
TYPE Original Research
PUBLISHED 19 March 2025
DOI 10.3389/fphy.2025.1413813

OPEN ACCESS

EDITED BY

Igor Kondrashuk,
University of Bío-Bío, Chile

REVIEWED BY

Sarfraz Ahmad,
COMSATS University Islamabad, Lahore
Campus, Pakistan
Ugur Kadak,
Gazi University, Türkiye

*CORRESPONDENCE

Saira Hameed,
saira.math@pu.edu.pk

RECEIVED 07 April 2024
ACCEPTED 27 January 2025
PUBLISHED 19 March 2025

CITATION

Guan H, Hameed S, Sadaf, Khan A and Shafi J
(2025) A spherical fuzzy planar graph
approach to optimize wire configuration in
transformers.
Front. Phys. 13:1413813.
doi: 10.3389/fphy.2025.1413813

COPYRIGHT

© 2025 Guan, Hameed, Sadaf, Khan and Shafi.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that
the original publication in this journal is cited,
in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

A spherical fuzzy planar graph
approach to optimize wire
configuration in transformers

Hao Guan1,2, Saira Hameed3*, Sadaf3, Aysha Khan4 and
Jana Shafi5

1Institute of Computing Science and Technology, Guangzhou University, Guangzhou, China, 2Institute
of Computer Science of Information Technology, Qiannan Normal University for Nationalities, Duyun,
China, 3Department of Mathematics, University of the Punjab, Lahore, Pakistan, 4University of
Technology and Applied Sciences, Musanna, Oman, 5Department of Computer Engineering and
Information, College of Engineering in Wadi Alddawasir, Prince Sattam Bin Abdul Aziz University, Wadi
Alddawasir, Saudi Arabia

In this modern era, graph theory has become an integral part of science and
technology. It has enormous applications in handling various design-based
problems. In this study, we present a new approach that increases the ability
of graph theory to deal with uncertain challenges. The spherical fuzzy graph
addresses the uncertainty domain more broadly, going beyond classical fuzzy
graphs other than generalized fuzzy graph types. The concept of the spherical
fuzzy planarity value provides a new method to evaluate the edge intersection
and order in the graph. The ability of the spherical fuzzy planar graph (SFPG)
to model complex relationships can enable more precise and reliable network
designs and analyses. In this work, the concepts of spherical fuzzy multigraph
(SFMG), spherical strong and weak edges, and the value of planarity for
spherical fuzzy graphs (SFGs) are introduced. Moreover, the concept of the
degree of planarity within the context of spherical fuzzy planar graphs and the
notion of strong and weak faces are introduced. Additionally, we delve into
the construction of spherical fuzzy dual graphs, which can be realized in cases
where the fuzzy graph is planar or possesses a degree of planarity ≥0.67. This
notion also serves as the foundation for certain basic theorems. We talk about
some significant findings related to this subject. We discuss some major results
linked to this topic. To show the worth and importance of our work, we also
provide a real-world application.

KEYWORDS

spherical fuzzymultigraph, spherical fuzzy planar graph, spherical fuzzy planarity value,
spherical fuzzy dual graph, fuzzy graph theory

1 Introduction

One of the most advanced fields of science is “graph theory,” which plays a
vital role in the applications of other branches of science like chemistry, biology,
physics, electrical engineering, computer science, discrete mathematics, astronomy, and
operations research. Graph theory research has experienced significant advancements
recently due to its diverse range of applications. It is also helpful in image
segmentation, networking, data mining, structuring, organizing, communication, etc.
For instance, a data set can be represented graphically in the form of a model, like
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a tree containing vertices and edges. Similarly, the concept of a
graph can be used to organize network design. In many different
types of graph structure applications, including design problems
for electrical transmission lines, utility lines, subways, circuits, and
trains, crossing through edges can be problematic. It is actually
essential to run paths of communication at different levels for it to
cross them. Although the positioning of the electrical cables is not
extremely difficult, the cost of some types of lines can increase if
subway tunnels are constructed beneath them. Specifically, circuits
with a few layers in their structure are simpler to produce.
Planar graphs become a framework for these applications. All the
abovementioned applications utilize the concept of planar graphs.
Crossing has certain benefits, such as saving space and being
affordable, but it also has some disadvantages. In city road planning,
due to crossing, there are increased chances of accidents because of
the increasing rush of vehicles day by day.Moreover, the expenditure
on crossing routes underground is high, but traffic jams are reduced
on underground routes. In urban planning, it would be protective
for human lives not to cross the routes. However, due to a lack
of space, such crossing of routes is permitted. Generally, we use
such linguistic terms as “congested, “very congested,” and “high
congested”. The word congested has no definite meaning. All the
abovementioned terms have some membership degrees. The choice
of navigating between a congested road and a non-congested one
is more favorable than navigating between two congested routes. In
a fuzzy planar graph, the “congested” edges would represent strong
connections between vertices, possibly indicating a high level of
interaction or influence, while the “low congested” edges would
represent weaker connections, perhaps suggesting a lower level of
interaction or influence.

