx),α > 0 and
dβg(t)/dtβ = (t1−β/β)(dg(t)/dt),β > 0, respectively. Here, α
and β are their associated fractal dimensions. It is obvious
that the fractal length measure x and the fractal time

measure t are scaled according to the laws xα and tβ. This
approach has motivating implications in various fields of
sciences and engineering and at different lengths and time
scales [14–20]. These fractal derivatives are considered a
non-Newtonian simplification of the derivative defined
in fractal medium or topology. Self-similarity and scale
invariance are two important concepts in physics and any
complex dynamical systems governed by Lagrangian and
Hamiltonian mechanics laws. In general, the notion of non-
integer fractal dimension has been spread over all fields of
sciences since Mandelbrot introduced the notion of fractals
or self-similar sets [21]. It is notable that fractal calculus
is of practical importance in various fields of physics since
it is considered, to some extent, trouble-free, helpful, and
algorithmic [22]. It is also used in the theory of differential
equations to study stability problems [23–25] besides its
relevance in stochastic differential equations [26, 27] and
transforms approaches such as the Laplace, Fourier, and
Sumudu fractal transforms [28, 29]. The relevance of fractal
calculus in sciences is well-appreciated based on a large
number of outcomes obtained by researchers [30–47]. In
the literature, there are various types of fractal derivatives
where various inequalities have been obtained, and new classes
of differential equations have been derived and analyzed
accordingly [34, 48–57]. However, He’s fractal derivative is
an extension of Leibniz’s derivative for discontinuous fractal
media and is less tricky in mathematical analysis, but with
relevance in various fields of sciences, asmentioned previously,
including geometric analysis [58], attachment oscillator
arising from nanotechnology [59], variational study of the
time–space fractal Bogoyavlenskii equation [59], non-linear
vibrations [60], and fractal nano/microelectromechanical
system [61]

The purpose of this paper is to study the whole
dynamical behavior of maps generated by these problems.
We investigate the chaotic and complex behavior of standard
maps by selecting various control parameters. From a
practical point of view, we show that in addition to the
usual stochastic parameter, there are additional parameters
in each model, which can be used as chaos control
parameters.

Before elaborating our analysis, two points deserve to be
elucidated:

1. The investigation of higher-order derivative Hamiltonian
systems (up to the fourth-order) is relevant as it offers
insights into chaotic behavior across multiple scales,
including the nanoscale. This shows potential to enhance
our understanding of physical systems like micro-
electromechanical systems (MEMS), where high-order
derivatives play a crucial role. For example, in MEMS devices,
the mechanical behavior at small scales can be highly non-
linear and may exhibit chaotic dynamics that could be
better understood through the study of such higher-order
systems [62–69].
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FIGURE 1
(Continued).

2. In our approach, we used the two-scale fractal development: in
fact, the two-scale dimension is of great importance to describe
any physical properly of a complex system. It is used to evaluate

the degree of complexity of a given discontinuous pattern
between two neighboring dissimilar scales of observation
[70]. It is considered an alternative definition of fractal

Frontiers in Physics 03 frontiersin.org

https://doi.org/10.3389/fphy.2024.1529644
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


El-Nabulsi and Anukool 10.3389/fphy.2024.1529644

FIGURE 1
(Continued).

dimension. It is notable that physical laws are scale-dependent,
and dissimilar outcomes may be obtained at different scales.
The two-scale theory is practical since it treats any physical

or dynamical problem with two different scales applied
respectively for continuous and porous structures media: the
conventional classic calculus can be successfully applied for
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FIGURE 1
(Continued).

the large scale, whereas for the smaller scale, the effect of
the porous structure on the physical properties of the system
can be effortlessly explained and, hence, reveal a number

of hidden properties beyond the classical assumption. The
validation of this new methodology has been proved using
qualitative and quantitative/numerical techniques [70–80].
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FIGURE 1
(Continued).

Therefore, it is motivating to consider, in this study, two-
scale dimensions since they reveal a number of hidden
properties and features not found within the conventional
formalism.

