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The accurate measurement of neutron skin thickness of 208Pb by the PREX
Collaboration suggests a large value of the nuclear symmetry energy slope
parameter, L, whereas the smaller L is preferred to account for the small
neutron-star radii fromNICERobservations. To resolve this discrepancy between
nuclear experiments and astrophysical observations, new effective interactions
have been developed using relativistic mean-field models with the isoscalar-
and isovector-meson mixing. We investigate the effects of δ-nucleon coupling
and σ–δ mixing on the ground-state properties of finite nuclei, as well as
the characteristics of isospin-asymmetric nuclear matter and neutron stars.
Additionally, we explore the role of the quartic ρ-meson self-interaction in dense
nuclear matter to mitigate the stiff equation of state for neutron stars resulting
from the large δ-nucleon coupling. It is found that the nuclear symmetry energy
undergoes a sudden softening at approximately twice the saturation density
of nuclear matter, taking into account the PREX-2 result, the recent NICER
observation of PSR J0437−4715, and the binary neutron star merger, GW170817.

KEYWORDS

isospin-asymmetric nuclear matter, neutron skin thickness, neutron stars, NICER,
nuclear equation of state, nuclear symmetry energy, PREX-2, relativistic mean-field
models

1 Introduction

The astrophysical phenomena concerning compact stars as well as the characteristics of
finite nuclei and nuclear matter are determined by the nuclear equation of state (EoS),
characterized by the relation between the energy density and pressure of the system
[1, 2]. Many nuclear EoSs have been contemplated so far through realistic nuclear
models in a non-relativistic or relativistic framework [3, 4]. Relativistic mean-field
(RMF) calculations, based on the one-boson exchange potential for nuclear interactions
[5, 6], have achieved great success in understanding of the properties of nuclear
matter and finite nuclei [7]. To reproduce a reasonable nuclear incompressibility and
properties of unstable nuclei, the RMF models have been developed by introducing
the non-linear self-couplings of isoscalar, Lorentz-scalar (σ) and Lorentz-vector
(ωμ) mesons [8, 9]. In addition, the isovector, Lorentz-vector (ρμ) meson and its
non-linear couplings have been considered to describe a neutron skin thickness
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of heavy nuclei and characteristics of isospin-asymmetric nuclear
matter [10, 11]. The RMF approach is, at present, one of the most
powerful tools to study neutron star physics [12–14], as in the case
of the Skyrme energy density functional [15–18].

The nuclear symmetry energy, Esym, which is defined as the
difference between the energies of pure neutron and symmetric
nuclear matter, is recognized to be an important physical quantity
to study the properties of isospin-asymmetric nuclear EoS [19, 20].
In addition, the slope parameter of nuclear symmetry energy, L,
gives a significant constraint on the density dependence of Esym
and is related to the neutron skin thickness of heavy nuclei [21].
Laboratory experiments have been also performed to investigate the
properties of low-density nuclear matter and to impose constraints
on Esym and L through the heavy-ion collisions (HICs) [22, 23].
Recently, the impacts of the higher-order coefficients—the curvature
and skewness of nuclear symmetry energy,Ksym and Jsym—have been
studied in light of some astrophysical observations, for instance the
mass-radius relations of neutron stars and the cooling process of
proto-neutron stars [24–26].

Owing to the precise observations of neutron stars, such
as the Shapiro delay measurement of a binary millisecond
pulsar J1614−2230 [27, 28] and the radius measurement of PSR
J0740+6620 from Neutron Star Interior Composition Explorer
(NICER) and from X-ray Multi-Mirror (XMM-Newton) Data
[29–32], theoretical studies have been currently performed more
than ever to elucidate neutron star physics through the nuclear
EoS for dense matter. It has been found that the nuclear
EoS should satisfy at least 2M⊙ to support the high-mass PSR
J0740+6620 event, and that the precise measurements of neutron-
star radii provide the valuable information in determining the
features of isospin-asymmetric nuclear matter. In addition, the
direct detection of gravitational-wave (GW) signals from a binary
neutron star merger, GW170817, observed by Advanced LIGO
and Advanced Virgo detectors has placed stringent restrictions on
the mass–radius relation of neutron stars [33–35]. In particular,
the tidal deformability of a neutron star [36, 37] plays a critical
role in constructing the EoS for neutron star matter [38–41].
It has been reported that there are the strong correlations of
neutron-star radii with Esym and L, and the radius of a typical
neutron star is determined by L [42–45]. Using a Bayesian analysis
based on constraints from NICER and GW170817 within chiral
effective field theory calculations, L is currently estimated as L =
(43.7–70.0) MeV [46].

The accurate measurement of neutron skin thickness of 208Pb,
R208

skin, by the PREXCollaboration, using the parity-violating electron
scattering, has revealed a serious discrepancy between themeasured
R208

skin and theoretical predictions [47]. The neutron skin thickness,
Rskin, is defined here as the difference between the root-mean-square
radii of point neutrons and protons, Rn and Rp, in a nucleus:

Rskin = Rn −Rp. (1)

To explain the PREX-2 result, Reed et al. [48] have proposed
the large L value as L = 106± 37 MeV, by exploiting the strong
correlation between R208

skin and L. In contrast, Reinhard et al.
[49], using modern relativistic and non-relativistic energy density
functionals, have predicted the smaller value, L = 54± 8 MeV, by
carefully assessing theoretical uncertainty on the parity-violating

asymmetry, APV, in 208Pb. Additionally, the CREX experiment,
which provides a precise measurement of the neutron skin thickness
of 48Ca, R48

skin, through the parity-violating electron scattering
[50], complicates the understanding of isospin-asymmetric nuclear
matter. This complexity arises from the difficulty of reconciling
the PREX-2 and CREX results simultaneously. In addition, the
measurements from polarized proton scattering off 208Pb indicate
smaller R208

skin, and consequently smaller L, compared to those
obtained from the PREX-2 experiment [51, 52]. As a result,
R208

skin and L remain uncertain in theoretical calculations [53, 54].
At present, many species of neutron skin thickness have been
reported from a combination of experimental and theoretical
results [55].

In this article, we review the recently updated RMF models with
non-linear couplings by introducing the isoscalar- and isovector-
meson mixing, σ2δ2 and ωμω

μρνρ
ν, which can cover both data

from stable nuclear ground states and astrophysical observations
of neutron stars. Although the isovector, Lorentz-scalar (δ) meson
has been claimed to be less important than the isovector, Lorentz-
vector (ρμ) meson so far, it has been recently realized that the δ
meson considerably affects the properties of isospin-asymmetric
nuclear EoS, such as neutron skin thickness of heavy nuclei and
neutron-star radii [56–59] The new effective interactions discussed
in this review are constructed under the constraints from the
terrestrial experiments and astrophysical observations of neutron
stars, especially focusing on the PREX-2 and CREX experiments.
The resulting nuclear EoS have to support the following conditions:

(1) The EoSs for symmetric nuclear matter and pure neutron
matter satisfy the particle flow data in heavy-ion collisions
(HICs) [60–63],

(2) The EoS for neutron stars attains to the observed mass of PSR
J0740+6620 M = 2.072+0.067−0.066 M⊙ [32, 64, 65],

(3) The EoS for neutron stars explains the dimensionless tidal
deformability from the binary merger event, GW170817
(Λ1.4 = 190

+390
−120) [34, 35].

Under these constraints, we examine the effects of the δ-nucleon
coupling and σ–δ mixing on the ground-state properties of finite
nuclei, and consider the PREX-2 and CREX results. Additionally,
we investigate the impact of the quartic self-interactions of δ and
ρ mesons on the nuclear EoS to study the properties of neutron
star matter.

This paper is organized as follows. A summary and analytical
calculations concerning the RMF model with non-linear couplings
are described in Section 2. Numerical results and detailed
discussions are presented in Section 3. Finally, we give a
summary in Section 4.

2 Theoretical framework

2.1 Lagrangian density

In quantumhydrodynamics [7], we employ the recently updated
effective Lagrangian density including the isoscalar (σ and ωμ) and
isovector (δ and ρμ) mesons as well as nucleons (N = p,n) [57, 58].
The total Lagrangian density is then given by
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L = ψ̄N [iγμ∂
μ − (MN − gσσ− gδδ ⋅ τN) − gωγμω

μ − gργμρ
μ ⋅ τN]ψN

+ 1
2
(∂μσ∂μσ−m2

σσ
2) + 1

2
m2

ωωμω
μ − 1

4
WμνW

μν + 1
2
(∂μδ ⋅ ∂μδ −m2

δδ ⋅ δ)

+ 1
2
m2

ρρμ ⋅ ρ
μ − 1

4
Rμν ⋅Rμν + LEM −UNL (σ,ω,δ,ρ) , (2)

where ψN = ( 
ψp
ψn
) is the iso-doublet, nucleon field, τN is its isospin

matrix, Wμν = ∂μων − ∂νωμ, and Rμν = ∂μρν − ∂νρμ. The meson-
nucleon coupling constants are respectively denoted by gσ, gω, gδ,
and gρ. The photon-N interaction, LEM = − eψ̄pγμA

μψp −
1
4
FμνF

μν

with Fμν = ∂μAν − ∂νAμ, is also taken into account to describe the
characteristics of finite nuclei [7, 66]. Additionally, a non-linear
potential in Equation 1 is supplemented as follows:

UNL (σ,ω,δ,ρ) =
1
3
g2σ

3 + 1
4
g3σ

4 − 1
4
c3(ωμω

μ)2 + 1
4
d3(δ ⋅ δ)2 −

1
4
e3(ρμ ⋅ ρ

μ)2

− Γσδσ (δ ⋅ δ) −Λσδσ
2 (δ ⋅ δ) −Λωρ (ωμω

μ)(ρν ⋅ ρ
ν) . (3)

The first and second terms in Equation 2 are introduced to
obtain a quantitative description of ground-state properties for
symmetric nuclear matter [8, 67]. The quartic self-interactions
of ω, δ, and ρ mesons are also introduced in Equation 2 [9,
10, 68, 69]. We also consider the isoscalar- and isovector-
meson mixing, which only affects the characteristics of N ≠ Z
finite nuclei and isospin-asymmetric nuclear matter [56, 70, 71],
while the scalar-vector mixing is not included in the present
study [11, 72–75].