These days, science and technology deal with complicated
models for which appropriate data are limited. To deal with such
a phenomenon, we use mathematical models to tackle different
kinds of systems that contain elements of uncertainty and vagueness.
The generalization of the ordinary set theory, namely, fuzzy sets,
is the foundation for handling such types of models. The concept
of the fuzzy set, introduced by Lotif A. Zadeh [1] in 1965,
revolutionized how we handle ambiguity and partial data in various
fields. Numerous implications for fuzzy sets extend the range
of investigation areas across various educational fields. In 1983,
Atanassov presented the idea of an intuitionistic fuzzy set (IFS) to
overcome the lack of fuzzy sets as it provides a degree of truthfulness
(f) as well as degree of falseness (h) with the constraint that f+ h ≤
1. To deal with such types of models, which require more space,
IFS did not support. In order to address this requirement, Yager
[2] introduced the concept of Pythagorean fuzzy sets (P†FS),
which extends the space by introducing additional limitations 0 ≤
f2 + h2 ≤ 1. People often have a variety of opinions such as Yes,
Abstain, No, and Refusal; a picture fuzzy set has been supported,
as initiated by Cuong [3, 4], which is the generalization of P†FS ,
which extends the space with the new limitations 0 ≤ f+ g+ h ≤
1, where f:V → [0,1], g:V → [0,1], and h:V → [0,1] denote the
degree of truthfulness, degree of abstinence, and degree of falseness,
respectively. Furthermore, I = 1− (f+ g+ h) represents the degree
of refusal.

However, aspects such as being young, smart, tall, short, healthy,
and successful in a certain field cannot be easily quantified. It
is possible to express these qualitative and vague predicates by

defining appropriate boundaries. To enlarge the space for uncertain
and vague information, Gundogdu and Kahraman [5] expanded
the concept of P†FS by introducing the notion of a spherical
fuzzy set (SFS) with the new limitations. 0 ≤ f2g2 + h2 ≤ 1, and
I = √1− (f2 + g2 + h2). The notion of SFS with various practical
applications in decision-making problems was investigated by
Ashraf et al. [6]. Ashraf et al. [7] likely extended the Dombi
aggregation operators to the context ofSFS , providing a framework
for aggregating information or making decisions in scenarios where
uncertainty is represented using SFS .

Based on Zadeh’s fuzzy relation [8], Kaufmann [9] introduced
the concept of fuzzy graphs in 1973. Then, in fuzzy graphs, various
graph-based theoretical concepts were initiated by Rosenfeld [10].
In his study of fuzzy graphs, Bhattacharya [11] made lots of
remarkable perspectives about how they differ from classical graph
theory. He proved that not all ideas in the field of fuzzy graphs
have a direct equivalent or parallel in classical graph theory. In
Mordeson and Nair [12], the idea of the complement of a fuzzy
graph was introduced. A few operations on fuzzy graphs were also
presented. Subsequently, the original fuzzy graph was redefined
as the complement of the complement, following this change in
the definition of complement. Nagoorgani and Malarvizhi [13]
introduced the notion of isomorphism on fuzzy graphs. One of the
most important tools of graphing is its dual graph. Abdul-Jabbar
et al. [14] introduced the concept of fuzzy dual graphs. Shannon
and Atanassov [15] put forward the concepts of intuitionistic fuzzy
relations and intuitionistic fuzzy graphs. Several operations on
intuitionistic fuzzy graphs were introduced by Parvathi et al. [16].
Akram et al. [17–20] proposed some additional advanced concepts:
intuitionistic fuzzy hypergraphs, intuitionistic fuzzy cycles, strong
intuitionistic fuzzy graphs, and intuitionistic fuzzy trees. Alshehri
and Akram [21] gave an idea of intuitionistic fuzzy planar graphs.
The concept of Pythagorean fuzzy graphs P†FG was introduced
by Naz et al. [22] along with some applications. Naz and Akram
[23] presented the idea of the Pythagorean fuzzy energy of P†FG.
Moreover, some operations of P†FG were defined by Akram et al.
[24]. Akram et al. [25] suggested many graphs in a Pythagorean
fuzzy environment.

Akram et al. [26] developed the concept of a spherical fuzzy
graph SFG. In addition, some operators on SFG, namely,
symmetric difference and rejection, were defined. The term energy
of SFG defined by Yahya and Mohamed [27] and some bounds of
energy of SFG were extracted too. Yager [28] proposed the idea
of the fuzzy multiset. Akram et al. [26] developed the concept of
a SFG. Recently, the idea of a fuzzy planar graph was introduced
by Pal et al. [29] and Samanta et al. [30]. Furthermore, some
properties were discussed too. Pramanik et al. [31] looked into a
few unique planar fuzzy graphs. Moreover, planar fuzzy graphs have
some extensions discussed in [32, 33]. Their ability to capture and
represent uncertaintymakes them a valuable tool in scenarios where
traditional crisp graphs may fall short; refer [34–49].

The item that follows is the subscription to our suggested
research project:

• This research project aims to introduce the concept of aSFMG
based on a spherical fuzzy multiset.