Problem 1: To start, we introduce the Hamiltonian of
Equation 1, which is written as

H(u,v,pu,pv) =
1
2γ

p2v + vpu −
β
2
v2 + sin u,
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FIGURE 1
(Continued).

where v = u′, pu = βu
′ − γu‴, and pv = γu

″ [5]. The associated

Hamilton’s equations of motion are v = u′ = ∂H/∂pu, v
′ = ∂H/∂pv,

p′u = − ∂H/∂u, and p
′
v = − ∂H/∂v. To construct a map, we introduce

a small number ε≪ 1 such that

un+1 = u(xn+1) = limε→0+ u(x(n+ 1) − ε), (2)
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FIGURE 1
(Continued). Particle orbits of the modified standard map for the different stochastic parameter Kand parameters βand γ.

vn+1 = v(xn+1) = limε→0+ v(x(n+ 1) − ε), (3)

upn+1 = up(xn+1) ≡ p(xn+1) = limε→0+ p(x(n+ 1) − ε), (4)

vPn+1 = vP(xn+1) ≡ P(xn+1) = limε→0+ P(x(n+ 1) − ε), (5)

where xn+1 = (n+ 1)x. Integrating the Hamilton’s equation yields

pn+1 = pn +K sin un, (6)

un+1 = un + pn+1, (7)

Pn+1 − Pn = −pn+1 + β(un+1 − un), (8)

γ(vn+1 − vn) = Pn+1 = γ(un+1 − 2un + un−1), (9)

which, after arrangement, also yields themodified standardmap:

pn+1 = β(un+1 − un) − γ(un+1 − 3un + 3un−1 − un−2), (10)

pn+1 = pn +K sin un. (11)

For β = 1 and γ = 0, Equations 2–9 reduce Equations
10, 11 to the Chirikov–Taylor standard map. In order to
examine the typical features of the dynamics determined by
the modified standard map, let us start our analysis with the
results of the numerical observations of the particle motions
in the phase space. We plot in Figure 1 accordingly, by
running a program in MATLAB, the following figures (Poincaré
sections) for different numerical values of the parameters β
and γ.

We observe the emergence of a family of patterns, including
fractals and chaotic patterns. Decreasing K suppresses the
deterministic diffusion significantly and may lead to chaotic maps.
Decreasing both K and γ also suppresses the formation of islands
around islands. There is a classic evidence of stickiness in these
plots and transition to chaos (chaotic sea) in some. Orbits are
subject to consecutive traps, filling regions more densely than
others. In some cases, we observe the Kolmogorov–Arnold–Moser
(KAM) secondary islands corresponding to a certain resonance.
We recall that the KAM theorem states that for non-integrable
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FIGURE 2
(Continued).

Hamiltonian systems, only non-destroyed orbits have quasiperiodic
irrational winding numbers. We also observe islands in the
chaotic sea, while islands of certain resonance are inside the
corresponding last KAM curve. Small islands also emerge for
certain values of K, besides unstable and stable orbits. There
is an emergence of chaotic orbits depending on the values of
the system parameters. For lower values of K, the size of the
central island is reduced and is limited by a number of unstable
periodic orbits. For some values of K which are close to unity,
there is emergence of spiral fractal patterns comparable to the
Julia set [81, 82]. An arbitrary small variation in the parameters
causes radical changes in the patterns. We recall that, in general,
the standard map has an attractive property; it has a fractal
behavior. Further consecutive amplifications would confirm the
fractal-like structure of this model. Chaotic regions with various
chaoticities are also observed, besides the chaotic chains whose
chaoticities are weaker than other chaotic seas. These maps
exhibit chaotic and fractal behaviors separately or together in
the available phase space as the control parameters change.
The breakdown of the ergodicity of this map may lead to a
deformation of the statistical mechanical framework [83]. In
fact, non-linear dynamical systems exhibit fractal structures in

the phase space, and they are very sensitive to initial conditions
[84]. This problem, however, has received less attention, for
higher-order derivative theories. In this problem, we proved
that fractal structures arise in fourth-order derivative theories,
although the geometrization of Hamiltonian formalisms was
developed for autonomous and non-autonomous mechanical
systems [85–87].