2.2 Field equations for finite nuclei in
mean-field approximation

In mean-field approximation, the meson and photon fields are
replaced by themean-field values: ̄σ, ω̄, ̄δ, ̄ρ, and Ā.Then, the effective
nucleon mass in matter is simply expressed as

M∗
N=( pn)
( ̄σ, ̄δ) =MN − gσ ̄σ∓ gδ ̄δ, (4)

where MN ( = 939 MeV) is the nucleon mass in free space. If we
restrict consideration to spherical finite nuclei, the equation of
motion for N is given by

[−iα ⋅ ∆+ βM∗
( pn)
( ̄σ, ̄δ) + gωω̄± gρ ̄ρ+ e

1± 1
2

Ā]ψ( pn) = Eα( pn)ψ( pn), (5)

with EαN being the nucleon single-particle energy. The meson and
photon fields are then given by

[− ∆2 +m∗2σ ( ̄σ, ̄δ)] ̄σ = gσ (ρ
s
p + ρ

s
n) , (6)

[− ∆2 +m∗2ω (ω̄, ̄ρ)] ω̄ = gω (ρp + ρn) , (7)

[− ∆2 +m∗2δ ( ̄σ, ̄δ)] ̄δ = gδ (ρ
s
p − ρ

s
n) , (8)

[− ∆2 +m∗2ρ (ω̄, ̄ρ)] ̄ρ = gρ (ρp − ρn) , (9)

and

− ∆2Ā = eρp, (10)

where ρsN (ρN) is the scalar (baryon) density forN, which is computed
self-consistently using nucleonwave functions in Equation 4 that are
solutions to theDirac equation in the spatially dependentmeson and
photon fields. The effective meson masses are defined by

m∗2σ ( ̄σ, ̄δ) =m2
σ + g2 ̄σ+ g3 ̄σ

2 − Γσδ ̄δ
2/ ̄σ− 2Λσδ

̄δ2, (11)

m∗2ω (ω̄, ̄ρ) =m2
ω + c3ω̄2 + 2Λωρ ̄ρ2, (12)

m∗2δ ( ̄σ, ̄δ) =m
2
δ + d3
̄δ2 − 2Γσδ ̄σ− 2Λσδ ̄σ2, (13)

m∗2ρ (ω̄, ̄ρ) =m2
ρ + e3 ̄ρ2 + 2Λωρω̄

2. (14)

The total energy of the system is thus written as

Etot = ∑
N=p,n

occ

∑
α
(2jα + 1)EαN +

1
2
∫dr [gσ (ρ

s
p + ρ

s
n) ̄σ

− gω (ρp + ρn) ω̄+ gδ (ρ
s
p − ρ

s
n) ̄δ− gρ (ρp − ρn) ̄ρ− eρpĀ

+ 1
2
∫dr(− 1

3
g2 ̄σ

3 − 1
2
g3 ̄σ

4 + 1
2
c3ω̄

4 − 1
2
d3
̄δ4

+ 1
2
e3 ̄ρ4 + Γσδ ̄σ ̄δ

2 + 2Λσδ ̄σ2 ̄δ
2 + 2Λωρω̄

2 ̄ρ2)], (15)

where the sum α runs over the occupied states of EαN with the
degeneracy (2jα + 1) [7].

2.3 Infinite nuclear matter

To study the bulk properties of nuclear and neutron star matter,
it is necessary to compute the nuclear equation of state (EoS)—a
relation between the energy density, εB, and pressure, PB. In infinite
nuclearmatter, the surface terms in Equations 5–9 have no influence
on its characteristics as the gradient reads zero. The scalar and
baryon density for N ( = p,n) are then obtained as

ρsN = ⟨ψ̄NψN⟩

= 1
π2∫

kFN

0
dkk2

M∗N

√k2 +M∗2N

=
M∗3N
2π2 [

kFNE
∗
N

M∗2N
− ln(

kFN +E
∗
N

M∗N
)], (16)

ρN = ⟨ψ
†
NψN⟩

= 1
π2∫

kFN

0
dkk2 =

k3
FN

3π2 , (17)

where kFN and E
∗
N( = √k

2
FN
+M∗2

N ) are the Fermi momentum and
energy for N. With the self-consistent calculations of the meson
fields, εB and PB are respectively given by εB = ∑NεN + εM and PB =
∑NPN + PM where the nucleon and meson parts are expressed as

εN =
1
π2∫

kFN

0
dkk2√k2 +M∗2N =

1
4
(3E∗NρN +M

∗
Nρ

s
N) , (18)

PN =
1

3π2∫
kFN

0
dk k4

√k2 +M∗2N
= 1

4
(E∗NρN −M

∗
Nρ

s
N) , (19)

and

εM =
1
2
(m2

σ ̄σ2 +m2
ωω̄

2 +m2
δ
̄δ2 +m2

ρ ̄ρ2) + 1
3
g2 ̄σ

3 + 1
4
g3 ̄σ

4

+ 3
4
c3ω̄

4 + 1
4
̄δ4 + 3

4
e3 ̄ρ4 − Γσδ ̄σ ̄δ

2 −Λσδ ̄σ2 ̄δ2 + 3Λωρω̄
2 ̄ρ2, (20)
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PM = −
1
2
(m2

σ ̄σ2 −m2
ωω̄

2 +m2
δ
̄δ2 −m2

ρ ̄ρ2) − 1
3
g2 ̄σ

3 − 1
4
g3 ̄σ

4

+ 1
4
c3ω̄

4 − 1
4
̄δ4 + 1

4
e3 ̄ρ4 + Γσδ ̄σ ̄δ

2 +Λσδ ̄σ2 ̄δ2 +Λωρω̄
2 ̄ρ2. (21)

2.4 Nuclear bulk properties

In general, the bulk properties of infinite nuclear matter are
identified by the expansion of isospin-asymmetric nuclear EoS with
a power series in the isospin asymmetry, α = (ρn − ρp)/ρB, and the
total baryon density, ρB ( = ρn + ρp) [76, 77]. The binding energy per
nucleon is then written as

EB (ρB,α) =
εB (ρB,α)

ρB
−MN

= E0 (ρB) +Esym (ρB)α
2 +O (α4) , (22)

where E0(ρB) is the binding energy per nucleon of symmetric
nuclear matter (SNM) and Esym(ρB) is the nuclear symmetry
energy (NSE),

Esym (ρB) =
1
2
∂2EB (ρB,α)

∂α2 |
α=0
. (23)

Besides, E0(ρB) and Esym(ρB) can be expanded around the
nuclear saturation density, ρ0, as

E0 (ρB) = E0 (ρ0) +
K0

2
χ2 +

J0
6
χ3 +O (χ4) , (24)

Esym (ρB) = Esym (ρ0) + Lχ+
Ksym

2
χ2 +

Jsym
6

χ3 +O (χ4) , (25)

with χ = (ρB − ρ0)/3ρ0 being the dimensionless variable
characterizing the deviations of ρB from ρ0. The incompressibility
coefficient of SNM, K0, the slope and curvature parameters of NSE,
L and Ksym, and the third-order incompressibility coefficients of
SNM and NSE, J0 and Jsym, are respectively defined as

K0 = 9ρ
2
B
d2E0 (ρB)

dρ2
B
|
ρB=ρ0

, (26)

L = 3ρB
dEsym (ρB)

dρB
|
ρB=ρ0

, Ksym = 9ρ2
B

d2Esym (ρB)

dρ2
B
|
ρB=ρ0

, (27)

J0 = 27ρ
3
B
d3E0 (ρB)

dρ3
B

|
ρB=ρ0

, Jsym = 27ρ
3
B

d3Esym (ρB)

dρ3
B

|
ρB=ρ0

. (28)

Taking into account the thermodynamic condition, the pressure
of infinite nuclear matter, PB(ρB,α), is given by

PB (ρB,α) = ρ
2
B
∂EB (ρB,α)

∂ρB

= ρ2
B

∂
∂ρB
[
εB (ρB,α)

ρB
−MN]

= ρB
∂εB (ρB,α)

∂ρB
− εB (ρB,α) , (29)

with the binding energy per nucleon in Equation 14. The nuclear
incompressibility, KB(ρB,α), is then expressed as

KB (ρB,α) = 9ρ
2
B
∂2EB (ρB,α)

∂ρ2
B

= 9ρ2
B

∂
∂ρB
[
PB (ρB,α)

ρ2
B
]

= 9[
∂PB (ρB,α)

∂ρB
− 2

PB (ρB,α)
ρB
]. (30)

Hence, the incompressibility coefficient of SNM,
K0, in Equation 16 is related with KB through K0 =
KB(ρ0,0). In the RMF calculation, we can obtain the
analytical expression of KB(ρB,α) using the following
equation:

∂PB
∂ρB
= 1

3ρB
∑

N=p,n
ρN

k2FN
E∗N
− ∑

N=p,n
ρN

M∗N
E∗N
[gσ

∂ ̄σ
∂ρB
+ gδ(τN)3

∂ ̄δ
∂ρB
]

+m∗2ω ω̄ ∂ω̄
∂ρB
+m∗2ρ ̄ρ

∂ ̄ρ
∂ρB
, (31)

where the density derivatives of meson fields are calculated through
the relation

∂M
∂ρB
= ∑

N=p,n

ρN
ρB

∂M
∂ρN
(M = ̄σ, ω̄, ̄δ, ̄ρ) , (32)

with

∂ ̄σ
∂ρN
=
M∗N
E∗N

Gσ +Gδ(τN)3Hσδ

1−HσδHδσ
, ∂ω̄

∂ρN
=
Gω −Gρ(τN)3Hωρ

1−HωρHρω
, (33)

∂ ̄δ
∂ρN
=
M∗N
E∗N

GσHδσ +Gδ(τN)3
1−HσδHδσ

,
∂ ̄ρ
∂ρN
=
−GωHρω +Gρ(τN)3

1−HωρHρω
,

(34)

and

(τN)3 =
{
{
{

+1

−1
for N = ( pn) . (35)

