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Multi-Conv attention network for
skin lesion image segmentation
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1International College, Chongqing University of Posts and Telecommunications, Chongqing, China,
2Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States

To address the trade-off between segmentation performance and model
lightweighting in computer-aided skin lesion segmentation, this paper proposes
a lightweight network architecture, Multi-Conv Attention Network (MCAN).
The network consists of two key modules: ISDConv (Inception-Split Depth
Convolution) and AEAM (Adaptive Enhanced Attention Module). ISDConv
reduces computational complexity by decomposing large kernel depthwise
convolutions into smaller kernel convolutions and unit mappings. The
AEAM module leverages dimensional decoupling, lightweight multi-semantic
guidance, and semantic discrepancy alleviation to facilitate the synergy
between channel attention and spatial attention, further exploiting redundancy
in the spatial and channel feature maps. With these improvements, the
proposed method achieves a balance between segmentation performance and
computational efficiency. Experimental results demonstrate thatMCAN achieves
state-of-the-art performance onmainstream skin lesion segmentation datasets,
validating its effectiveness.
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Introduction

Melanoma, a highly malignant skin tumor, causes a significant number of deaths
worldwide each year. Its incidence and mortality rates vary significantly depending on the
region, the level of early diagnosis awareness, and the accessibility of primary care [1]. Early
detection of melanoma is crucial for improving patient survival rates. However, due to the
diversity and complexity ofmelanoma’s appearance, its accurate diagnosis often relies on the
experience and expertise of doctors, which somewhat limits the efficiency and accuracy of
early diagnosis.

In melanoma diagnosis, image segmentation is a key step that precisely separates
the lesion area from healthy skin, helping doctors identify the lesion’s boundaries and
assist in accurate diagnosis and treatment. Traditional segmentation methods rely heavily
on complex preprocessing and manual feature extraction, making it difficult to handle
the complexity of melanoma images. With the emergence of high-quality datasets, data-
driven deep learning methods have rapidly gained popularity. Zhang et al. [2] proposed
a novel framework that integrates multiple experts to jointly learn representations from
diverse MRI modalities, effectively enhancing segmentation performance. Similarly, Li et
al. [3] addressed challenges in brain tumor segmentation caused by missing modalities by
utilizing a deformation-aware learning framework that reconstructs missing information,
resulting in more reliable and accurate segmentation even in incomplete datasets. Among
them, attention mechanisms, as an effective way to integrate local and global features,
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help themodel focus on the lesion areas.Dong et al. [4] enhanced the
capability to capture feature information by dynamically allocating
attention weights across channel and spatial dimensions, addressing
the complex features, blurry boundaries, and noise interference
in skin lesion segmentation. Similarly, the GL-CSAM module
designed by Sun et al. [5] aims to capture global contextual
information, enhancing the model’s ability to perceive global
features. However, they did not fully explore feature fusion between
different convolutional layers. To address this issue, Qiu et al.
[6] introduced a multi-level attention fusion mechanism that
progressively extracts lesion boundary information using contextual
information from different levels, alleviating the problem of blurry
boundaries. Qi et al. [7] and Liu et al. [8] introduced single attention
mechanisms to integrate contextual features, specifically designed
for stroke lesion segmentation. The combination of standalone self-
attention modules with convolutional layers has shown limited
effectiveness in enhancing the model’s non-local feature modeling
capabilities. To address this limitation, Yang et al. [9] introduced a
multi-attention mechanism (spatial and reverse attention). Spatial
attention is used to improve the extraction of useful features, while
reverse attention enhances the network’s segmentation performance
by applying reverse attention operations on skip connections,
enabling more accurate analysis and localization of small lesion
targets. Liu et al. [10] and Zhu et al. [11] enhanced the precision and
detail of tumor segmentation by fusing information from multiple
MRI modes such as T1, T2, and FLAIR. Zhu et al. [12] embedded a
feature fusion module based on attention mechanism in the model
structure to optimize the expression and integration of multi-modal
features to improve segmentation accuracy. Liu et al. [13] examined
the effectiveness of traditional objective evaluation indicators in
the evaluation of image fusion results and proposed a statiscy-
based framework to compensate for the shortcomings of existing
indicators. These methods have improved the segmentation task
to varying degrees at different stages, achieving commendable
results. However, their network designs do not fully consider how
to effectively utilize spatial information, and they lack dedicated
mechanisms to enhance and preserve spatial information. These
shortcomingsmay result in suboptimal performance when handling
spatial correlations.

