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Al foundation models for
experimental fusion tasks

R. Michael Churchill*

Princeton Plasma Physics Laboratory, Princeton, NJ, United States

Artificial Intelligence (Al) foundation models, while successful in various domains
of language, speech, and vision, have not been adopted in production for fusion
energy experiments. This brief paper presents how Al foundation models can
be used for fusion energy diagnostics, enabling, for example, visual automated
logbooks to provide greater insights into chains of plasma events in a discharge,
in time for between-shot analysis.
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1 Introduction

Al foundation models [1] encapsulate a concept wherein an AI model is pre-trained in
an unsupervised or self-supervised manner with a fundamental task, for example, predicting
the next word in a sentence, on a wide range of data, and the trained model subsequently
serves as a foundation to fine-tune the pre-trained foundation model for more detailed
downstream tasks, for example, sentence generation, text summary, machine translation,
etc. Essentially, instead of being a narrow expert, they are generalists. Although the concept
of these models gained popularity with large language models (LLMs), such as those
underlying ChatGPT [2], in principle, similar techniques can be utilized across a range of
modalities, for example, images, audio, video, unstructured meshes, etc. Given the plethora
of data on different modalities in experimental magnetic confinement fusion devices and the
wide variety of tasks experimental fusion scientists need to perform, a natural question arises
on whether AI foundation models can be created for experimental fusion data to enhance
and accelerate fusion science. This paper seeks to explain at a conceptual level how these
foundation models could be created and how they could effectively be used in experimental
fusion settings.

2 Foundation models for fusion energy experiments

Currently, when Al/machine learning (ML) is used for tasks within fusion energy
experiments, most often, the focus is on bespoke solutions for a particular task.
These bespoke solutions require a lot of work from the practitioner, in gathering
data, cleaning data, often performing data reductions (i.e., feature engineering), labeling
data for classification problems, etc. The targeted tasks range widely, including models
created specifically for anomaly detection [3], classification of plasma events [4-7], and
time-series semantic search [8]. Figure 1 shows a representation of a foundation model
that would instead serve the basis for these many tasks and more, reducing substantially
the burden for repeating many of the steps for custom bespoke solutions. However,
the question arises as to what this foundation model is and how this is achieved.
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Foundation models for fusion energy enable many downstream tasks to be accomplished by a single model, including classification of plasma
phenomena from fast diagnostics, making predictions from few examples, combining multiple diagnostics (modalities), and extracting physics model

For LLMs, one of the more popular foundation models is the
generative pre-trained transformer (GPT) [9]. This is a decoder-
only transformer [10], pre-trained for next-token prediction (where
tokens are created by splitting the text into a fixed vocabulary size
of subwords, usually on order ~ 100k). Mathematically, GPT model
next-token prediction training maximizes the log-likelihood:

mgx;logpg (5 | Sic1sSic0s w0 Sikr1oSick)

where p is the probability density represented by the transformer
neutral network with the parameter 0 and the token represented by
s;» with k being the context length of tokens provided to the model
to make the next-token prediction of s;. After training this model
with gradient descent, the trained model can be used for various
tasks, by, for example, adding a learnable layer at the end of the
model and fine-tuning for supervised classification problems [9].
One of the most impactful findings with these trained models is “in-
context learning” [11], in which a few examples can be input to the
model and, without any additional training or fine-tuning, have the
model complete a similar task (for example, provide example pairs
of word translation from English - > Spanish and an empty word to
translate, for example, provide as input to the model “dog - > perro,
cat - > gato, bird - >”, and the model outputs “pajaro”). The increased
in-context learning performance of GPT models with the size of the
model (and size of data trained on) has enabled these models to be
of general purpose (able to perform many different tasks) and led
directly to the success of ChatGPT.

In experimental fusion energy sciences, the data are
fundamentally different from text, in the first place being continuous
instead of discrete but also consists of hundreds of different
diagnostic data modalities, ranging from simple time series to
more complex multi-channel, line-integrated 2d spatial videos. The
time-series nature of the data maps well onto foundation models
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created for audio or music [12], where their typical downstream
tasks are speaker identification, automatic speech recognition, music
generation, etc. Typically, to train these models, the self-supervised
learning objective differs from the discrete language case since the
continuous nature of the time series is a large space to attempt
the next-token prediction. Instead, often, contrastive learning for
self-supervised training is used, where a time series sequence is
partially masked, and the model learns to predict this masked
portion by discerning from a set, including the true sequence and
many negative or false sequence samples:

exp (sim (¢, q, ) /7)
Z exp (sim(c,,q) /7)

q€Q

L =-log

where sim(a,b) =a’b/ | a| | b| is the cosine similarity, ¢, is the
model output predicted sequence, g; is the true sequence (quantized
to ease learning), 7 is a modifiable temperature parameter, and Q =
{97,45>--»qx»4; } is a set including the true sequence and a number
of false sequences to discern between. Contrastive losses are more
suitable for situations with continuous valued sequences. With the
pre-trained model, a similar path as the LLM can be followed for
fine-tuning the models using a few specific labeled examples for
supervised learning tasks like classification.