We here use the following quantities:

Gσ =
gσ
M2

σ
, Gω =

gω
M2

ω
, Gδ =

gδ
M2

δ

, Gρ =
gρ
M2

ρ
, (36)

and

Hσδ =
L2
σδ

M2
σ
, Hδσ =

L2
σδ

M2
δ

, Hωρ =
4Λωρω̄ ̄ρ

M2
ω
, Hρω =

4Λωρω̄ ̄ρ

M2
ρ
,

(37)

with

M2
σ ( ̄σ, ̄δ) =m∗2σ ( ̄σ, ̄δ) + g2 ̄σ+ 2g3 ̄σ

2 + Γσδ ̄δ
2/ ̄σ+ g2σ (Jp + Jn) , (38)

M2
ω (ω̄, ̄ρ) =m∗2ω (ω̄, ̄ρ) + 2c3ω̄2, (39)

M2
δ ( ̄σ, ̄δ) =m

∗2
δ ( ̄σ, ̄δ) + 2d3

̄δ2 + g2δ (Jp + Jn) , (40)

M2
ρ (ω̄, ̄ρ) =m∗2ρ (ω̄, ̄ρ) + 2e3 ̄ρ2, (41)

L2
σδ ( ̄σ, ̄δ) = 2Γσδ ̄δ+ 4Λσδ ̄σ ̄δ− gσgδ (Jp − Jn) , (42)
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where the effective meson masses,m
∗2
σ ,m

∗2
ω ,m

∗2
δ andm

∗2
ρ , are given

in Equations 10–13, and JN for N ( = p,n) reads

JN = 3(
ρsN
M∗N
−
ρN
E∗N
). (43)

According to the Hugenholtz-Van Hove theorem in nuclear
matter, Esym defined in Equation 15 can be generally written as

Esym (ρB) =
1
2

∂
∂α
[
∂EB (ρB,α)

∂α
]
α=0

= 1
8
ρB(

∂
∂ρp
− ∂
∂ρn
)[Ep (kFp) −En (kFn)]|

ρp=ρn

, (44)

where EN is the single-particle energy for N, which is determined
self-consistently by solving the following transcendental equation
[78, 79]:

EN (k) = [E∗N (k) −
0

∑
N
(k)]

k0=EN(k)

. (45)

The effective mass, (four) momentum, and energy forN are here
defined as [80, 81]

M∗N (k) =MN +
s
Σ
N
(k) , (46)

kμ∗N = (k
∗0
N ,k
∗
N)

= (k0 +
0

∑
N
(k) ,k + k̂

v

∑
N
(k)), (47)

E∗N (k) = √k
∗2
N +M

∗2
N (k), (48)

with Σs(0)[v]
N being the scalar (time) [space] component

of nucleon self-energy. In addition, Esym is divided into
the kinetic and potential terms as

Esym (ρB) = E
kin
sym (ρB) +E

pot
sym (ρB) . (49)

Based on the Lorentz-covariant decomposition of NSE [82],
Epot

sym is expressed as

Epot
sym (ρB) = E

s
sym (ρB) +E

0
sym (ρB) +E

v
sym (ρB) , (50)

with the scalar (s), time (0), and space (v) components. The
Esym is thus computed as follows:

Ekin
sym (ρB) =

1
6
k∗F
E∗F

kF, (51)

Essym (ρB) =
1
8
ρB

M∗F
E∗F
( ∂
∂ρp
− ∂
∂ρn
)(

s

∑
p
−

s

∑
n
)|

ρp=ρn

, (52)

E0
sym (ρB) = −

1
8
ρB(

∂
∂ρp
− ∂
∂ρn
)(

0

∑
p
−

0

∑
n
)|

ρp=ρn

, (53)

Evsym (ρB) =
1
8
ρB

k∗F
E∗F
( ∂
∂ρp
− ∂
∂ρn
)(

v

∑
p
−

v

∑
n
)|

ρp=ρn

, (54)

where the effective quantities at the Fermi surface in
Equations 22–25 are then given by M

∗
F =M

∗
p (kF) =M

∗
n (kF), k

∗
F =

|k
∗
p (kF)| = |k

∗
n (kF)|, and E

∗
F = E

∗
p (kF) = E

∗
n (kF) at ρp = ρn, namely,

kFp = kFn = kF. In RMF approximation, Σs,0,v
N are respectively given by

s

∑
N
= −gσ ̄σ− gδ(τN)3 ̄δ, (55)

0

∑
N
= −gωω̄− gρ(τN)3 ̄ρ, (56)

v

∑
N
= 0. (57)

Using Equations 20, 21, Esym can be finally expressed as

Esym (ρB) = E
kin
sym (ρB) +E

s
sym (ρB) +E

0
sym (ρB)

= 1
6
k2
F

E∗F
− 1

2
g2δ

M2
δ ( ̄σ,0)
(
M∗F
E∗F
)

2
ρB +

1
2

g2ρ
M2

ρ (ω̄,0)
ρB. (58)

Note that k
∗
F = kF and Evsym(ρB) = 0 in RMF approximation.

The L and Ksym given in Equation 17 are also expressed as

L = Lkin + Lpot

= Lkin + Ls + L0, (59)

Ksym = Kkin
sym +K

pot
sym

= Kkin
sym +Ks

sym +K0
sym, (60)

where the kinetic, scalar, and time components are
respectively given by

Lkin = Ekin
sym (ρ0)[1+(

M∗F
E∗F
)

2
KB (ρ0)] , (61)

Ls(0) = 3Es(0)sym (ρ0)[1− ρ0T
s(0)
B (ρ0)] , (62)

Kkin
sym = −2Lkin +(

M∗F
E∗F
)

2

[Ekin
sym (ρ0)NB (ρ0) + L

kinKB (ρ0)] , (63)

Ks(0)
sym = 3Ls(0) [1− ρ0T

s(0)
B (ρ0)] − 9E

s(0)
sym
[[

[

1+ ρ20
dTs(0)

B (ρB)
dρB
|

|ρB=ρ0

]]

]

, (64)

with

KB (ρB) = 1+ 3
g2σ

M2
σ ( ̄σ,0)

ρB
E∗F
, (65)

T s
B (ρB) =

2
3ρB
(
kF
E∗F
)

2
KB (ρB) −

gσ (2Γσδ + 4Λσδ ̄σ)

M2
σ ( ̄σ,0)M2

δ ( ̄σ,0)

M∗F
E∗F

+
g2δ

M2
δ ( ̄σ,0)
[(

kF
E∗F
)

2KB (ρB)
E∗F
− 2

g2σ
M2

σ ( ̄σ,0)

Jp + Jn
E∗F
], (66)

T0
B (ρB) =

4gωΛωρω̄

M2
ω (ω̄,0)M2

ρ (ω̄,0)
, (67)

NB (ρB) = 3ρB
dKB (ρB)
dρB
− 2(

kF
E∗F
)

2
K2
B (ρB) . (68)

2.5 Stability of nuclear and neutron star
matter

In order to move on the calculations of neutron stars in which
the charge neutrality and β equilibrium conditions are imposed, we
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introduce the degrees of freedom of leptons (electrons and muons)
as well as nucleons and mesons in Equation 2.

LL = ψ̄ℓ (iγμ∂
μ − m̂ℓ)ψℓ, (69)

where ψℓ = ( 
ψe
ψμ
) is the lepton field and its mass is given by m̂ℓ =

diag(me,mμ).
When we consider the stability of matter in cold neutron stars,

the first principle of thermodynamics should be considered:

du = −Pdv− μdq, (70)

with u, P, v( = 1/ρB), μ, and q being the total internal energy per
nucleon, pressure, volume per nucleon, chemical potential, and
charge fraction, respectively [83–86]. In neutron star matter, the
charge neutrality and β equilibrium conditions read

μ = μn − μp = μe = μμ, (71)

q = Yp −YL = ρp/ρB − ∑
ℓ=e,μ

ρℓ/ρB = 0, (72)

with ρℓ the lepton density. The stability of neutron star matter
are then expressed as the following two constraints on chemical
potential and pressure:

−(
∂μ
∂q
)
v
> 0, (73)

−(∂P
∂v
)
μ
> 0. (74)

The total internal energy per baryon, u(v,q), can be decomposed
into the baryon (B) and lepton (L) contributions as

u (v,q) = u(ρB,α) = EB (ρB,α) +EL (ρB,α) , (75)

with α = 1− 2Yp. At zero temperature, the β equilibrium condition
leads to the relation [87].

μ = −(
∂EB
∂Yp
)
ρB

= 2(
∂EB
∂α
)
ρB
= 2EISB (ρB,α) . (76)

where the isospin symmetry breaking (ISB) energy of infinite nuclear
matter is given by

EISB (ρB,α) = [
∂EB (ρB,α)

∂α
]
ρB

= 1
2
[En (kFn) −Ep (kFp)] . (77)

Considering the differentiation of μ(v,q) ( = μ(ρB,α)), we find

−(
∂q
∂μ
)
v
= 1

2
(∂α
∂μ
)
ρB

+ 1
ρB
∑
ℓ=e,μ
(
∂ρℓ
∂μ
)
ρB

= 1
8Esym (ρB,α)

+
μ

π2ρB
(kFe + kFμ) ≕ Vμ (ρB,α) , (78)

where kFe and kFμ are respectively the Fermi momenta for electrons
(e) and muons (μ). For simplicity, we here define the nuclear
symmetry energy involving the isospin asymmetry, α, as

Esym (ρB,α) =
1
2
∂2EB (ρB,α)

∂α2

= 1
2
∂EISB (ρB,α)

∂α
. (79)

Note that we explicitly keep α to consider the stability of nuclear
and neutron star matter, though the nuclear symmetry energy is in
general calculated at ρp = ρn, namely, α = 0, as shown in Equation 15.
Hence the stability constraint on chemical potential, Vμ(ρB,α) > 0,
can be satisfied by assuming that Esym(ρB,α) is positive at any ρB.