• The concept of the degree of vertex in SFMG is defined and
elaborated with an example.
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FIGURE 1
Fuzzy graph.

• An idea of a strong edge in SFMG as well as of complete
SFMG is initiated.

• Under a spherical fuzzy environment, planar graphs are
discussed, and the planarity of SFPG is defined.

• We discuss the concept of duality in SFPG.
• Some results regarding SFPG as well as the planarity of
SFPG are presented.

• Finally, to utilize an idea of SFPG in an MCDM problem.

2 Motivation

Themotivation behind spherical fuzzy sets lies in their ability to
provide a richer, more flexible, and accurate framework for handling
uncertainty. By addressing the limitations of classical fuzzy sets and
IFSs, SFSs open new avenues for research and application in
various fields, ultimately leading to reliable and effective decision-
making processes. Despite significant progress in the study ofSFSs,
there has been limited effort directed toward the exploration and
development of SFGs. Inspired by the potential of fuzzy planar
graphs and intuitionistic planar graphs, we developed the concept
of SFPGs. This paper is organized as follows.

In Section 3, some basic definitions are presented. In Section 4,
we define the concept of SFMG, degree of the vertex in SFMG,
strong edge in SFMG, complete SFMG, strength of the spherical
fuzzy edge, planar spherical fuzzy graph, strong SFPG, and strong
and weak spherical fuzzy faces of SFPG illustrated with examples.
In addition, some results regarding planarity are also present.
In Section 5, we introduce the notion of SFDG of SFPG and
illustrate with the example. In Section 6, the application of SFPG
is presented. In Section 8, we put our recommended task to its
conclusion.

Some symbols and notations are used, which are
presented in Table 2 along with their meanings.

3 Preliminaries

Definition 3.1: [1] Let V be an underlying set of vertices. A fuzzy
set M is characterized by a membership function ξ:V → [0,1] and
is defined as M = { < p,ξM(p) > :v ∈ V}. The fuzzy binary relation is
a fuzzy subset ξ on V ×V given as η:V ×V → [0,1]. A fuzzy graph
̃G = (V ,ξ,η) is a pair of mappings ξ:V → [0,1] and η:V ×V → [0,1],

Symbol Meaning

V An underlying set of vertices

f Degree of truthfulness

g Degree of abstinence

h Degree of falseness

I Degree of refusal

A Spherical fuzzy multiset.

B Spherical fuzzy multiedge set.

TX Intersecting value at the point X

R Spherical fuzzy planarity value

Notation Meaning

deg(v) Degree of the vertex

SFG Spherical fuzzy graphs

SFMG Spherical fuzzy multigraph

SFPG Spherical fuzzy planar graph

SFF Spherical fuzzy face

SFDG Spherical fuzzy dual graph

such that η(p1,p2) ≤ min {ξ(p1),ξ(p2)} for all p1, p2 ∈ V , where
ξ(p) and η(p1,p2) denote the membership degrees of the vertex and
of the edge (p1,p2) in ̃G, respectively.

Example 3.2: Given the set V = {p1,p2,p3}, the fuzzy set and fuzzy
relation are defined as follows: the fuzzy set ξ is

ξ = {(p1,0.5) , (p2,0.3) , (p3,0.4)}

The fuzzy relation η is

η = {⟨(p1,p2) ,0.3⟩, ⟨(p1,p3) ,0.4⟩, ⟨(p2,p3) ,0.2⟩} .

The graph is shown in Figure 1.

Definition 3.3: [28] Let V be a non-empty set of vertices. A fuzzy
setM is said to be a fuzzy multiset if the fuzzy setM is characterized
by a membership function named as count membership, such that
f:V → L, where L is defined as the collection of every crisp multiset
taken from the interval [0, 1].The value of f(p) in L is a crispmultiset
taken from [0, 1] for all p ∈ V . Furthermore, the entries f1(p), f2(p),
f3(p), …, fs(p) in f(p) construct a decreasingly ordered sequence, i.e.,
f1(p) ≥ f2(p) ≥ f3(p)⋯ ≥ fs(p), for all v ∈ V .

Definition 3.4: Let ξ:V → [0,1] be a mapping on an
underlying set of vertices V and S = {(p1,p2),η(p1,p2)k, k =
1,2,3,…,qp1p2 | (p1,p2) ∈ V ×V} be a fuzzy multiset of V ×V , such
that η(p1,p2)k ≤min {ξ(p1),ξ(p2)} for all k = 1,2,…,qp1p2 , where
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FIGURE 2
Fuzzy multigraph.

FIGURE 3
Spherical fuzzy graph 𝕊.

qp1p2 = max {k |η(p1,p2)k ≠ 0}. Then, ̃G = (V ,ξ,S) is called a fuzzy
multigraph, where ξ(p) and η(p1,p2)k denote the membership
degrees of the vertex p and of the edge (p1,p2) in ̃G, respectively.