Moreover, it is worth noting that while introducing high-
quality attention mechanisms, the parameter count of the model
increases, potentially compromising the real-time performance
during deployment. Although high-quality attention mechanisms
can enhance model performance, they are often accompanied by
an increase in parameter count, which can negatively impact the
real-time performance of model deployment [14]. In response to
such problems, most researchers have based their efforts on the
potential of deep separable convolution to improve model efficiency
and effectiveness. Zhou et al. [15] constructs expansion layers using
depthwise separable convolutions to efficiently extract multi-scale
features with low computational overhead, enhancing the feature
representation capability. Liu et al. [16], Ma et al. [17], and Feng
et al. [18] adopted a similar approach by integrating depthwise
separable convolution layers into the encoder. However, they often
struggle to achieve precise detailed description while maintaining
low computational overhead. Ruan et al. [19] combined MLP to
extract global feature information, followed by feature extraction
using depthwise separable convolutions (DWConv). This effectively

preserved significant features in the brain featuremapwhile filtering
out less relevant features. However, the lightweight processing of
complex features remains limited. Similarly, Lei et al. [20] combined
depthwise separable convolutions with bilinear interpolation to
adjust the size of high-level features, making them match low-
level features.However, this approach faces performance bottlenecks
when further reducing the computational burden. Chen et al. [21]
incorporated the advantages of asymmetric convolutions based
on depthwise separable convolutions and designed an ultralight
convolution module, further achieving the decoupling of spatial
and channel dimensions. Existing methods still have limitations in
lightweight design. Although different encoder designs effectively
reduce computational load and ensure efficient feature extraction,
they still lack precision in representing the blurry edges of
skin lesions.

To address the contradiction between segmentation
performance and lightweight design, this paper proposes a
lightweight segmentation method. It aims to more accurately
capture and segment the lesion area by leveraging channel and
spatial redundancy, without increasing additional computational
load. Specifically, the core of the segmentation framework is the
Inception-Split ISDConv. Additionally, at the bridging layer stage,
we introduce the AEAM,which combines the collaborative effects of
spatial and channel attention with the feature calibration capabilities
of the squeeze-and-excitation network. AEAM utilizes multi-
scale depth-shared 1D convolutions to capture multi-semantic
spatial information for each feature channel. It effectively integrates
global contextual dependencies and multi-semantic spaces, while
calculating channel similarity and contributions under the guidance
of compressed spatial knowledge, thereby alleviating semantic
differences in the spatial structure. Additionally, we introduce
dynamic convolution in the encoder. Dynamic convolution
dynamically aggregates multiple parallel convolution kernels based
on input-relevant attention mechanisms. Assembling multiple
convolution kernels is not only computationally efficient but also
enhances representational capability due to the smaller size of
the kernels.

The contributions of this paper can be summarized in the
following three aspects:

1. In this study, a novel lightweight segmentation network
named Multi-Conv Attention Network (MCAN) is proposed.
It performs channel and spatial weighting on the spatial
and channel redundancies in the feature map without
increasing additional computational load, achieving an effect
of information complementarity.

2. To address the unclear edges in skin lesions, this paper
proposes ISDConv. This module performs multi-scale feature
extraction using depthwise separable convolutions,multi-scale
convolution kernels, and spatial and channel reconstruction
convolutions. It reduces computational complexity and the
number of parameters, thereby improving the model’s feature
representation capability while maintaining efficient feature
extraction.