Problem 2: We are concerned with the classical global
momentum transport in the kicked rotor governed by
the time-dependent Hamiltonian (time-dependent δ-kicked
rotor):

H(x,p, t) =
p2

2
+KTV(x, t)

n=+∞

∑
n=−∞

δ(t− n), (12)

where K is the amplitude of the pulse, T is the period of
oscillations, p is the momentum, V(x, t) is a time-dependent
potential, and δ is the Dirac delta-function. Equation 12 is
subject to the initial conditions x(0) = x0 and ẋ(0) = p(0) = p0
[1–3]. When K is adequately large, no KAM invariant circles
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FIGURE 2
(Continued).

bound the motion. The presence of the Dirac function is suitable
since the equations of motion can be reduced to a simple
discrete Chirikov–Taylor standard map. It is notable that during

the kick, the potential term dominates the kinetic term, the
potential is zero between kicks, and the motion is that of a
free rotor. One can, therefore, integrate easily the equations
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FIGURE 2
(Continued).

of motion over one temporal period of the Hamiltonian [2,
3, 88, 89]. However, in our approach, we considered a time-
dependent potential due to their motivating implications in

controlling quantum chaos [90–95]. In this study, we consider
V(x, t) = tη cos x, with η being a real parameter. In fact, periodic
time-dependent Hamiltonian systems are said to be of n and
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FIGURE 2
(Continued).

half degrees of freedom, and one way to study them is the
stroboscopic map, which is a special case of a Poincaré map
for driven systems [96]. It is considered in quantum-kicked top
[97, 98]. Hamilton’s equations of motion in fractal dimensions are

given by

1
β
t1−β

dp
dt
= − 1

α
x1−α ∂H

∂x
= − 1

α
x1−αtηKT sin x

∞

∑
n=−∞

δ(t− nT), (13)
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FIGURE 2
(Continued). Particle orbits of the fractal standard map for different numerical values of the parameters Kand Tand the fractal dimensions αand β.

1
β
t1−β ∂x

∂t
= p. (14)

The special case where η = 1− β is motivating since
it does not lead to divergent series when performing the
integration of Equation 13. To construct amap in fractal dimensions
before the nth-kick, we again introduce a small number ε≪
1 such that

xn+1 = x(tn+1) = limε→0+ x(T(n+ 1) − ε) (15)

and

pn+1 = p(tn+1) = limε→0+ p(T(n+ 1) − ε). (16)

Here, tn+1 = (n+ 1)T. Accordingly, we integrate Equations 13, 14
using Equations 15, 16 as follows:

tn+1−ε

∫
tn−ε

∂p
∂t

dt =
KTβ
α

x1−α sin x
tn+1−ε

∫
tn−ε

tβ−1+η
∞

∑
n=1

δ(t− nT)dt, (17)

tn+1−ε

∫
tn−ε

∂x
∂t

dt = β
tn+1−ε

∫
tn−ε

tβ−1pdt. (18)
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Equations 17, 18 yield, in particular for η = 1− β:

pn+1 = pn −
KTβ
α

x1−αn sin xn ≡ pn + Fα(xn). (19)

xn+1 = xn + β(nT)β−1Tpn+1 ≡ xn +Gβ(pn+1). (20)

Observe that when α = β = 1, Equations 19, 20 are reduced to
the Chirikov–Taylor standard map. In addition, FSM differs from
the fractional standard map obtained in [87, 88]. The stability of the
fixed points is determined from the residue of the tangent map:

(
Δpn+1
Δxn+1
) = ΔM(

Δpn
Δxn
), (21)

where

ΔM =(
1

∂Fα(xn)
∂xn

∂Gβ(pn+1)
∂pn

1+
∂Fα(xn)
∂xn

∂Gβ(pn+1)
∂pn

) (22)

is the tangent map [39]. The stability of the system arises (using
Equations 21, 22) if the residue given by

R = 1
2
− 1
4
Tr(ΔM) = −1

4
∂Fα(xn)
∂xn

∂Gβ(pn+1)
∂pn

(23)

is constrained by 0 < R < 1, which yields at the fixed point xm =
2πm,m ∈ ℤ, 0 < K < 4α(2πm)1−α/Tβ, and stability occurs, phase-
space trajectories lie on invariant curves, and the variation in
momentum based on Equation 23 is restricted. We examine particle
motions in the phase space by plotting in Figure 2 the Poincaré
sections, where the orbits may have different behaviors depending
on the values of the parameters K and T and the fractal dimensions
α and β.