It should be noted here that while LLMs based on next-
token prediction loss have been useful for both generative and
discriminative downstream tasks, often, foundation models for
audio or time-series have been focused on one set or the other
(generative or discriminative downstream tasks). Figure 1 focuses
on discriminative downstream tasks (e.g., classifying plasma modes
in diagnostic data), but it should be noted that there are generative
tasks that can be useful in fusion energy, such as scenario planning.
Many foundation models for modalities like audio focused on
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generative tasks use diffusion or flow matching models [13],
although they are not studied here.

AI foundation models can be created for single diagnostics;
however, AI model architectures exist to incorporate multiple
modalities [14-16], thereby taking advantage of the correlations
between modalities. For fusion experiments, this is particularly
useful as information in, for example, the electron cyclotron
emission imaging (ECEI) diagnostic and the beam emission
(BES)
phenomena, and combining the data for predictions will potentially

spectroscopy diagnostic, measures different physical
provide greater information than the sum of its parts.

Because AI foundation models are pre-trained to effectively
learn the underlying data distribution, it is observed that large
parameter models pre-trained on large amounts of unlabeled data
perform better [11]. As a result, the consequence is that large
high-performance computing (HPC) resources with many GPUs
are needed to train these models. With the popularity of deep
learning and foundation models, many good frameworks and tools
are available to make this easier, including PyTorch, Hugging Face

Accelerate, and MetaFAIR library.

3 Automated logbook

One relevant example of how to use such an Al foundation
model for fusion energy experiment is shown in the automated
logbook example in Figure 2. Fusion energy researchers have a
deluge of data to process and understand from experiment, on short
timescales between experimental discharges (usually 10-20 min)
and longer timescales of months to years for understanding
campaign-level data. Insights, if recorded, are normally formulated
as text into personal or online logbooks. This manual analysis can be
laborious. The AI foundation model could be used to automatically
tag plasma events of interest in the diagnostic data, creating a
metadata database and enabling fast visualization of plasma event
sequences between plasma discharges.

As shown in Figure 2, first, a large dataset of raw diagnostic data
from many plasma discharges is gathered, without having to label
specific plasma events in the data. The AI foundation model is pre-
trained on this data, passing in the sequences of data and using a
contrastive loss to learn to predict masked portions of the sequence
(the model shown is based on the wav2vec 2.0 model [17], with a
convolutional neural network (CNN) encoder to reduce the data
to a latent space representation, followed by a transformer model
[10]). In the second step, a small dataset is gathered and labeled
at time slices with a specific plasma event or mode, for example,
neoclassical tearing modes (NTMs), Alfven eigenmodes (AEs), edge
harmonic oscillation (EHO), etc. The fine-tuning of the model can
be to predict a single type of plasma event or different types of events.
The size of this labeled dataset is smaller than would be required
when training a model directly in a traditional supervised learning
fashion since the pre-trained model has learnt good representations
of the underlying data distribution. The size of this labeled dataset
in principle can be as little as one or a few examples but, in practice,
may require more and is problem-dependent. A decoder layer with
learnable parameters is added onto the end of the pre-trained
model, and with the labeled dataset, the model is fine-tuned to
output predicted labels based on an input sequence. This fine-tuning
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can involve only updating the decoder layer learnable parameters
and retaining the rest of the pre-trained model parameters frozen,
or unfreezing various layers of the pre-trained model and having
those parameters also updated by the learning process. This fine-
tuning needs to be done once, and then, the model is used for
inference (in machine learning parlance prediction versus learning).
As new plasma discharges are completed, the fine-tuned model
takes in the new diagnostic data and predicts labels for the various
plasma events. In the final step shown in Figure 2, these predictions
can be visualized with the data in the automated logbook, for
fast feedback to fusion researchers between plasma discharges and
further investigation later. Detected modes can also trigger further
analysis, for example, bandpass filtering on the detected mode
frequencies, and visualizing the resulting spatial model structure in
different diagnostics.