3. To address the insufficient utilization of redundancies in
the spatial and channel feature maps, this paper proposes
the Adaptive Enhanced Attention Module (AEAM). Through
dimension decoupling, lightweight multi-semantic guidance,
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and semantic discrepancy mitigation, AEAM achieves the
collaborative effect between channel and spatial attention,
enabling the model to capture and segment the lesion areas
more accurately.

Related works

Attention mechanism

In the field of natural images, Li et al. [22] used a dual attention
fusion module to effectively combine features from images from
different sources, thereby enhancing the model’s ability to focus
on important regions. The attention mechanism can enhance the
extraction of key features in infrared and visible images, making
the fused images clearer and retaining more meaningful details
[23]. In medical image segmentation, the attention mechanism
is primarily used to guide the model’s focus on the lesion
areas in the image, assigning different weights to each pixel or
feature, enhancing task-relevant features, and suppressing irrelevant
background information. Huang et al. [24] prior convolutional
attention mechanism that dynamically allocates attention weights
across both channel and spatial dimensions. Shaker et al. [25]
used a pair of mutually dependent branches based on spatial
and channel attention to effectively learn discriminative features,
improving the quality of segmentation masks. Fu et al. [26] used a
Transformer-based spatial and channel attention module to extract
global complementary information across different layers of the U-
Net, which helps in learning detailed features at different scales.
To address hair interference in dermoscopic images, Xiong et al.
[27] proposed a multi-scale channel attention mechanism that
enhances feature information and boundary awareness. Song et al.
[28] argued that current popular attention mechanisms focus too
much on external image features and lack research on latent features.
They introduced an external-latent attention mechanism, using an
entropy quantization method to summarize the distribution of
latent contextual information. Similarly, Huang et al. [29] used Bi-
Level Routing Attention in deep networks to discard irrelevant key-
value pairs, achieving content-aware sparse attention for dispersed
semantic information.

Network lightweighting

While pursuing high performance, researchers have also begun
to focus on the lightweight and efficiency of medical image
segmentation networks. Network structure design is one of the
most popular approaches for lightweight optimization. Ma et al.
[17] simplified the structure, reduced the number of parameters,
and optimized the convolution operations, achieving a significant
reduction in computational complexity and model size while
maintaining segmentation accuracy. This enables the model to
perform excellently even in resource-constrained environments,
making it suitable for applications such as mobile healthcare and
telemedicine. The UcUNet [30] network achieves lightweight and
precise medical image segmentation by designing an efficient large-
kernel U-shaped convolution module.This network leverages large-
kernel convolutions to expand the receptive field while integrating

depthwise separable convolutions to reduce the computational cost,
thereby maintaining high segmentation accuracy with efficient
computation. Liu et al. [16] combines the lightweight characteristics
of HarDNet with multi-attention mechanisms, enhancing the
network’s ability to capture key features and achieving more
precise medical image segmentation. Sun et al. [31] introduces
a contextual residual network, effectively integrating contextual
information into the U-shaped network, enhancing the global
understanding and stability of the segmentation. Nisa and Ismail
[32] employs a dual-path structure with a ResNet encoder,
combining ResNet’s feature extraction capabilities with U-Net’s
segmentation advantages, offering an alternative effective solution
for medical image segmentation. Zhao et al. [33] proposed a four-
layer feature calibration branch based on an attention mechanism.
The downsampling layer reduces the resolution of rectal cancer CT
image feature maps to half of the original size, followed by pointwise
convolution to enable interactions between channels. This method
effectively expands the receptive field of subsequent convolutional
layers and optimizes computational efficiency by reducing the cost
of calculating spatial attention. Model compression, as another
approach to simplifying network structures, removes structural
redundancy while maintaining performance, making it more
suitable for various applications in medical image analysis. Wang
et al. [34] designed a sophisticated teacher network to learn multi-
scale features, guiding a more lightweight student network to
improve segmentation accuracy. Experiments showed that this
method effectively acquires detailed morphological features of the
brain from the teacher network. Hajabdollahi et al. [35] proposed a
channel pruning algorithm for medical image segmentation tasks,
which selects color channels during image processing and allows
training of the target structure directly on the pre-selected key
channels. However, these studies did not address how to utilize the
redundancy effectively.