We observe that all the parameters play an important role in the
formation of islands around islands and that low fractal dimensions
suppress the deterministic diffusion and lead to chaotic maps. KAM
secondary islands corresponding to a certain resonance emerge
in some particular cases. Trajectories demonstrate island chains
connected with an assortment of elliptic periodic orbits. For small K
and spatial fractal dimension α, chaotic behavior dominates larger
phase space areas, i.e., a large area of the phase space is occupied
by a single chaotic sea due to the large amount of non-integrability
of the system. The fundamental reason for this behavior is related
to destroying the stability islands. This leads to a decrease in the
non-integrability of the fractal dynamical system. An increase in
K and fractal dimensions shows regions of chaotic behavior rising
around stable and unstable manifolds, besides the emergence of
fractal patterns. These orbits are characterized by a dense collection
of points with no obvious order. These chaotic orbits can have
positive Lyapunov exponents but free from any kind of fractal
structure. The stabilization of these orbits may be achieved in some
particular cases due to the presence of parameters that may help
control the chaotic behavior. There is a critical value of K and
fractal dimensions from which the chaotic regions are no longer
separated. For fractal dimensions close to unity, a central island
with a chain of smaller islands around it is revealed, comparable to
its larger-scale version. Additional successive amplifications would
prove the fractal structure. It is notable that this fractal map

verifies the twist condition ∂xn+1/∂pn ≠ 0, which is the analog of
the non-degeneracy condition fromHamiltonian systems for KAM’s
theorem applicability to the map [99, 100].

To conclude, we have constructed maps for two different
dynamical problems: the first one describes higher-order derivative
dynamical systems, and the second one, the time-dependent
δ-kicked rotor in fractal dimensions. The first problem is
characterized, for particular values of K, by the emergence of spiral
fractal patterns comparable to the Julia set, besides the emergence
in some cases of strange chaotic orbits which are thickly interfaced
with regular regions. On the contrary, the second problem, which is
dominated by fractal dimensions, reveals the emergence of invariant
curves, islands, and fractal and chaotic trajectories. The transition
to chaos is shown by varying control parameters. Some of these
parameters lead to chaos, and others lead to fractal patterns.
The range of convergence and stability can be made to increase
considerably. The difference between the fractal time-dependent
δ-kicked rotor and the conventional one with the integer derivative
is the emergence of various quasiperiodic and periodic windows,
intermittency, and chaotic structures, which depend on the
numerical values of fractal dimensions.Thedynamic systemdisplays
a rich assortment of non-linear behaviors as fractal dimensions are
varied. We observe the occurrence of chaotic regions exhibiting
fractal features (islands around islands) in regions confined between
the other types of trajectories. In several cases, KAM secondary
islands corresponding to a certain resonance emerge. The second
problem is, therefore, very sensitive to fractal dimensions. These
new standard maps might be used to achieve better results to study
quantum chaos. This work addresses challenges in incorporating
Hamiltonian systems with higher-order derivatives and fractal
derivatives into the analysis of complex systems that go beyond
the standard map. It offers new tools and models to enhance
our understanding of how higher-order dynamics and fractal
patterns affect complex systems by providing additional accurate
representations than traditional models. It will be of interest to
apply these models to relativistic systems governed by higher-
order derivatives and dissipation, and to time-dependent quantum
Hamiltonian systems. In fact, the relativistic generalization of the
Chirikov–Taylor standard map is based on various aspects, e.g.,
acceleration of the particle in an electric field [98, 100], dynamics of
particles in magnetic relativistic field [101–103], and acceleration of
charged particles in the electric field of an electromagnetic wave
packet subject to temperature effects [104]. The emergence of
chaos and fractal structures in relativistic systems is also considered
motivating since these will support physicists and mathematicians
to better understand several hidden properties arising in quantum
and high energetic Hamiltonian chaos, besides their relevance in
ergodic theory [105–107]. Additionally, it will be of interest to study
the frequency property of Equation 1 using the one-step frequency
formulation for non-linear oscillators introduced in [108], with an
emphasis on odd non-linearity. Based on the outcomes of [108],
we believe that this approach will offer several additional insights
into the dynamics described by Equation 1, mainly related to the
variations and effects of the frequency characteristics of the system
for different parameter values and their correlations with chaotic
and fractal behaviors. Work in these directions will be the aim of
our future study.
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