Example 3.5: Let V = {p1,p2,p3} be a non-empty set. Then, a fuzzy
multiset is given in Equation 1

ξ = {(p1,0.3) , (p2,0.5) , (p3,0.4)} .. (1)

The fuzzy multigraph is shown in Figure 2. There are two edges
between p1 and p2, which is called the fuzzy multigraph.

Definition 3.6: [26] Let the underlying set of vertices be V . A
spherical fuzzy set T on a universe V is an object having a form as

T = {< p, fT (p) ,gT (p) ,hT (p) > |p ∈ V} ,

where fT(p) ∈ [0,1] denote the degree of truthfulness of p in
T, gT(p) ∈ [0,1] denote the degree of abstinence of p in T, and
hT(p) ∈ [0, 1] denote the degree of falseness of p in T with the
following condition

0 ≤ f2T (p) + g
2
T (p) + h

2
T (p) ≤ 1.

Moreover, IT(p) = √1− (f2T(p) + g
2
T(p) + h

2
T(p)) is the degree of

refusal of p in T for all p ∈ V . A spherical fuzzy relation on V ×V .

Example 3.7: Let A = {p, fA(p),gA(p),hA(p) |p ∈ V} and B =
{(p1,p2), fB(p1,p2)i,gB(p1,p2)i,hB(p1,p2)i | (p1,p2) ∈ V ×V} for all i =
1,2,…,k be a spherical fuzzy set and spherical fuzzy edge set in
Spherical fuzzy graph shown in Figure 3, and defined by Tables 1, 2,
respectively.

Definition 3.8: [26] Let the underlying set of vertices be V .
A spherical fuzzy multiset U is characterized by functions
named as “count truthness membership” of P(CTU), “count
abstinence membership” of P(CAU), and “count falseness
membership” of P(CFU) given by CTU:V →W, CAU:V →W,
and CFU:V →W, respectively, where W is the set of all crisp
multisets drawn from the unit interval [0, 1], such that, for every
p ∈ V , the truthfulness membership sequence and abstinence
membership sequence denoted as (f1U(p), f

2
U(p), f

3
U(p),…, f

r
U(p)) and

(g1U(p),g
2
U(p),g

3
U(p),…,g

r
U(p)), respectively, construct decreasing

sequences. Similarly, the terms of CFU(p) form a sequence
represented as (h1U(p),h

2
U(p),h

3
U(p),…,h

r
U(p)) such that 0 ≤

f
2(i)
U (p)+ ≤ g

2(i)
U (p)+ ≤ h

2(i)
U (p) ≤ 1; i = 1,2,3,…, r. An SFMS U

is denoted by

{ < p, (f1U (p) ,f
2
U (p) ,f

3
U (p) ,…,f

r
U (p)) ,(g

1
U (p) ,g

2
U (p) ,g

3
U (p) ,…,g

r
U (p)) ,

(h1
U (p) ,h

2
U (p) ,h

3
U (p) ,…,h

r
U (p)) > :p ∈ V }.

The orders of membership for truthfulness and abstinence are
listed in descending order, but the sequence for falsehood may not
follow the same order.

4 Spherical fuzzy planar graphs

Definition 4.1: [26] Let the underlying set of vertices be V and A
be a spherical fuzzy multiset on V ; further, let B be a spherical fuzzy
multiset of V ×V such that

fB(p1,p2)i ≤ min{fA (p1) , fA (p2)}

gB(p1,p2)i ≤ min{gA (p1) ,gA (p2)}

hB(p1,p2)i ≤ max{hA (p1) ,hA (p2)} ,

for all i = 1,2,…,k. Then, ̃G is called SFMG. By noting that,
between two vertices (say) p1 and p2, more than one edge may be
present. Furthermore, fB(p1,p2)i denotes the degree of truthfulness,
gB(p1,p2)i denotes the degree of abstinence, and hB(p1,p2)i denotes
the degree of falseness of an edge (p1,p2) and i represents the number
of edges between two vertices.

Example 4.2: In Figure 4, a SFMG ̃G = (V ,E) such that V =
{p1,p2,p3,p4} and E = {p1p2,p1p3,p1p4,p1p4,p2p3,p2p4,p3p4,p3p4}.
Let A = {p, fA(p),gA(p),hA(p) |p ∈ V} and B = {(p1,p2), fB(p1,p2)i,gB
(p1,p2)i,hB(p1,p2)i | (p1,p2) ∈ V ×V for all i = 1,2,…,k be SFS and
SFMS defined by Table 3 and Table 4, respectively.

Definition 4.3: Let A be SFMS and B be a spherical fuzzy
multiedge set in SFMG. The degree of a vertex p1 ∈ V is
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FIGURE 4
SFMG ℂ.