Based on the above research findings, this paper proposes
a lightweight segmentation model that emphasizes spatial and
channel features. This model improves segmentation accuracy
and efficiency without increasing additional computational
costs, providing a new and efficient solution for the medical
imaging field.

Methods

The overall framework of MCA-Net

As illustrated in Figure 1, the proposed model framework
consists primarily of the ISDConv module, the AEAM
module, and dynamic convolution. The ISDConv module is
composed of three parts: ScConv, Inception convolution, and
standard convolution. By incorporating depthwise separable
convolutions and group convolutions, ISDConv facilitates the
model’s understanding of multi-scale information within images,
thereby enhancing its ability to detect and classify objects of
varying sizes.

The AEAM module operates in two stages: SEattention and
SCSA. SEattention enhances the network’s representational capacity
by explicitlymodeling the interdependencies between convolutional
feature channels. SCSA, in turn, is divided into two components:
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FIGURE 1
The overall framework of MCA-Net.

SMSA and PCSA. SMSA integrates multi-semantic information and
employs a progressive compression strategy to inject discriminative
spatial priors into the channel self-attention mechanism of PCSA,
effectively guiding channel recalibration. Within PCSA, robust
feature interaction based on a self-attention mechanism further
mitigates the multi-semantic information discrepancy among sub-
features in SMSA.

Inception-Split depth convolution

As shown in Figure 1, ISDConv consists of a ScConv, an
Inception Convolution, and a standard Conv2d layer. The Inception
Convolution achieves lightweight performance by efficiently
decomposing a large kernel depthwise convolution into four
parallel branches along the channel dimension. These branches
consist of a small square kernel, two orthogonal large kernels,
and an identity mapping. The use of a small square kernel
reduces computational complexity, while the orthogonal large

kernels capture different spatial information at varying scales.
The identity mapping helps preserve the original input features,
further enhancing the efficiency of the network. Additionally, this
architecture incorporates 1 × 1 convolutions for dimensionality
reduction before applying computationally expensive operations,
minimizing the computational burden while preserving the model’s
ability to learn rich, multi-scale features. These four branches
not only achieve higher computational efficiency than the large
kernel depthwise convolution but also maintain a large receptive
field, enabling the model to capture spatial context effectively for
improved performance.

One of the branches employs a 3× 3 kernel, which avoids the
inefficiency of large square kernels. Instead, large square kernels kh ×
kw are decomposed into 1× kw and kh × 1, significantly reducing
computational complexity. Specifically, for a given input x, it is
divided into four groups along the channel dimension, with the
operation defined as Equation 1:

Xhw,Xw,Xh,Xid = Split (X) = X:,:,g,X:g:2g,X:2g:3g,X:3g: (1)
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FIGURE 2
The overall framework of AEAM. SCSA uses multi-semantic spatial information to guide the learning of channel-wise self-attention. B denotes the
batch size, C signifies the number of channels, and H and W correspond to the height and width of the feature maps, respectively. The variable n
represents the number of groups into which sub-features are divided, and 1P denotes a single pixel.

where, g represents the number of channels in each convolution
branch, which is determined by the formula g = rgC, where rg is
the ratio for splitting and C is the total number of input channels.
The input is divided into four groups along the channel dimension
based on this ratio, and the resulting split inputs are then fed into
the respective parallel branches. Therefore, the following Equation
2 can be established:

X′hw = DWConvg→gks×ks
g(Xhw)

X′w = DWConvg→g1×kb
g(Xw)

X′h = DWConvg→gkb×1
g(Xh)

X′id = Xid

(2)

where ks represents the 3× 3 kernel size, kb denotes the kernel
sizes of 11× 1 and 1× 11, Xhw represents the feature map, Xw
refers to the features in the width direction, and Xh refers to the
features in the height dimension of the image. After processing
each input xi through its respective branch, the outputs X′ are
concatenated along the channel dimension. The operation can be
expressed as Equation 3.