As for the pressure stability, the differentiation of
P(v,q) ( = P(ρB,α)) reads

−(∂P
∂v
)
μ
= ρ2

B[(
∂PB
∂ρB
)
μ
+(

∂PL
∂ρB
)
μ
], (80)

with the baryon and lepton contributions. Similar to Equation 27,
the baryon contribution is given by

(
∂PB
∂ρB
)
μ
= 2ρB

∂EB (ρB,α)
∂ρB
+ ρ2

B
∂2EB (ρB,α)

∂2ρB

− ρ2
B [

∂2EB (ρB,α)
∂ρB∂α

]
2

/
∂2EB (ρB,α)

∂2α
. (81)

Using the thermodynamic definitions of pressure and
incompressibility of infinite nuclear matter in Equations 18, 19,
this equation can be simplified as

(
∂PB
∂ρB
)
μ
= 2

PB (ρB,α)
ρB
+ 1

9
KB (ρB,α) −

1
18

L2
ISB (ρB,α)

Esym (ρB,α)
, (82)

where the slope of ISB energy, LISB(ρB,α), is defined as

LISB (ρB,α) = 3ρB
∂EISB (ρB,α)

∂ρB
. (83)

The lepton contribution is also given by the simple form under
the β equilibrium condition:

(
∂PL
∂ρB
)
μ
=
ρek

2
Fe
+ ρμk

2
Fμ

3μρB
. (84)

Therefore, the stability of neutron star matter under the charge
neutrality and β equilibrium conditions can be clarified by the
thermodynamic constraints on chemical potential and pressure,
namely, Vμ(ρB,α) > 0 and

VP (ρB,α) ≔ (
∂PB
∂ρB
)
μ
+(

∂PL
∂ρB
)
μ
> 0. (85)

The thermodynamic stability is used in several calculations
of nuclear and neutron star matter, for instance, the
compressibility of β-equilibrated matter [56, 88] and the phase
transition between the crust and core regions in neutron stars
[89–91].

3 Results and discussions

3.1 Nuclear models

We adopt the recently developed effective interactions labeled
as the OMEG family, which are constructed to reproduce the
characteristics of finite nuclei, nuclear matter, and neutron stars
[58, 92]. In particular, the δ–N coupling and σ–δ mixing in the
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TABLE 1 Model parameters for various effective interactions.

Models mσ mω mρ g2
σ g2

ω g2
δ g2

ρ g2 g3 c3 Λσδ Λωρ

(MeV) (MeV) (MeV) (fm−1)

OMEG0 496.500 782.660 775.260 89.384 142.847 37.699 51.744 9.976 −21.469 — 87.000 102.612

OMEG1 497.825 782.660 775.260 99.645 166.268 30.000 44.591 7.824 −1.115 100.000 95.000 75.677

OMEG2 497.820 782.660 775.260 99.641 166.269 20.000 44.364 7.823 −1.113 100.000 85.000 288.859

OMEG3 498.015 782.660 775.260 99.713 166.272 15.000 57.550 7.827 −1.105 100.000 70.000 909.825

BigApple 492.730 782.500 763.000 93.507 151.684 — 50.139 11.944 −31.832 2.684 — 1449.033

DINOa 490.050 782.500 763.000 93.942 154.443 278.788 201.454 11.501 −20.139 59.626 — 205.236

DINOb 485.795 782.500 763.000 91.032 150.806 313.178 219.270 11.651 −20.561 56.870 — 185.311

DINOc 484.162 782.500 763.000 90.648 151.032 335.813 230.653 11.642 −20.517 57.039 — 171.604

FSU-δ6.2 491.500 782.500 763.000 104.332 180.507 38.440 48.867 8.090 5.881 172.150 107.650 91.639

FSU-δ6.7 491.500 782.500 763.000 104.332 180.507 44.890 52.843 8.090 5.881 172.150 90.157 102.004

FSUGarnet 496.939 782.500 763.000 110.350 187.693 — 47.966 9.565 −7.122 137.981 — 1555.729

FSUGarnet+R 495.633 782.500 763.000 109.045 186.307 — 35.654 9.407 −6.452 138.011 — 1016.385

FSUGold 491.500 782.500 763.000 112.204 204.556 — 34.629 4.277 49.858 418.394 — 850.374

FSUGold2 497.479 782.500 763.000 108.070 183.733 — 20.145 8.546 −1.021 144.122 — 12.289

FSUGold2+R 501.611 782.500 763.000 103.793 169.483 — 32.090 10.150 −19.026 55.970 — 687.024

HPNL0 501.825 782.500 770.000 109.108 180.637 1.443 26.967 9.393 −3.405 134.110 — 267.522

HPNL5 500.972 782.500 770.000 103.502 169.568 8.903 39.724 9.270 −2.866 120.751 46.077 511.487

IOPB-I 500.000 782.500 762.500 107.971 178.268 — 30.955 10.517 −15.146 91.108 — 528.819

IU-FSU 491.500 782.500 763.000 99.427 169.835 — 46.172 8.497 0.462 144.219 — 1442.856

NL3 508.194 782.501 763.000 104.408 165.562 — 19.883 10.454 −28.955 — — —

PD15 480.025 780.000 763.000 97.535 173.792 22.782 60.551 7.662 6.551 169.689 — 627.406

TAMUC-FSUa 502.200 782.500 763.000 106.504 176.178 — 24.339 8.830 −6.317 103.462 — 213.858

TM1 511.198 783.000 770.000 100.580 159.111 — 21.459 7.249 0.610 71.308 — —

The nucleon and δ-meson masses in free space are fixed at MN = 939 MeV and mδ = 980 MeV. For the HPNL0 and HPNL5, we set mδ = 983 MeV [101]. The MN is taken as MN = 938 MeV only
for the TM1 [9].

OMEG family are determined so as to support the astrophysical
constraints on the neutron-star radii from the NICER mission
[29–32] and the tidal deformabilities from the binary merger events
due to GW signals [34, 93]. Various theoretical calculations using
the well-calibrated parameter sets based on the RMFmodels are also
presented: BigApple [94], DINO [95], FSU-δ [59], FSUGarnet [96],
FSUGold [97], FSUGold2 [98], Bayesian refinement of FSUGarnet
and FSUGold2, FSUGarnet+R and FSUGold2+R [99, 100], HPNL0
and HPNL5 [101], IOPB-I [102], IU-FSU [103], NL3 [67], PD15
[104], TAMUC-FSUa [105, 106], and TM1 [9]. In Tables 1, 2, we

summarize the model parameters and the properties of symmetric
nuclear matter at ρ0 for the effective interactions used in the
present study.

In addition, we present the extended interactions based on
the FSUGarnet, TAMUC-FSUa, and FSUGold2 models, in which
the δ–N coupling are introduced to investigate the effect of δ
meson. Since the δ–N coupling only influences the properties
of N ≠ Z finite nuclei and isospin-asymmetric nuclear matter, we
adjust g2ρ and Λωρ to preserve the original model’s predictions for
L when the δ–N coupling is included. Simultaneously, the other
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TABLE 2 Properties of symmetric nuclear matter at ρ0 for various effective interactions.

Models ρ0 M
∗
N/MN E0 K0 J0 Esym L Ksym Jsym Kasy Ksat,2 KN

(fm−3) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

OMEG0 0.1500 0.640 −16.45 280.00 −66.98 34.55 50.00 −384.43 −533.44 −684.43 −672.47 −104.43

OMEG1 0.1484 0.620 −16.38 256.00 −300.62 35.06 70.00 −218.83 −68.94 −638.83 −556.62 37.17

OMEG2 0.1484 0.620 −16.38 256.00 −300.56 33.00 45.00 −216.72 1020.63 −486.72 −433.89 39.28

OMEG3 0.1484 0.620 −16.38 256.00 −300.28 30.00 20.00 −65.85 1449.98 −185.85 −162.39 190.15

BigApple 0.155 0.609 −16.34 226.08 −209.66 31.32 40.00 89.76 1121.88 −150.21 −113.12 315.84

DINOa 0.1522 0.626 −16.16 210.00 −365.42 31.42 50.00 504.96 9316.53 204.96 291.97 714.96

DINOb 0.1525 0.632 −16.21 207.00 −412.46 33.07 70.00 608.70 9692.85 188.70 328.18 815.70

DINOc 0.1519 0.632 −16.22 206.00 −421.37 34.58 90.00 715.40 9846.87 175.40 359.49 921.40

FSU-δ6.2 0.148 0.610 −16.31 229.20 −322.12 32.53 48.21 −311.61 −92.61 −600.87 −533.12 −82.4

FSU-δ6.7 0.148 0.610 −16.31 229.20 −322.12 32.75 53.50 −227.23 673.54 −548.23 −473.04 1.97

FSUGarnet 0.153 0.579 −16.23 229.63 8.47 30.92 50.96 58.31 149.10 −247.45 −249.33 287.94

FSUGarnet+R 0.1527 0.582 −16.18 228.77 −24.37 30.89 55.79 20.00 417.64 −314.74 −308.80 248.77

FSUGold 0.1484 0.610 −16.30 230.00 −523.39 32.59 60.50 −51.27 424.15 −414.27 −276.59 178.73

FSUGold2 0.1505 0.593 −16.28 238.00 −149.49 37.62 112.80 25.21 −165.75 −651.59 −580.74 263.21

FSUGold2+R 0.1522 0.594 −16.22 241.22 −36.17 32.03 57.20 −6.89 971.30 −350.09 −341.51 234.33