TABLE 1 Spherical fuzzy set A.

p1 p2 p3 p4

f 0.5 0.8 0.3 0.4

g 0.4 0.2 0.6 0.7

h 0.1 0.1 0.4 0.8

TABLE 2 Spherical fuzzy edge set B.

p1p2 p2p3 p1p4 p3p4

f 0.5 0.3 0.3 0.4

g 0.2 0.5 0.2 0.3

h 0.1 0.6 0.3 0.7

represented by deg(p1) and is defined as

deg(p1) = (
k

∑
i=1

fB(p1,p2)i,
k

∑
i=1

gB(p1,p2)i,
k

∑
i=1

hB(p1,p2)i),

TABLE 3 SFS A.

p1 p2 p3 p4

f 0.3 0.2 0.3 0.4

g 0.4 0.1 0.5 0.3

h 0.5 0.3 0.2 0.6

TABLE 4 SFMS B.

p1p2 p1p3 p1p4 p1p4 p2p3 p2p4 p3p4 p3p4

f 0.2 0.2 0.3 0.2 0.2 0.2 0.3 0.2

g 0.1 0.3 0.2 0.3 0.1 0.1 0.2 0.3

h 0.4 0.5 0.5 0.6 0.3 0.5 0.5 0.6

for all p1,p2 ∈ V .

Example 4.4: In Example 4.2, the degrees of the vertices of
SFMG ℂ are computed as follows:

• deg(p1)=(0.9,0.9,2.0).
• deg(p2)=(0.6,0.3,1.2).
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FIGURE 5
SFMG J .

TABLE 5 SFS X .

p1 p2 p3

f 0.2 0.3 0.1

g 0.3 0.5 0.3

h 0.4 0.6 0.5

TABLE 6 Spherical fuzzy multiedge set Y .

p1p2 p1p2 p1p3 p2p3 p2p3

f 0.1 0.2 0.1 0.1 0.1

g 0.2 0.2 0.2 0.2 0.3

h 0.5 0.3 0.3 0.5 0.6

• deg (p3)=(0.9,0.9,1.9).
• deg(p4)=(1.2,1.1,2.7).

Definition 4.5: Let a spherical fuzzy multiedge set B be defined as

B = {((p1,p2) ,fB(p1,p2)i,gB(p1,p2)i,hB(p1,p2)i) i = 1,…,k | (p1,p2) ∈ V ×V}

in SFMG. A multiedge (p1,p2) of SFMG is strong if

1
2
min{fA (p1) , fA (p2)} ≤ fB(p1,p2)i,

1
2
min{gA (p1) ,gA (p2)} ≤ hB(p1,p2)i

and

1
2
max{hA (p1) ,hA (p2)} ≤ hB(p1,p2)i,

for all i = 1,2,…,k and for all p1, p2 ∈ V .

Example 4.6: Consider a SFMG J = (X ,Y) as shown in
Figure 5, where X and Y are SFS and spherical fuzzy multiedge
set are defined in Table 5 and in Table 6, respectively.

By direct computations, we can easily summarize that in this
SFMG J , these are (p1p2), (p2p3) strong edges.

Definition 4 7: Let

B = {((p1,p2) ,fB(p1,p2)i,gB(p1,p2)i,hB(p1,p2)i) i = 1,…,k | (p1,p2) ∈ V ×V} ,

be a spherical fuzzy multiedge set in SFMG ̃G. A SFMG ̃G is
complete if

min{fA (p1) , fA (p2)} = fB(p1,p2)i,

min{gA (p1) ,gA (p2)} = gB(p1,p2)i,

max{hA (p1) ,hA (p2)} = hB(p1,p2)i,

for all i = 1, 2, …, k and for all p1,p2 ∈ V .

Example 4.8: Let H = (D,R) be a SFMG as shown in Figure 6,
where D and R are SFS and spherical fuzzy multiedge set defined
in Table 7 and in Table 8, respectively.

Using basic calculations, from Figure 6, it is clear that it is
complete SFMG.

Definition 4.9: Strength of the spherical fuzzy edge (p1,p2)
is denoted by

I(p1,p2) = (M(p1,p2),N(p1,p2),O(p1,p2))

and can be calculated as given in Equation 2.

(
fB(p1,p2)i

min(fA (p1) ,fA (p2))
,

gB(p1,p2)i
min(gA (p1) ,gA (p2))

,
hB(p1,p2)i

max(hA (p1) ,hA (p2))
),

(2)

where i = 1, 2, …, k and for all (p1,p2) ∈ V ×V .

Example 4.10: Let L = (U ,P) be a SFMG as shown in Figure 7,
where U and P are SFS and spherical fuzzy multiedge set defined
in Table 9 and in Table 10, respectively.

From Equation 2, the strength of the edges is computed
as follows.

• For an edge (p1p2,0.1,0.1,0.2), I(p1,p2)=(1, 0.5, 0.6).
• For an edge (p1p2,0,0.1,0.1), I(p1,p2)=(0, 0.5, 0.3).
• For an edge (p1p2,0.1,0.2,0.3), I(p1,p2)=(1, 1, 1).
• For an edge (p2p3,0.1,0.2,0.4), I(p2,p3)=(1, 1, 0.8).
• For an edge (p2p4,0.1,0.2,0.2), I(p2,p4)=(1, 1, 0.6).

Definition 4.11: Let ̃G be a SFMG. A spherical fuzzy strong edge
is an edge (p1,p2) ifM(p1,p2) ≥ 0.5,N(p1,p2) orO(p1,p2), otherwise weak.