X′ = Concat(X′hw,X
′
w,X
′
h,X
′
id) (3)

Adaptive Enhanced Attention Module

This paper introduces the AEAM attention module, designed
to achieve synergy between channel attention and spatial
attention through dimensional decoupling, lightweight multi-
semantic guidance, and semantic discrepancy mitigation.
As shown in Figure 2, the AEAM module consists of two main
components: SEattention and SCSA.

The SCSA module is composed of two sequentially linked
components: Shared Multi-Semantic Spatial Attention (SMSA) and
Progressive Channel Self-Attention (PCSA). SMSA employs multi-
scale, depth-sharing one-dimensional convolutions to extract spatial
information at different semantic levels from four independent sub-
features. This approach enables the efficient integration of diverse
spatial semantics across sub-features. After SMSA modulates the
feature maps, the resulting features are passed to PCSA. This
component combines a progressive compression strategy with
a channel-specific self-attention mechanism (CSA) to refine the
feature representation further.

In this paper, a given input X ∈ ℝB×C×H×W is applied global
average pooling along the height andwidth dimensions to create two
unidirectional 1D sequence structures:XH ∈ ℝB×C×W,XW ∈ ℝB×C×H.
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FIGURE 3
Examples of original images and their ground truth annotations from the ISIC2017 and ISIC2018 datasets.

To learn diverse spatial distributions and contextual relationships,
the feature set is divided into K equally sized and independent
sub-features, such that Xi

H and Xi
W, each sub-feature has a channel

count of C
K
, where C is the total number of channels in the original

feature set. In this study, we set the default valueK = 4, decomposing
the features into H-dimensional and W-dimensional sub-features.
During the decomposition process, 1D convolution is applied to
each sub-feature. We employ lightweight shared convolutions for
alignment, which implicitly model feature consistency across both
dimensions by learning correlations.

The ablation formula is shown in Equation 4:

X̃i
H = DWConv1d

C
K
→ C

K
ki
(Xi

H)

X̃i
W = DWConv1d

C
K
→ C

K
ki
(Xi

W)
(4)

Where XH and XW represent feature maps in height and
width dimensions respectively. SEattention introduces the
“Squeeze-and-Excitation” (SE) block, which enhances the
network’s representational capacity by explicitly modeling the
interdependencies between convolutional feature channels. The
SE block employs a special mechanism that enables the network
to perform feature recalibration. Through this mechanism, the
block learns to selectively emphasize informative features while
suppressing less useful ones by leveraging global information.

The structure of the SE block is illustrated in the
lower part of Figure 2. For any given transformation Ftr, whichmaps
the input X to a feature mapU, whichU ∈ ℝH×W×C, a corresponding
SE block can be constructed to perform feature recalibration. The
featuremapU first undergoes a squeeze operation, which aggregates
the feature map across the spatial dimensions to generate a channel

descriptor. The function of this descriptor is to embed the global
distribution of channel feature responses, thereby enabling all layers
of the network to utilize information from the global receptive
field. After the aggregation, an excitation operation follows. This
operation, in the form of a simple self-gating mechanism, takes the
embedding as input and generates a set of modulation weights for
each channel. These weights are applied to the feature map U to
produce the output of the SE block, which can then be directly fed
into subsequent layers of the network.

The loss function

In this study, each image in the dataset is associated with a
corresponding binary mask. Skin lesion segmentation is treated as a
pixel-level binary classification task, distinguishing the skin lesions
from the background. The combination of Binary Cross-Entropy
(BCE) loss and the Dice Similarity Coefficient (DSC) loss is used as
the loss function to optimize the network parameters.This approach
effectively addresses the challenge of skin lesion segmentation by
balancing pixel accuracy and overlap between the predicted and
ground truth masks.

The loss function, referred to as the BceDice loss, can be
expressed as Equation 5:

LBCE = −
1
N

N

∑
i=1
[yilog(pi) + (1− yi) log(1− pi)]

LDice = 1−
2|X∩Y|
|X| + |Y|

LBCEDice = α1LBCE + α2LDice

(5)
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TABLE 1 Experimental comparison of MCANet with other models on the
ISIC2017 dataset.