Although bespoke AT models could be created for each diagnostic
or each plasma event, the traditional supervised learning route would
almost surely require thousands of labeled examples gathered by
researchers, a long tedious process often avoided. The Al foundation
model offers a route where fewer labeled examples are needed. The
foundation model can be fine-tuned for different plasma events.
This enables identification of chains of events often important for
understanding phenomena such as disruptions [18, 19].

Foundation models do require a large unlabeled dataset, and
there are no well-defined rules for its size (this is dependent on
the variety of the data and information content per sample, which
may be hard to quantify). For many fusion energy experiments,
substantial data can be available, depending on the device and
diagnostic. An example of the largest diagnostic datasets on the DIII-
D tokamak is shown in Table 1 (there are a total of 60 different
diagnostic systems on DIII-D), showing a substantial amount of data
available that can reasonably be expected to be sufficient for the
purpose of training an AI foundation model.

In addition to the need for sizeable information-rich data to
train on, out-of-distribution (OOD) data during inference need to
be considered. Fusion experiments often push the boundaries to new
areas, resulting in diagnostic data that may be far from that seen
previously. Various works have approached this topic in bespoke
Al models for fusion energy, seeking to enable models to adapt to
new datasets [5, 20, 21]. In the context of Al foundation models,
there are some indications in other fields, such as medical imaging,
that foundation models are more robust to data distribution shift
[22], even being useful to discriminate OOD data [23]. However,
this needs to be researched in the specific context of AI foundation
models for fusion energy diagnostic data.

4 Discussion

Al foundation models could serve to simplify and greatly expand
the use of Al in experimental fusion energy. The ability to create
good latent space representations of diagnostic data can aid in a
number of downstream tasks for experimental fusion scientists, such
as identification of plasma phenomena across multiple diagnostics,
anomaly detection, extracting physics parameters from data, and use
in control systems. The automation of these tasks leads to remarkable
opportunities to gain further insights across many plasma discharges
and uncover hidden relationships. Foundation models also ease

frontiersin.org


https://doi.org/10.3389/fphy.2024.1531334
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Churchill

10.3389/fphy.2024.1531334

Pre-training

|

I

3

Fine-tuning

D ecoder‘

Automated
H Logbook
labels
T Visualization of tagged

events between shots

,

t
L]
[T

The
ansformer

ansformer

The

[a]

CNN

Large,
unlabelled
dataset

FIGURE 2

diagnostic data, to quickly identify plasma events of interest.

it

Workflow for the automated logbook, enriched by few-shot learning with large neural networks. A CNN + Transformer foundation model is pre-trained
on unlabeled data and then fine-tuned with a small labeled dataset. With the fine-tuned network, fast inference can be done between shots on

Few
labelled
examples

TABLE 1 Diagnostics on the DIII-D tokamak with the largest dataset sizes. Note that not all of these data are for overlapping plasma discharges (i.e.,

some plasma discharges will not have all of these diagnostics available).

Diagnostic Spatial Temporal ‘ Total size [TB]
Fast camera 512 x 368 10 kHz 30.8
Helicon antenna cameras - - 8.6
IR TV camera 3 x (640 x 512; 464 x 4) 125 Hz; 12 kHz 10.1
Tangential viewing visible light camera 512 x 512 31Hz 2.7
Beam emission spectroscopy 8x8 1 MHz 14.2
Electron cyclotron emission imaging 2x20x8 1 MHz 60.0
Ultra-fast charge exchange recombination spectroscopy (UF-CHERS) 16 1 MHz 1.7
Fast soft X-ray imaging 100 1 MHz 10.7

the burden on scientists from identifying and labeling thousands
of examples for AI models, to a much more manageable level.
Some work toward foundation models for fusion energy diagnostics
has begun, for example, through the ExaLearn project, which was
part of the Exascale Computing Project [Rodriguez et al., 2024
(unpublished study)], EUROFusion projects [24], and multi-modal
bespoke models[25, 26], but until now, the full realization of Al
foundation models as a production-ready tool in experimental
fusion science has not been realized.

Frontiers in Physics

Although the focus of this paper has been foundation models for
multi-modal time-series-based diagnostics, the advent of reasoning
models such as the OpenAl ol model [27] presents an opportunity
to combine these in a hybrid system of AI agents, which can
leverage these multi-modal time-series foundation models as tools
to further automate discovery and utility of the investment in these
experimental devices, including coupling with simulation. Creating
these flexible building blocks of multi-modal time-series foundation
models, to build these advanced workflows, could greatly aid fusion
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energy scientists ultimately toward the realization of fusion energy
as a clean and sustainable energy source.
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