Definition 4.12: Let ̃G = (A,B) be a SFMG, and
the spherical fuzzy multiedge set B contains
two edges ((p1,p2), fB(p1,p2)a,gB(p1,p2)a,hB(p1,p2)a) and
((p3,p4), fB(p3,p4)b,gB(p3,p4)b,hB(p3,p4)b) which are intersected

Frontiers in Physics 06 frontiersin.org

https://doi.org/10.3389/fphy.2025.1413813
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Guan et al. 10.3389/fphy.2025.1413813

FIGURE 6
Complete SFMG H.

TABLE 7 SFS D.

p1 p2 p3 p4 p5

f 0.3 0.2 0.4 0.2 0.2

g 0.1 0.1 0.3 0.1 0.2

h 0.5 0.4 0.6 0.5 0.5

TABLE 8 Spherical fuzzy multiedge set R.

p1p2 p1p5 p1p5 p2p3 p2p4 p2p5 p3p4 p3p4

f 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

g 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

h 0.5 0.5 0.5 0.6 0.5 0.5 0.6 0.6

at a point X, where a and b are fixed integers. The intersecting value
at the point X is defined as given in Equation 3.

TX = (MX,NX,OX) ,

TX = (
M(p1,p2) +M(p3,p4)

2
,
N(p1,p2) +N(p3,p4)

2
,
O(p1,p2) +O(p3,p4)

2
).

(3)

If the number of intersecting points increases, then the value
of the planarity decreases. Thus, for SFMG TX is inversely
proportional to the value of spherical planarity.

Example 4.13: LetS = (M,N) be a SFMG, as shown in Figure 8,
whereM andN are SFS and spherical fuzzy multiedge set, which
are defined in Table 11 and in Table 12, respectively, as below.

The intersecting value at the point X is given by Equation 4.

TX = (MX,NX,OX) ,

TX = (
M(p1,p3) +M(p2,p4)

2
,
N(p1,p3) +N(p2,p4)

2
,
O(p1,p3) +O(p2,p4)

2
).

(4)

For an edge ((p1,p3),0.3,0.1,0.3), we canwrite fromEquation 2 as
follows:

(M(p1,p3),N(p1,p3),O(p1,p3))

= (
f(p1,p3)

min{f(p1) ,f(p3)}
,

g(p1,p3)
min{g(p1) ,g(p3)}

,
h(p1,p3)

max{h(p1) ,h(p3)}
).

By substituting the values from Tables 9, 10, we get Equation 5.

(M(p1,p3),N(p1,p3),O(p1,p3)) = (0.75,0.5,0.75) . (5)

Similarly, for an edge ((p2,p4),0.1,0.2,0.2),

(M(p2,p4),N(p2,p4),O(p2,p4))

= (
f(p2,p4)

min{f(p2) ,f(p4)}
,

g(p2,p4)
min{g(p2) ,g(p4)}

,
h(p2,p4)

max{h(p2) ,h(p4)}
).

By putting the values from Tables 9, 10, we get Equation 6.

(M(p2,p4),N(p2,p4),O(p2,p4)) = (0.5,1,0.66) . (6)

Substituting the values fromEquations 8, 9 in Equation 7, we get
the intersecting value as

TX = (0.625,0.75,0.705) .

Definition 4.14: For SFMG, J1 = (RM1
,RN1
,RO1
), J2 =

(RM2
,RN2
,RO2
), …, Ju = (RMu

,RNu
,ROu
) are intersecting points

between the edges of ̃G; ̃G is said to be SFPG having the value
of spherical planarity defined as

R = (RM,RN,RO) ,
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FIGURE 7
SFMG L.

TABLE 9 SFS U .

p1 p2 p3 p4

f 0.2 0.1 0.3 0.2

g 0.4 0.2 0.4 0.4

h 0.3 0.3 0.5 0.1

TABLE 10 Spherical fuzzy multiedge set P .

p1p2 p1p2 p1p2 p2p3 p2p4

f 0.1 0 0.1 0.1 0.1

g 0.1 0.1 0.2 0.2 0.2

h 0.2 0.1 0.3 0.4 0.2

( 1
1+ {RM1

+RM2
+RM3
+, , ,+RMu

}
, 1
1+ {RN1

+RN2
+RN3
+, , ,+RNu

}
, 1
1+ {RO1

+RO2
+RO3
+, , ,+ROu

}
).

Vividly, R = (RM,RN,RO) is bounded, and 0 < RM ≤ 1; 0 < RN ≤
1; and 0 < RO ≤ 1. For certain geometrical representations of a
SFPG, if there is no intersecting points, then its value of spherical
planarity is (1, 1, 1).Thus, the crisp graph of this SFMG becomes a

crisp planar graph. If RM decreases and RN increases, the number
of intersecting points between edges increases and the nature
of spherical planarity decreases. Conversely, if RM increases and
RN decreases, the number of intersecting points between edges
decreases and the nature of spherical planarity increases. We
summarize that every SFMG is a SFPG with a certain value of
spherical planarity.