HPNL0 0.1477 0.603 −16.10 227.38 −217.51 34.63 78.38 −69.89 488.76 −540.18 −465.20 157.48

HPNL5 0.1486 0.618 −16.18 230.32 −320.74 33.04 52.29 −83.86 1178.98 −397.60 −324.78 146.46

IOPB-I 0.149 0.594 −16.11 222.33 −109.15 33.36 63.70 −38.98 873.02 −421.18 −389.00 183.35

IU-FSU 0.1547 0.609 −16.40 231.30 −289.40 31.30 47.22 28.61 370.02 −254.73 −195.64 259.91

NL3 0.1483 0.595 −16.26 271.50 201.62 37.28 118.18 101.01 181.90 −608.09 −695.86 372.51

PD15 0.1484 0.618 −16.62 229.49 −399.42 35.29 42.60 −56.52 1582.27 −312.10 −237.96 172.97

TAMUC-
FSUa

0.149 0.601 −16.23 245.31 −159.85 35.05 82.71 −68.69 382.54 −564.96 −511.07 176.62

TM1 0.145 0.635 −16.23 280.39 −286.69 36.84 110.60 33.50 −65.26 −630.08 −517.00 313.89

Here, E0 denotes the binding energy per nucleon. The bulk properties are given by coefficients in the power-series expansion of isospin-asymmetric nuclear EoS around ρ0 in Section 2.4. The
Kasy, Ksat,2, and KN are respectively expressed as Kasy = Ksym − 6L, Ksat,2( = Kτ) = Kasy − J0L/K0, and KN = Ksym +K0 [147, 148].

coupling constants related to the properties of N = Z finite nuclei
and isospin-symmetric nuclear matter—g2σ, g2ω, g2, and g3—are
readjusted to closely match the experimental data for the binding
energy per nucleon and charge radius of several closed-shell nuclei,
as well as to maintain the original K0 value. The resultant coupling
constants and nuclear properties for the FSUGarnet, TAMUC-
FSUa, and FSUGold2 series are listed in Table 3. Furthermore,
the parameter sets for the FSUGold2 with the δ–N coupling and
the quartic self-interaction of ρ meson are also given in Table 4,
where the quartic coupling constant, e3, is varied in the range

of 0 ≤ e3 ≤ 800 with the fixed parameters, c3 = 144.12 and
g2δ = 300.

3.2 Finite nuclei

The theoretical predictions for the neutron skin thickness
of 40Ca and 208Pb, R48

skin and R208
skin, in the RMF models

are presented in Figure 1, compared with the experimental
data: the electric dipole polarizability of 48Ca (RCNP; R48

skin =
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TABLE 3 Model parameters and nuclear properties for the extended version of the FSUGarnet, TAMUC-FSUa, and FSUGold2 models.

Models mσ g2
σ g2

ω g2
δ g2

ρ g2 g3 Λωρ E0 Esym Ksym

(MeV) (fm−1) (MeV) (MeV) (MeV)

FSUGarnet series (L = 50.96 MeV)

δ000 496.94 110.35 187.69 0.00 47.97 9.56 −7.12 1555.73 −16.23 30.92 58.31

δ050 496.23 110.06 187.68 50.00 64.41 9.54 −7.11 364.29 −16.25 32.54 39.53

δ100 496.26 110.07 187.68 100.00 95.83 9.54 −7.11 290.10 −16.24 32.50 162.95

δ150 496.41 110.12 187.69 150.00 128.83 9.54 −7.10 274.42 −16.24 32.22 337.44

δ200 496.51 110.16 187.69 200.00 163.34 9.54 −7.10 276.62 −16.23 31.98 548.39

δ250 496.10 109.99 187.69 250.00 199.38 9.53 −7.10 286.98 −16.24 31.85 790.04

δ300 493.90 109.10 187.65 300.00 238.62 9.45 −7.07 303.57 −16.30 32.60 1054.19

TAMUC-FSUa series (L = 82.71 MeV)

δ000 502.20 106.50 176.18 0.00 24.40 8.83 −6.32 213.86 −16.23 35.05 −68.69

δ050 502.85 106.74 176.19 50.00 53.83 8.84 −6.30 158.60 −16.21 34.55 3.69

δ100 502.75 106.70 176.19 100.00 85.18 8.83 −6.30 159.75 −16.21 34.55 104.58

δ150 502.75 106.70 176.19 150.00 117.17 8.83 −6.30 168.70 −16.21 34.50 233.64

δ200 502.75 106.70 176.19 200.00 149.71 8.83 −6.29 180.42 −16.21 34.35 389.08

δ250 502.70 106.68 176.19 250.00 182.90 8.83 −6.28 193.75 −16.20 34.15 568.48

δ300 502.10 106.44 176.19 300.00 217.36 8.81 −6.28 208.75 −16.22 34.20 767.29

FSUGold2 series (L = 112.80 MeV)

δ000 497.48 108.07 183.73 0.00 20.15 8.55 −1.02 12.29 −16.28 37.62 25.21

δ050 498.00 108.28 183.74 50.00 50.47 8.56 −1.00 77.62 −16.27 37.55 87.38

δ100 497.96 108.26 183.74 100.00 81.86 8.56 −1.00 109.82 −16.27 37.51 187.87

δ150 499.99 108.27 183.74 150.00 113.85 8.56 −1.00 133.90 −16.27 37.34 320.60

δ200 498.03 108.29 183.74 200.00 146.62 8.56 −1.00 155.39 −16.27 37.12 481.08

δ250 498.09 108.31 183.74 250.00 179.93 8.56 −0.99 175.51 −16.26 36.73 668.45

δ300 497.60 108.12 183.74 300.00 214.65 8.54 −1.01 196.02 −16.27 36.59 876.59

For each series, the parameter c3 is fixed by the original value shown in Table 1.

0.14–0.20 fm) [107], the complete electric dipole response on
208Pb (RCNP; R208

skin = 0.156
+0.025
−0.021 fm) [52], the coherent pion

photoproduction cross sections measurement of 208Pb (MAMI;
R208

skin = 0.15± 0.03(stat.)
+0.01
−0.03(sys.) fm) [108], and the parity-violating

electron scattering off 48Ca (CREX; R48
skin = 0.121± 0.026(exp.) ±

0.024(model) fm) [50] and off 208Pb (PREX-2; R208
skin = 0.283±

0.071 fm) [47].
As for the OMEG family, the OMEG0 and OMEG1 give the

large values, R208
skin = 0.227 fm and R208

skin = 0.245 fm, respectively,

which meet the PREX-2 result. The OMEG2 is selected so as to
match the predicted result, R208

skin = 0.19± 0.02 fm, by the assessment
of the theoretical uncertainty on parity-violating asymmetry in
208Pb [49]. Meanwhile, the OMEG3 exhibits the small value, R48

skin =
0.161 fm, which satisfies the experimental result in RCNP and is
near the range of CREX experiment, R48

skin = 0.121± 0.035 fm. We
summarize the predictions for the charge radius, Rch, neutron skin
thickness, Rskin, and weak radius, Rwk, of 48Ca and 208Pb in Table 5.
We here consider the zero-point energy correction taken from the
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TABLE 4 Model parameters and several properties for the FSUGold2 with the δ-N coupling and the quartic self-interaction of ρmeson. We set c3 =
144.12 and g2

δ = 300.00.

Models mσ g2
σ g2

ω g2
ρ g2 g3 e3 Λωρ E0 Esym Ksym

(MeV) (fm−1) (MeV) (MeV) (MeV)

ρ000 497.60 108.12 183.74 214.65 8.54 −1.01 0.00 196.02 −16.27 36.59 876.59

ρ100 497.60 108.11 183.74 214.97 8.54 −1.01 100.00 196.39 −16.27 36.75 875.10

ρ200 497.62 108.12 183.74 215.17 8.55 −1.01 200.00 196.61 −16.27 36.85 874.16

ρ300 497.64 108.13 183.74 215.39 8.55 −1.01 300.00 196.86 −16.27 36.96 873.14

ρ400 497.65 108.13 183.74 215.73 8.55 −1.01 400.00 197.24 −16.27 37.13 871.55

ρ500 497.71 108.16 183.74 215.95 8.55 −1.01 500.00 197.49 −16.27 37.24 870.53

ρ600 497.83 108.20 183.74 216.11 8.55 −1.00 600.00 197.67 −16.27 37.32 869.79

ρ700 497.79 108.19 183.74 216.51 8.55 −1.00 700.00 198.12 −16.27 37.52 867.93

ρ800 497.83 108.21 183.74 216.91 8.55 −1.00 800.00 198.57 −16.27 37.72 866.08

FIGURE 1
Neutron skin thickness of 40Ca and 208Pb, R48

skin and R208
skin. The left panel shows the results from the effective interactions presented in Tables 1, 2. The

right panel is for the FSUGarnet, TAMUC-FSUa, and FSUGold2 series in Table 3.

conventional Skyrme Hartree–Fock calculations [9, 109]. The Rch
is defined as

Rch = √R2
p + (0.8783)2, (86)

with Rp being the point proton radius [98].
We see the linear correlation between R48

skin and R208
skin in the left

panel of Figure 1. In general, the largerR48
skin andR208

skin are obtained by
themodels with the larger L (see Table 2). To explain the results from
RCNP, L should be small such as theOMEG3, BigApple, FSUGarnet,
and IU-FSU. In contrast, the DINO family is located far from the
points calculated by the other RMF models. As explained in Reed
et al. [95], the DINO family expresses the large Ksym by means of
the huge δ–N and ρ–N couplings. Although it is difficult to support
the PREX-2 and CREX results simultaneously, only the DINOc
successfully alignswith both data sets.We note that the δ-N coupling
and σ-δ mixing affect the charge radii of finite nuclei and hence

Rskin while they have less influence on the binding energy because
we focus on the finite, closed-shell nuclei, 16O, 40,48Ca, 68Ni, 90Zr,
100,116,132Sn, and 208Pb, in the present study [110].

To clarify the effect of δ meson on the characteristics of
finite nuclei, we describe the correlation between R48

skin and R208
skin

for the FSUGarnet, TAMUC-FSUa, and FSUGold2 series in the
right panel of Figure 1. We also display the calculations based
on the other RMF models including the δ meson as well as the
σ, ω, and ρ mesons. As shown in Table 3, Ksym becomes large
as g2δ increases. Consequently, the TAMUC-FSUa, and FSUGold2
series draw the lines from the upper right to the bottom left. In
particular, the FSUGold2 with the large δ–N coupling (g2δ ≥ 250)
supports both experimental data from the parity-violating electron
scattering. On the other hand, the FSUGarnet series moves
away from the PREX-2 and CREX results when the large g2δ is
introduced.
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TABLE 5 Predictions for the charge radius, Rch, neutron skin thickness, Rskin, weak radius, Rwk, and weak skin thickness, Rwk −Rch, of
48Ca and 208Pb in fm.