Model Params GFLOPs mIoU (%) DSC (%)

UNet (2015)
[36]

7.77 13.76 76.98 86.99

TransFuse
(2021) [37]

26.16 11.5 79.21 88.4

FAT-Net (2022)
[38]

30 23 76.53 85

MALUNet
(2022) [39]

0.175 0.083 78.78 88.13

QGD-Net
(2023) [40]

0.777 — 72.58 84.1

LCAUnet
(2023) [41]

13.38 18.91 76.1 86.6

SCSONet
(2024) [42]

0.149 0.056 80.14 88.97

PL-Net (2024)
[43]

15.03 — 77.9 85.9

UCM-Net
(2024) [44]

0.499 0.047 80.71 87.66

CSAP-UNet-S
(2024) [45]

27.5 8.918 81.5 88.8

ELANet (2024)
[46]

0.459 8.43 82.87 90.6

MCANet (ours) 0.128 0.022 83.25 90.86

where N is the total number of samples, Y represents the ground
truth label, pi represents the predicted values, yi denotes the true
label of sample i. |X| and |Y| denote the ground truth and the
intersection of the predicted region, respectively. α1 and α2 represent
the weights of the two loss functions. In this study, both weights are
set to 1 by default.

Experiment

Datasets

The ISIC (International Skin Imaging Collaboration) datasets
are benchmark datasets widely used in medical image analysis,
particularly for dermoscopic image segmentation, classification,
and automated skin cancer detection. These datasets feature high-
resolution dermoscopic images with comprehensive annotations,
including lesion boundaries, diagnostic labels, and metadata.
Covering a diverse range of skin conditions, they are designed
to support tasks such as lesion segmentation, feature extraction,
and disease classification. Notably, the ISIC2017 and ISIC2018
datasets have been instrumental in advancing research onmelanoma
detection and other skin diseases through the annual ISIC

Challenges. Our research is specifically conducted on the ISIC2017
and ISIC2018 datasets. Figure 3 are some sample images from the
ISIC2017 and ISIC2018 datasets.

Experiment details

All experiments were implemented using the PyTorch
framework and performed on a laptop equipped with an NVIDIA
GeForce RTX 3080 Ti GPU with 8 GB of memory. Based on
established practices, all images were normalized and resized
to 256 × 256 pixels. Data augmentation techniques, including
vertical flipping, horizontal flipping, and random rotations,
were applied. The loss function used was the BCE-Dice loss, as
defined in Equation 6.

LBCE−Dice = α ⋅ (−
1
N

N

∑
i=1
(yi ⋅ log(ŷi) + (1− yi) ⋅ log(1− ŷi)))

+ β(1−
2 ⋅

N

∑
i=1

yi ⋅ ŷi + ϵ

N

∑
i=1

yi +
N

∑
i=1

ŷi + ϵ

)
(6)

where yi represents the ground truth label, ŷi denotes the predicted
value, N is the total number of pixels, ϵ is a small constant which
is set to 10 in this work, α and β are the weights for the BCE and
Dice components. AdamW was utilized as the optimizer with an
initial learning rate of 0.001, dynamically adjusted using a cosine
annealing scheduler. The maximum number of iterations was set to
50, with a minimum learning rate of 0.0001. The training process
was conducted over 300 epochs with a batch size of 8.

Evaluation metrics

In this study, segmentation performance is assessed using the
mean Intersection over Union (mIoU), Dice Similarity Coefficient
(DSC), and Accuracy (Acc), as defined in Equation 7. Additionally,
the number of parameters is represented by Params, measured
in millions (M), and computational complexity is quantified in
GFLOPs. It is important to note that both Params and GFLOPs are
calculated based on an input size of 256× 256.