Example 4.15: An G = (ξ,η) is said to be a crisp graph where ξ =
{e, f,g,h} and η = {(e, f), (e,g), ( f,g), ( f,h), (g,h), (h,e)}. Then, SPG,
G
∗
= (E,F) as shown in Figure 9.
The intersecting value at the point X is given by

TX = (MX,NX,OX) ,

TX = (
M(e,g) +M( f ,h)

2
,
N(e,g) +N( f ,h)

2
,
O(e,g) +O( f ,h)

2
). (7)

For an edge ((e,g),0.5,0.3,0.4), we can write from Equation 2 as
follows:

(M(e,g),N(e,g),O(e,g))

= (
f (e,g)

min {f (e) , f (g)}
,

g (e,g)
min {g (e) ,g (g)}

,
h (e,g)

max {h (e) ,h (g)}
) .

By substituting the values from Tables 13, 14, we get

(M(e,g),N(e,g),O(e,g)) = (0.714,0.75,0.66) . (8)

Similarly, for an edge (( f,h),0.4,0.3,0.6),
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FIGURE 8
SPMG S.

TABLE 11 SFS M.

p1 p2 p3 p4

f 0.5 0.2 0.4 0.5

g 0.2 0.4 0.3 0.2

h 0.4 0.3 0.1 0.3

TABLE 12 Spherical fuzzy multiedge setN.

(p1,p2) (p1,p2) (p1,p3) (p2,p4) (p3,p4)

f 0.1 0.2 0.3 0.1 0.3

g 0.2 0.1 0.1 0.2 0.1

h 0.2 0.3 0.3 0.2 0.2

(M( f ,h),N( f ,h),O( f ,h)) = (
f ( f,h)

min {f ( f) ,f (h)}
,

g ( f,h)
min {g ( f) ,g (h)}

,
h ( f,h)

max {h ( f) ,h (h)}
) .

By putting the values from Tables 13, 14, we get

(M( f ,h),N( f ,h),O( f ,h)) = (0.8,0.75,0.86) . (9)

Substituting the values fromEquations 8, 9 in Equation 7, we get
intersecting value as

TX = (0.76,0.75,0.76) ,

RX = (
1

1+ {M1 +M2 +M3+, , ,+Mu}
, 1
1+ {N1 +N2 +N3+, , ,+Nu}

,

1
1+ {O1 +O2 +O3+, , ,+Ou}

),

FIGURE 9
SFPG G.

RX = (
1

1+ 0.76
, 1
1+ 0.75

, 1
1+ 0.76

),

RX = (0.56,0.571,0.56) .

Theorem 4.16: Let ̃G = (A,B) be complete SFPG. Then, the
spherical planarity value R of ̃G is defined by R = (RM,RN,RO)where
RM =

1
1+Jn

, having a value less than 1, RN =
1

1+Jn
and RO =

1
1+Jn
,where

Jn is the number of intersecting points for edges in ̃G.
Proof. For complete SFMG, we have

fB (p1,p2) = min{fA (p1) , fA (p2)}

gB (p1,p2) = min{gA (p1) ,gA (p2)}

hB (p1,p2) = max{hA (p1) ,hA (p2)}
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FIGURE 10
Example of strong SFPG.

TABLE 13 SFS E.

e f g h

f 0.7 0.6 0.8 0.5

g 0.4 0.5 0.4 0.4

h 0.3 0.4 0.6 0.7

TABLE 14 Spherical fuzzy multiedge set F.

(e, f) (e,g) ( f,g) ( f,h) (g,h) (h,e)

f 0.5 0.5 0.6 0.4 0.5 0.5

g 0.3 0.3 0.4 0.3 0.3 0.3

h 0.4 0.4 0.5 0.6 0.7 0.3

for all p1,p2 ∈ A. Let J1, J2,…,Ju be the intersecting points along the
edges in ̃G. For any edge (p3,p4) in complete SFPG ̃G = (A,B)

M(p3,p4) =
f(p3,p4)

min{f(p3) , f(p4)}
≤ 1,

N(p3,p4) =
g(p3,p4)

min{g(p3) ,g(p4)}
= 1

and

O(p3,p4) =
h(p3,p4)

max{h(p3) ,h(p4)}
= 1.

In this way, for point p, the intersecting value at point p along
edges (p1,p2) and (p3,p4), M1 =

1+1
2
≤ 1, and O1 =

1+1
2
= 1, hence

Mn ≤ 1, Nn ≤ 1, and On = 1, where n = 1,2,3,…,u. Then,

Mn =
1

1+M1 +M2 +M3 +⋯+Mu
= 1
1+ (1+ 1+⋯+ 1)

= 1
1+ Jn
,

On =
1

1+O1 +O2 +⋯+Ou
= 1
1+ (1+ 1+ 1+⋯+ 1)

= 1
1+ Jn
.

Here, Jn represents the number of intersecting for edge in ̃G. So,
p has a value less than 1.