Models 48Ca 208Pb

Rch Rskin Rwk Rwk −Rch Rch Rskin Rwk Rwk −Rch

OMEG0 3.499 0.201 3.689 0.189 5.514 0.227 5.738 0.223

OMEG1 3.495 0.209 3.693 0.198 5.532 0.245 5.774 0.242

OMEG2 3.500 0.194 3.682 0.183 5.536 0.209 5.741 0.205

OMEG3 3.510 0.161 3.659 0.149 5.549 0.143 5.685 0.136

BigApple 3.496 0.168 3.652 0.156 5.513 0.150 5.657 0.144

DINOa 3.510 0.100 3.597 0.086 5.531 0.175 5.700 0.169

DINOb 3.514 0.105 3.606 0.092 5.531 0.200 5.726 0.195

DINOc 3.519 0.113 3.619 0.100 5.532 0.224 5.752 0.220

FSU-δ6.2 3.501 0.195 3.685 0.183 5.547 0.223 5.766 0.219

FSU-δ6.7 3.502 0.195 3.685 0.184 5.549 0.225 5.770 0.221

FSUGarnet 3.471 0.167 3.626 0.155 5.514 0.162 5.670 0.156

FSUGarnet+R 3.473 0.180 3.643 0.168 5.513 0.184 5.692 0.179

FSUGold 3.479 0.197 3.664 0.186 5.540 0.207 5.742 0.203

FSUGold2 3.469 0.232 3.690 0.221 5.512 0.286 5.797 0.285

FSUGold2+R 3.478 0.188 3.654 0.176 5.509 0.198 5.702 0.193

HPNL0 3.490 0.213 3.692 0.203 5.551 0.247 5.795 0.244

HPNL5 3.493 0.194 3.676 0.183 5.545 0.207 5.747 0.202

IOPB-I 3.493 0.200 3.682 0.189 5.548 0.221 5.765 0.217

IU-FSU 3.473 0.173 3.634 0.161 5.501 0.161 5.656 0.156

NL3 3.490 0.226 3.705 0.215 5.529 0.280 5.807 0.278

PD15 3.520 0.197 3.706 0.186 5.561 0.205 5.762 0.201

TAMUC-FSUa 3.483 0.215 3.687 0.204 5.528 0.250 5.776 0.248

TM1 3.499 0.227 3.715 0.216 5.556 0.271 5.825 0.269

FSUGarnet series

δ000 3.471 0.167 3.626 0.155 5.514 0.162 5.670 0.156

δ050 3.466 0.176 3.630 0.164 5.496 0.200 5.691 0.195

δ100 3.469 0.160 3.616 0.148 5.497 0.193 5.685 0.188

δ150 3.472 0.138 3.597 0.125 5.480 0.181 5.675 0.175

δ200 3.477 0.110 3.573 0.097 5.504 0.166 5.664 0.160

δ250 3.481 0.078 3.544 0.063 5.508 0.151 5.652 0.144

δ300 3.470 0.050 3.505 0.035 5.509 0.142 5.645 0.136

(Continued on the following page)
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TABLE 5 (Continued) Predictions for the charge radius, Rch, neutron skin thickness, Rskin, weak radius, Rwk, and weak skin thickness, Rwk −Rch, of
48Ca

and 208Pb in fm.

Models 48Ca 208Pb

Rch Rskin Rwk Rwk −Rch Rch Rskin Rwk Rwk −Rch

TAMUC-FSUa series

δ000 3.483 0.215 3.687 0.204 5.528 0.250 5.776 0.248

δ050 3.484 0.203 3.676 0.192 5.528 0.245 5.770 0.242

δ100 3.487 0.190 3.666 0.179 5.529 0.240 5.765 0.237

δ150 3.491 0.174 3.653 0.162 5.530 0.232 5.759 0.229

δ200 3.495 0.154 3.637 0.142 5.532 0.223 5.751 0.219

δ250 3.501 0.129 3.617 0.116 5.536 0.211 5.742 0.207

δ300 3.506 0.101 3.593 0.087 5.538 0.200 5.734 0.195

FSUGold2 series

δ000 3.469 0.232 3.690 0.221 5.512 0.286 5.797 0.285

δ050 3.470 0.222 3.681 0.211 5.511 0.284 5.793 0.282

δ100 3.473 0.210 3.672 0.199 5.511 0.278 5.788 0.277

δ150 3.477 0.194 3.660 0.183 5.513 0.270 5.781 0.268

δ200 3.482 0.175 3.645 0.163 5.516 0.258 5.772 0.256

δ250 3.487 0.150 3.625 0.138 5.521 0.244 5.762 0.241

δ300 3.494 0.123 3.603 0.109 5.525 0.230 5.753 0.226

Experiment 3.477 0.121 3.636 0.159 5.501 0.283 5.800 0.299

The PREX-2 and CREX results are also presented.

The density profiles in 208Pb are displayed in Figure 2. We
here present the baryon, charge, and weak charge densities, ρB
( = ρp + ρn), ρch, and ρW, with the experimental results [47, 111].The
ρW is approximately expressed as

ρW (r) ≃ Qpρch (r) +Qn∫dr′GE
p (|r − r′|)ρn (r) , (87)

with Qp(n) being the proton (neutron) weak charge and GE
p being

the proton electric form factor [112–114]. The OMEG family is
calibrated so as to reproduce −ρW and ρB in 208Pb by the PREX-2
experiment.

In the left panel of Figure 2, we present the density profiles
for the OMEG1, DINOc, FSUGarnet. The OMEG1 and FSUGarnet
adequately satisfy the density distributions of ρch from the elastic
electron scattering [111]. On the other hand, the DINOc possesses
the instability around the core of nuclei because of the strong δ–N
coupling constant [95]. As a result, the density profiles, ρB, ρch, and
ρW, show the large density fluctuations around the core.

The effect of δ–N coupling on the density profiles for the
FSUGold2 series is illustrated in the right panel of Figure 2. There is
almost no difference up to g2δ = 150. In the case of g2δ = 300, ρch and

ρW begin to show the instability around the core, but ρB still matches
the experimental data from PREX-2 [47]. When the larger value,
g2δ > 300, is taken, the unexpectedly large fluctuations of ρch and ρW
emerge around the core, and the wave functions do not converge
numerically. In the present study, we thus impose the limit on the
δ–N coupling as g2δ ≤ 300 for the FSUGold2 series.We here comment
that this defect can not be solved even if one considers the quartic
self-interactions of δ and/or ρmesons in Equation 3, which less affect
R48

skin and R208
skin.

3.3 Infinite nuclear matter

The δ-meson effect can be clearly seen in the effective nucleon
mass, M

∗
N, in Equation 3. Displayed in Figure 3 is the density

dependence of M
∗
N in pure neutron matter for the OMEG family

and the FSUGold2 series. When the ρ meson only is included, the
RMF model gives the equal effective mass of proton and neutron.
However, the iso-scalar δmeson is responsible for the mass splitting
between protons and neutrons, where M

∗
p is much heavier than M

∗
n
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FIGURE 2
Baryon, charge, and weak change densities, ρB, ρch, and ρW, for

208Pb. The density profiles for the OMEG1, DINOc, and FSUGarnet are given in the left
panel. The right panel is for the FSUGold2 series.

FIGURE 3
Effective nucleon mass, M

∗
N, as a function of ρB/ρ0 for the OMEG family (A) and the FSUGold2 series (B).

at high densities. Compared with the OMEG family, the FSUGold2
series shows the strong mass splitting, as g2δ increases, even at low
densities. It is implied that the neutron distribution is more spread
out than the proton one, because M

∗
n is lighter, and then, the

large fluctuations of ρch and ρW appear around the core of 208Pb
as shown in Figure 2. Due to the δ–N coupling and the σ–δ mixing,
M
∗
p and M

∗
n respectively reach the almost constant values at high

densities in all the cases.
The density dependence of nuclear symmetry energy, Esym, in

Equation 26 is depicted in Figure 4.We here present the calculations
using the OMEG, FSU-δ, and DINO families. Furthermore, we use
the conventional ones (the NL3, FSUGold2, TAMUC-FSUa, IOPB-
I, and FSUGarnet models). In addition, several experimental or
theoretical constraints are presented. Figure 4 highlights significant
differences inEsym at high densities, that is, whereas the conventional
calculations show a monotonic increase in Esym, the models with
the δ meson exhibit more complex behavior. In particular, the
DINO family predicts a large Esym above 1.5ρ0 as the δ meson
amplifies Esym in dense nuclear matter [57]. The OMEG and FSU-δ

families, on the other hand, display unusual Esym trends depending
on the strength of δ–N coupling and σ–δ mixing. The σ–δ mixing
has a weak influence on Esym below ρ0, but, as discussed by
Zabari et al. [56], it becomes substantial above ρ0. Specifically, the
σ–δ mixing reduces Esym at high densities, partially offsetting the
increase from the δ–N interaction. Furthermore, in the OMEG0
and FSU-δ6.2, the inflection points appear above ρ0 and the dip
emerges around 2.5ρ0–3.5ρ0. This behavior is similar to the cusp in
Esym in the skyrmion crystal approach [115, 116] and to the results
from the Skyrme Hartree-Fock calculations [117]. We note that, as
explained in Section 2.5, the thermodynamic constraint on chemical
potential in isospin-asymmetric nuclear matter, Vμ(ρB,α) > 0, is
satisfied over all densities, namely, Esym(ρB,α) > Esym(ρB) > 0.