{{
{{
{

mIoU = TP
TP+ FP+ FN

DSC = 2TP
2TP+ FP+ FN

(7)

Where, TP, FP, FN, and TN represent True Positives, False Positives,
False Negatives, and True Negatives, respectively.

Segmentation result analysis

In this section, we conducted comparative experiments on
melanoma segmentation using the ISIC2017 and ISIC2018 skin
lesion segmentation datasets and evaluated the test results. The
evaluation metrics include DSC, mIoU, params, and GFLOPs.
The results are presented in Tables 1, 2, where we perform
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TABLE 2 Experimental comparison of MCANet with other models on the ISIC2018 dataset.

Model Params GFLOPs mIoU (%) DSC (%)

UNet (2015) [36] 7.77 13.76 78.13 86.99

Unet ++ (2018) [47] 9.16 34.86 78.92 87.83

TransFuse (2021) [37] 26.16 11.5 80.63 89.27

MALUNet (2022) [39] 0.175 0.083 80.25 89.04

AMCC-Net (2023) [48] 0.845 — 80.18 89

SCSONet (2024) [42] 0.149 0.056 80.99 89.5

MCNMF-Unet (2024) [49] 0.332 0.0538 81.99 89.96

GIVTED-Net (2024) [50] 0.19 0.56 79.79 87.61

UCM-Net (2024) [44] 0.499 0.047 81.26 88.48

ELANet (2024) [46] 0.459 8.43 81.85 90.1

MCANet (ours) 0.128 0.024 83.68 91.12

FIGURE 4
Performance comparison of different models across various metrics on the ISIC2017 dataset.
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FIGURE 5
Performance comparison of different models across various metrics on the ISIC2018 dataset.

FIGURE 6
Visual comparison of segmentation results of MCANet and other methods on the ISIC2017 dataset.

a comprehensive comparison of the proposed model with the
following methods: UNet [36], Transfuse [37], FATNet [38],
MALUNet [39], QGD-Net [40], LCA-UNet [41], SCSONet [42],
PL-Net [43], UCM-Net [44], CSAP-UNet-S [45], and ELA-Net [46].

In addition, bar charts are utilized in this study to visually
illustrate the performance of different models on various metrics,

providing a clearer comparison between our method and others.
Specifically, for the comparison of lightweight metrics, only models
designed with lightweight objectives were selected, with the results
presented in Figures 4, 5. The experimental results indicate that
MCANet outperforms all other methods in both data sets in terms
of DSC and mIoU metrics. Notably, MCANet achieves Dice scores
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FIGURE 7
Visual comparison of segmentation results of MCANet and other methods on the ISIC2018 dataset.

FIGURE 8
Heatmap visualization of melanoma lesion area segmentation.

TABLE 3 Ablation experiments with different module combinations.

Model Params GFLOPs mIoU (%) DSC (%)

Base 0.112 0.021 79.01 88.27

Base + AEAM 0.127 0.022 81.39 90.34

BASE +
ISDConv

0.114 0.022 82.32 90.84

MCANet 0.128 0.024 83.25 90.86

exceeding 0.9 on the ISIC datasets, significantly outperforming all
comparison models and demonstrating its superior segmentation
performance.

Furthermore, to further validate the segmentation performance
of the model, we present the visual segmentation results on the
ISIC dataset, as shown in Figures 6, 7. Although there are some
differences between the MCANet segmentation results and mask
images, MCANet outperforms other models in capturing detailed
information from medical images, giving it a significant advantage
in accurately segmenting the areas of the injury. Specifically, Figure 8
shows that MCANet can more accurately capture the target location
in segmentation tasks involving smaller lesions, with finer andmore
precise segmentation of the lesion boundaries.However, our study
also has some limitations. First, although MCANet demonstrates
impressive performance on the ISIC datasets, its generalizability
to other medical imaging datasets remains to be fully explored.
In addition, while the model is lightweight in design, further
optimization is required to meet the strict deployment constraints
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FIGURE 9
Visual representation of the impact of different modules on model performance.