Based on the Lorentz decomposition of nucleon self-energy in
Section 2.4, Esym is generally divided into the kinetic and potential
terms, Ekin

sym and Epot
sym, as Esym = Ekin

sym +E
pot
sym. In RMF approximation,

only the isovector mesons contribute to Epot
sym as Epot

sym = Essym +E
0
sym,

where the scalar (s) and time (0) components, Essym and E0
sym, are

respectively given by the δ and ρ mesons. We show the Lorentz
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FIGURE 4
Density dependence of nuclear symmetry energy, Esym. The shaded regions are the results from analyses of HIC data using the isospin-dependent
Boltzmann-Uehling-Uhlenbec (IBUU04) and improved quantum molecular dynamics (ImQMD) transport models [22, 139, 140]. The recent
experimental constraint from the pion emission in heavy-ion reactions is expressed as HIC(π) with Esym(ρB) = 52± 13 MeV at ρB/ρ0 = 1.45±0.2 [141–143].
We also present two theoretical constraints on the magnitude of Esym at 2ρ0 with Esym(2ρ0) ≃ 40.2± 12.8 MeV by Chen [144] and Esym(2ρ0) ≃ 51± 13 MeV
by Li et al. [145].

decomposition of Esym for the OMEG family and the FSUGold2
series as a function of ρB/ρ0 in Figure 5. The top panels are the
density dependence of Esym and Ekin

sym. We see that the unique
behavior of Esym in the OMEG family is caused by Epot

sym because
Ekin

sym is almost the same as in both cases. The contents of Epot
sym

are given in the middle and bottom panels of Figure 5. It is found
that Essym is negative while E0

sym is positive, which is similar to the
general understanding of N–N interaction described by the nuclear
attractive and repulsive forces. Note that a similar description ofEpot

sym
has been reported using the RMF model with a contact interaction
of isovector mesons, where the scalar contribution, (ψ̄NτNψN)

2,
is positive while the vector one, (ψ̄NγμτNψN)

2, is negative [118,
119]. It is noticeable that, for the FSUGold2 series, Essym is strongly
influenced by the δ–N coupling above ρ0, and the contribution of
Essym is small at high densities. Conversely, for the OMEG family, the
σ–δmixing shows less impact onEssym below ρ0, but it strongly affects
Essym at high densities. When the absolute value of Essym is larger than
that of E0

sym, Epot
sym has the rapid reduction, and then Esym shows a dip

around 3ρ0 as in the cases for the OMEG0 and FSU-δ6.2 in Figure 4.
The EoSs for symmetric nuclear matter and pure neutronmatter

are displayed in Figure 6 with the constraints on the nuclear EoS
extracted from the analyses of particle flow data in HICs [60–62].
In both panels, we show the various EoSs calculated by the OMEG,
DINO, and FSU-δ families, and the FSUGarnet and FSUGold2
models. The δmeson does not affect P in symmetric nuclear matter.
All the cases except for the OMEG0 are well constructed to match
the HIC data in symmetric nuclear matter because of the small K0.
However, the stiffer EoSwithK0 ≃ 285MeV is still acceptable, taking
into account the recent simulation of Au+Au collisions [63]. In
contrast, the δmeson has a large impact on P in pure neutronmatter.
The DINOa and DINOc show the hard EoSs, which are far from the

constraints from HICs, due to the large δ–N coupling. Meanwhile,
the strong σ–δmixing softens the EoSs extremely for the OMEG and
FSU-δ families in the density region from ρ0 to 2ρ0, around which
the characteristics of a canonical 1.4M⊙ neutron star are generally
determined.

We present the EoS for pure neutron matter for the FSUGold2
series in Figure 7. In the left panel, the EoS becomes hard with
increasing the δ–N coupling, and the EoS with g2δ = 300 exceeds
the HIC results as in the cases for the DINO family in Figure 6.
Hence, we find that, even if the large δ–N coupling is introduced
simply, it is not easy to explain simultaneously both properties of
dense nuclear matter and characteristics of finite nuclei for R48

skin
and R208

skin in Figure 1. In order to suppress such excessive stiffness
of EoSs for pure neutron matter due to the δ–N coupling, we
additionally include the quartic self-interaction of ρ meson in the
FSUGold2modelwith the upper limit of g2δ = 300 (seeTable 4), given
in the right panel of Figure 7. The EoS is soft and again reaches the
upper edge of the constraint from HICs with increasing the quartic
coupling, e3, whose effect is almost imperceptible below ρ0.

3.4 Neutron star physics

In studying neutron star physics, the EoS for non-uniform
matter is additionally required as well as that for uniform nuclear
matter since the radius of a neutron star is remarkably sensitive to
the nuclear EoS at very low densities [120]. In the present study, to
cover the crust region, we adopt the MYN13 EoS, in which nuclei
are taken into consideration using the Thomas-Fermi calculation
in non-uniform matter and the EoS for infinite nuclear matter is
constructed with the relativistic Hartree-Fock calculation [80, 81,
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FIGURE 5
Lorentz decomposition of nuclear symmetry energy, Esym, for the OMEG family (left panels) and the FSUGold2 series (right panels). The total Esym and
the kinetic term, Ekinsym, are presented in the top panels. The scalar (time) component of potential term, Essym (E0sym), is given in the middle (bottom) panels.

121, 122]. We list in Table 6 the predicted stellar properties, which
are calculated by solving the Tolman–Oppenheimer–Volkoff (TOV)
equation [123, 124].

There are three methods used widely to determine the crust-
core transition density, ρt [125]: the thermo-dynamical method, the
dynamical method, and the random-phase-approximation method.
We employ the first method in the present study. As explained
in Section 2.5, the stability of nuclear and neutron star matter is
determined by the constraints on chemical potential and pressure,
Vμ(ρB,α) > 0 and VP(ρB,α) > 0, in the first law of thermodynamics.
Since the proton fraction, Yp, is supposed to be small in the crust
region, the second-order Taylor series approximation of the nuclear
EoS is generally adopted in the density derivative of baryon pressure,
(∂PB/∂ρB)μ, in Equation 28 [83]. However, it has been reported
that the parabolic approximation of isospin-asymmetric nuclear EoS
may be misleading as regards the predictions for ρt [89]. We thus
employ the exact nuclear EoS to calculateVP defined in Equation 29.

We summarize the results of ρt in the second column of
Table 6. Comparedwith the results from the Taylor series expansion,
the our results settle between the second-order and fourth-order
calculations. For example, for the FSUGold, the exact value is ρt =
0.079 fm−3 while the second-order (fourth-order) result is ρ2nd

t =
0.089 (ρ4th

t = 0.051) fm
−3 (see Table 2 in Routray et al. [89]). In

addition, the current results are almost the same as the transition

density from the pasta phase to the homogeneous nuclear matter
in the model calculation with Thomas-Fermi approximation [126].
The EoS for neutron star matter in the OMEG family is presented in
Figure 8. The crust-core phase transition occurs at VP = 0, which is
also described in the left panel of Figure 9. As it is well known, the
EoS with larger L gives the smaller ρt [127].

Since the large σ–δmixing enhances the rapid reduction of Esym
around 3ρ0 as shown in Figure 4, we have to investigate the stability
of neutron star matter. Similar to the crust-core phase transition, we
adopt the thermo-dynamical method. It is especially important to
apply the exact nuclear EoS to VP because Yp is by no means small
and the Taylor series expansion is prohibited at high densities. It is
found that the constraint on chemical potential, Vμ > 0, is always
satisfied as Esym is positive at any densities. Hence, all we have to
do is check the thermodynamic stability of pressure,VP. In Figure 9,
we show VP in neutron star matter. In general, VP changes from
negative to positive at ρt, and the stable EoS possesses VP > 0 even
at high densities. Despite the OMEG0 give a strong concavity in
Esym by the σ–δ mixing, it satisfies the thermodynamic stability. In
the right panel of Figure 9, we show VP for the FSUGold2 series.
The neutron star matter keeps VP > 0 when the δ–N coupling only
is included, whereas the large quartic self-interaction of ρ meson,
e3, makes the matter unstable. Though the quartic ρ-meson self-
interaction is useful to figure out the HIC data as mentioned in the
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FIGURE 6
EoS—pressure, P, as a function of ρB/ρ0—for (A) symmetric nuclear matter and for (B) pure neutron matter. The shaded areas represent the constraints
from elliptical flow data [60] and kaon production data [61, 62].

FIGURE 7
EoS for pure neutron matter for the FSUGold2 series. The left panel shows the dependence of δ–N coupling square, g2

δ . In the right panel, the influence
of quartic ρ-meson self-interaction, e3, is presented with the fixed parameter of g2

δ = 300 (see Table 4).
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TABLE 6 Properties of neutron stars.

Models ρt R1.4 ρ1.4 Λ1.4 Mmax Rmax ρmax Λmax

(fm−1) (km) (fm−1) (M⊙) (km) (fm−1)

OMEG0 0.093 12.43 0.359 498 2.61 12.16 0.772 4

OMEG1 0.079 12.76 0.402 515 2.13 11.70 0.917 14

OMEG2 0.093 12.40 0.428 458 2.07 11.31 0.980 13

OMEG3 0.104 12.40 0.409 462 2.07 11.39 0.962 14

BigApple 0.096 13.03 0.329 677 2.60 12.38 0.759 5

DINOa 0.092 14.11 0.307 1047 2.17 12.30 0.854 16

DINOb 0.087 14.37 0.306 1136 2.15 12.26 0.870 16

DINOc 0.083 14.63 0.301 1237 2.15 12.30 0.871 16

FSU-δ6.2 0.083 12.08 0.409 416 2.10 11.53 0.922 16

FSU-δ6.7 0.082 12.82 0.386 573 2.05 11.76 0.917 20

FSUGarnet 0.084 12.87 0.382 596 2.07 11.66 0.932 17

FSUGarnet+R 0.083 12.94 0.384 616 2.06 11.66 0.938 18

FSUGold 0.079 12.32 0.520 400 1.72 10.80 1.156 32

FSUGold2 0.061 14.00 0.351 873 2.07 12.09 0.904 19

FSUGold2+R 0.087 13.19 0.347 715 2.26 12.10 0.848 12

HPNL0 0.072 13.32 0.383 674 2.03 11.74 0.946 19

HPNL5 0.088 12.76 0.408 551 2.01 11.43 0.980 18

IOPB-I 0.081 13.21 0.362 693 2.15 11.92 0.890 15

IU-FSU 0.088 12.49 0.433 482 1.94 11.19 1.027 19

NL3 0.063 14.68 0.272 1255 2.77 13.30 0.668 4

PD15 0.094 12.49 0.434 488 1.92 11.19 1.026 21

TAMUC-FSUa 0.073 13.48 0.365 725 2.10 11.92 0.909 17

TM1 0.068 14.31 0.320 1038 2.18 12.37 0.852 16

FSUGarnet series

δ000 0.084 12.87 0.382 596 2.07 11.66 0.932 17

δ050 0.094 13.09 0.360 681 2.10 11.91 0.893 18

δ100 0.097 13.37 0.336 784 2.13 12.15 0.859 19

δ150 0.097 13.62 0.318 893 2.14 12.31 0.841 20

δ200 0.097 13.82 0.307 973 2.13 12.40 0.833 21

δ250 0.096 13.96 0.301 1031 2.13 12.42 0.834 22

δ300 0.095 14.02 0.300 1059 2.12 12.39 0.840 22

(Continued on the following page)
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TABLE 6 (Continued) Properties of neutron stars.

Models ρt R1.4 ρ1.4 Λ1.4 Mmax Rmax ρmax Λmax

(fm−1) (km) (fm−1) (M⊙) (km) (fm−1)

TAMUC-FSUa series

δ000 0.073 13.48 0.365 725 2.10 11.92 0.909 17

δ050 0.076 13.72 0.338 850 2.14 12.19 0.867 17

δ100 0.080 13.94 0.318 947 2.16 12.39 0.839 18

δ150 0.083 14.15 0.302 1073 2.17 12.53 0.824 19

δ200 0.085 14.33 0.292 1158 2.17 12.60 0.818 20

δ250 0.086 14.48 0.285 1249 2.16 12.63 0.817 21

δ300 0.086 14.58 0.283 1276 2.16 12.63 0.820 21

FSUGold2 series

δ000 0.061 14.00 0.351 873 2.07 12.09 0.904 19

δ050 0.064 14.13 0.335 950 2.08 12.25 0.881 21

δ100 0.069 14.29 0.318 1045 2.09 12.39 0.861 22

δ150 0.074 14.45 0.304 1151 2.10 12.49 0.849 23

δ200 0.078 14.58 0.295 1227 2.10 12.54 0.844 24

δ250 0.080 14.68 0.289 1297 2.09 12.56 0.843 24

δ300 0.082 14.74 0.287 1334 2.08 12.55 0.846 24

We calculate the crust-core transition density, ρt, and the observables at the canonical- and maximum-mass points.

FIGURE 8
EoS for neutron star matter for the OMEG family. The inner-crust region is described by the EoSs of MYN13 [121], BBP [1], and NV [146].
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FIGURE 9
Thermodynamic stability of pressure, Vp, in neutron star matter for the OMEG family (A) and for the FSUGold2 series with the fixed parameter of g2

δ =
300 (B).

FIGURE 10
Proton fraction, Yp ( = ρp/ρB), in neutron star matter. The shaded band is the threshold for the direct URCA process [118, 128]. The asterisks indicate the
densities at which the direct URCA process actually begins.

right panel of Figure 7, the large value of e3 is unfavorable to the
neutron star physics.

We illustrate in Figure 10 the proton fraction, Yp, in neutron
star matter with the threshold for the direct URCA process. The
direct URCA process is visible only when Yp is large enough
to conserve momentum in β-equilibrated matter, in which the
Fermi momenta of neutrons, protons, and electron must satisfy
the relation: kFn ≤ kFp + kFe . Hence, Yp can be estimated as 0.111 ≤
Yp ≤ 0.148, above which the direct URCA cooling occurs [118,
128, 129]. We find that as ρB increases, the threshold of Yp for
the direct URCA process shifts toward the upper boundary where
muons are present. The Yp for the DINOa grows quickly with
increasing ρB due to the large δ–N coupling, and then the direct

URCA process is allowed sufficiently at 2ρ0, which corresponds to
the core density of a canonical 1.4M⊙ neutron star. Conversely,
in the OMEG and FSU-δ families, the σ–δ mixing suppresses
Yp, and then delays the direct URCA process. Particularly, the
direct URCA process never occurs for the OMEG0, OMEG2, and
OMEG3 in the current density region, and thus the so-called
modified URCA process, which is the standard model of neutron-
star coolings, mainly takes place for the neutrino emission [130].
Alternatively, the possibility of exotic degrees of freedom in
the core of a neutron star, such as hyperons, quarks, gluons
and/or some unusual condensations of boson-like matter, should
be taken into account to understand the rapid neutron star
cooling.
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FIGURE 11
Mass–radius relations of neutron stars. The NICER observation data are supplemented by the constraints from PSR J0030+0451 (1.44+0.15−0.14 M⊙ and
13.02+1.24−1.06 km, and 1.34+0.15−0.16 M⊙ and 12.71+1.14−1.19 km) [29, 31], PSR J0740+6620 (2.072+0.067−0.066 M⊙ and 12.39+1.30−0.98 km) [32, 64, 65], and PSR J0437−4715
(12.28+0.50−0.76 km at 1.4 M⊙, and 1.418±0.037 M⊙ and 11.36+0.95−0.63 km) [131, 132].

FIGURE 12
Dimensionless tidal deformability, Λ, of neutron stars. We present the constraints on Λ1.4 from the binary merger events, GW170817 (Λ1.4 = 190

+390
−120 ) [34]

and GW190814 (Λ1.4 = 616
+273
−158) [93].

The mass(M)–radius(R) relations of neutron stars are displayed
in Figure 11. We here show the astrophysical constraints from the
NICER observations: PSR J0030+0451 [29, 31], PSR J0740+6620
[32, 64, 65], and PSR J0437−4715 [131, 132]. According to the

observation from PSR J0740+6620, themaximummass of a neutron
star, Mmax, should be larger than 2M⊙. Thus the EoS involving the
large R, such as the NL3, is ruled out. It is found that the large
δ–N coupling affects the large R in the DINO family, whereas the
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σ–δ mixing makes R small in the OMEG family. In particular,
though the DINOa and OMEG0 have the same L as L = 50 MeV,
their M–R relations are completely different and the difference of
R at canonical-mass point reads approximately 1.7 km (see also
Table 6). The OMEG family can support not only the NICER
constraint on R1.4 from PSR J0030+0451 but also that from PSR
J0437−4715, which is the latest result based on new chiral effective
field theory inputs [131].

The dimensionless tidal deformability, Λ, of neutron stars is
displayed in Figure 12 as a function of M/M⊙. The Λ is defined as
Λ = 2

3
k2(R/M)5 with k2 being the second Love number [36, 37]. The

astrophysical constraints on Λ at the canonical-mass point, Λ1.4,
from the binary merger events detected by the Advanced LIGO and
Advanced Virgo observatories are also presented as follows: Λ1.4 =
190+390−120 for GW170817 [34] and Λ1.4 = 616

+273
−158 for GW190814 [93].

As explained in Miyatsu et al. [57], the δ–N coupling enlarges Λ for
the DINOa, and then Λ1.4 lies far from the constraints on Λ1.4 from
GW190814. On the other hand, the σ–δ mixing has a promising
effect on Λ, and thus the OMEG family sufficiently matches the
severe constraints from both GW170817 and GW190814.

4 Summary and conclusion

We have developed a new family of nuclear EoSs, referred to as
the OMEG family, using the RMF model with non-linear couplings
between the isoscalar and isovector mesons. In addition to the σ,
ω, and ρ mesons, we have also included the δ meson to examine
the ground-state properties of finite, closed-shell nuclei as well as
the characteristics of nuclear and neutron star matter. Specifically,
we have investigated the effects of δ–N coupling and σ–δ mixing
on the EoS for both nuclear and neutron star matter. The model
parameters for theOMEG family have been calibrated so as to satisfy
the constraints from the particle flow data in HICs [60–62], the
observed neutron-star mass of PSR J0740+6620 [32, 64, 65], and
the dimensionless tidal deformability, Λ1.4, from the neutron star
merger, GW170817 [34], as well as the results from the PREX-2 and
CREX experiments [47, 50].

It has been found that the δ–N coupling and the σ–δ mixing
significantly influence the properties of isospin-asymmetric nuclear
matter and finite nuclei, playing a crucial role in reconciling
terrestrial experiments with astrophysical observations of neutron
stars. The strong δ–N coupling for the FSUGold2 series can
simultaneously explain the large R208

skin and the small R48
skin measured

by the PREX-2 and CREX experiments. However, it seems difficult
that the FSUGold2 series satisfy the combined constraints from the
particle flowdata inHICs and astrophysical observations, such as the
EoS for pure neutron matter and the Λ of neutron stars. Even with
the inclusion of quartic ρ-meson self-interaction in the FSUGold2
series, both experimental and observational results can not be
understood, because the large e3 destabilizes neutron star matter.
In contrast, the OMEG family can satisfy the recent measurement
of R1.4 = 12.28

+0.50
−0.76 km for PSR J0437−4715 from NICER [131] and

the stringent constraint onΛ1.4 = 190
+390
−120 fromGW170817 [34].This

is attributed to the σ–δ mixing, which suppresses Esym above 2ρ0,
resulting in a softer nuclear EoS in the density region corresponding
to the core density of the canonical neutron stars.

In a future work, we plan to extend the present study
to global calculations of finite nuclei properties covered the
periodic table, aiming to achieve well-calibrated parameter sets
for the RMF models. Finally, we comment that the further
theoretical studies are necessary to reconcile the Rskin measured
by proton (in)elastic scattering with that obtained from parity-
violating electron scattering. In particular, it is very significant
to investigate the discrepancy between the PREX-2 data [47]
and the results from RCNP [51, 52] and MAMI [108]. It
is also essential to consider the effect of isospin symmetry
breaking on asymmetric nuclear matter from the quark level
[133–138].
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