of resource-constrained devices, such as smartphones or embedded
systems. Another limitation lies in the annotation quality of the
datasets used, as potential noise in the segmentation masks may
influence the model’s learning process. Finally, despite MCANet’s
ability to capture detailed features, there are still some challenges
in handling highly irregular or extremely small lesions, which
may require more advanced attention mechanisms.To address
these issues, future research will focus on several directions. First,
extending the evaluation to additional datasets with diverse imaging
modalities can help assess the robustness and versatility ofMCANet.
Second, incorporating techniques such as knowledge distillation or
pruning could further improve themodel’s efficiency for deployment
in real-time scenarios. Third, exploring semi-supervised or
unsupervised learning methods may reduce dependency on high-
quality annotations, enabling better performance even with noisy
labels. Finally, integrating advanced multi-scale feature extraction
modules could enhance the model’s ability to handle challenging
segmentation tasks involving complex lesion patterns.

Ablation study on module effectiveness

To evaluate the contribution of each module in MCANet,
we designed and conducted a series of ablation studies, with
the results summarized in Table 3. Using the SCSONet baseline
model as a reference, we performed comparative experiments with
different combinations of the proposedmodules on the ISIC dataset.
Furthermore, to provide a clearer visualization of the impact of

each module on segmentation performance, we used bar charts to
illustrate variations in keymetrics, such as DSC andmIoU, as shown
in Figure 9.In the ablation study, “Base + AEAM” represents the
integration of the proposed AEAMmodule into the baseline model,
“Base + ISDConv” denotes the addition of the ISDConv module
to the baseline, and “MCANet” refers to the complete network
architecture proposed in this study. From Table 3 and the bar chart,
it can be observed that integrating the proposed modules into the
baseline model not only results in negligible increases in parameter
count and computational complexity but also leads to significant
improvements in segmentation performance. Specifically, as the
modules are progressively added, the segmentation performance
steadily improves, with the key metrics DSC and mIoU ultimately
reaching 0.9086 and 0.8325, representing increases of 2.93% and
5.37%, respectively, compared to the baseline. The bar chart
further illustrates this performance improvement trend, visually
highlighting the contribution of each module.

Moreover, the experimental results demonstrate that the
proposed modules collaborate effectively, with the addition
of individual modules not causing any degradation in overall
performance but instead continuously improving segmentation
accuracy. Additionally, our module design is highly adaptable,
allowing for seamless integration into other network architectures
without requiring significant modifications to the original structure.
For instance, incorporating the AEAM or ISDConv modules
into other networks results in varying degrees of performance
improvement, validating the generalizability and practicality of the
proposed modules.
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In summary, the results of the ablation studies and their visual
analysis demonstrate the significant contributions of the proposed
modules to the model’s performance. These improvements not only
enhance the segmentation capability of MCANet but also highlight
the academic significance and practical applicability of our work in
the field of medical image segmentation.

Conclusion

Medical image analysis typically requires significant
computational resources, which directly impact diagnostic speed
and accuracy. Advanced methods like deep learning are resource-
intensive, making them difficult to implement in resource-
constrained environments. To address this, we propose MCAN, a
novel lightweight network architecture featuring ISDConv, AEAM,
and dynamic convolution. Our model reduces computational
costs while maintaining performance, achieving competitive
segmentationwith 0.128Mparameters and 0.022GFLOPs.However,
due to the limited dataset, the model’s generalization ability requires
further investigation.

Future research can focus on several key areas. Firstly, further
optimization of lightweight techniques and attention mechanisms is
needed, especially for specific types of medical images. For example,
improving the prediction accuracy and robustness of melanoma
images across different skin types is an important direction.
Additionally, due to the limited dataset size in this study, further
validation of the model’s generalization ability is required. Future
work should aim to expand the dataset with more representative
clinical data to assess the model’s performance in real-world clinical
environments, particularly in resource-constrained settings such
as mobile medical devices or low-resource hospitals. Finally, our
method could be extended to multi-modal tasks, such as integrated
diagnosis using CT andMRI, with a focus on improving the model’s
fusion capability while maintaining computational efficiency.
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