Definition 4.17: A SFPG ̃G is called strong SFPG if the
spherical fuzzy planarity valueR = (RM,RN,RO) of the graph isRM ≥
0.5, RN ≥ 0.5, or RO ≤ 0.5.

Theorem 4.18: For SMG, ̃G with R > (0.5,0.5,0.5) then spherical-
valued strong edges in ̃G containing the number of intersecting value
are at most 1.

Proof. Let ̃G = (A,B) be SMG with R = (RM,RN,RO), where
RM > 0.5, RN > 0.5, and RO > 0.5. Let us assume that ̃G contains two
intersecting values, J1 and J2, which correspond to two spherical,
strongly valued edges. For a strong edge [(p1,p2), (f,g,h)],M(p1,p2) ≥
0.5,N(p1,p2) ≥ 0.5, andO(p1,p2) ≥ 0.5. Accordingly, for two intersecting
spherical-valued strong edges [(p1,p2), (f.g,h)] and [(p3,p4), (f,g,h)].

M(p1,p2) +M(p3,p4)
2

≥ 0.5,

N(p1,p2) +N(p3,p4)
2

≥ 0.5,

and
O(p1,p2)+(p3,p4)

2
≥ 0.5,

that is,M1 ≥ 0.5, N1 ≥ 0.5 andO1 ≥ 0.5,M2 ≥ 0.5, N2 ≥ 0.5 andO2 ≥
0.5. Then, 1+M1 +M2 ≥ 2, 1+N1 +N2 ≥ 2 and 1+O1 +O2 ≥ 2;
therefore, RM =

1
1+(M1+M2)

≤ 0.5, RN =
1

1+(N1+N2)
≤ 0.5, and RO =

1
1+(O1+O2)

≤ 0.5 which is contradiction as R > (0.5,0.5,0.5). So, the
intersecting value among spherical strong edges can never be 2.
The level of planarity diminishes as the number of cutting spherical
strong edges increases. Moreover, if the number of intersecting
points of strong-valued strong edges is 1, then in this case, the level
of planarity is assumed as R = (0.5,0.5,0.5). Accordingly, we found
that spherical-valued strong edges in ̃G containing the number of
intersecting point are at most 1.

Example 4.19: Two SFPG are shown in Figures 10, 11. In
Figure 10, a SFPG with one crossing among two strong edges
that there is one point in SFPG where two strong edges (p1,p3)
and (p2,p5) intersect or cross each other. The value of the spherical
planarity of SFPG is (0.52,0.5,0.5). Hence, this SFPG is strong
and the number of intersecting values at point p is 1. In Figure 3.8,
a SFPG is considered with two intersecting points among strong
edges (p1,p3)(p2,p5) and (p1,p3)(p2,p4). The value of the spherical
planarity of this graph is (0.5, 0.5, 0.5). Hence, the SFG is not
strong. So, the graph has no intersecting point, and then the SPG
must be strong.

Theorem 4.20: Let ̃G be a SFPG having a value of spherical fuzzy
planarity R. If R ≥ (0.67,0.67,0.67), then two spherical strong multi-
valued edges in ̃G do not have any crossing between them.
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Proof. A ̃G is called SFPG with spherical fuzzy
planarity R = (0.67,0.67,0.67). Take the value of spherical
fuzzy planarity R where two spherical strong-valued edges
((p1,p2), (f,g,h)) ((p3,p4), (f,g,h)) intersect. For any spherical-
valued strong edge ((p1,p2), (f(p1,p2),g(p1,p2),h(p1,p2))), M1 ≥ 0.5,
N1 ≥ 0.5, and O1 ≤ 0.5. For a minimum value of M(p1,p2), N(p1,p2),
O(p1,p2), M(p3,p4), N(p3,p4), and O(p3,p4). M1 = 0.5, N1 = 0.5, and O1 =
0.5. Then, the value of Mn =

1
1+0.5
≤ 0.67, Nn =

1
1+0.5
≤ 0.67, and

On =
1

1+0.5
≤ 0.67. Hence, ̃G contains no intersecting point between

spherical-valued strong edges.
The above theorem motivated to define the term strong

planar graph.

Definition 4.21: A SFPG is called strong if R ≥ (0.67,0.67,0.67).

Theorem 4.22: A SMG containing complete ̃K5 or K̃3,3 spherical
graph is not strong SFG.

Proof.The ̃G=(A,B) is said to be complete SFG corresponding
to the crisp graph G = (ξ,η) with vertices such that ξ =
{p1,p2,p3,p4,p5} and the set B and values of f, g and h are given
in Equations 10-13.

B = {(p1,p2) , (f(p1,p2) ,g(p1,p2) ,h(p1,p2)) |p1,p2 ∈ ξ} . (10)

f(p1,p2) =min{f(p1) , f(p2)} , (11)

g(p1,p2) =min{g(p1) ,g(p2)} , (12)

h(p1,p2) =max{h(p1) ,h(p2)} . (13)

FromTheorem 4.16, the value of planarity for complete SFG is
the number of intersecting values for edges in ̃G. So, it has only one
intersecting point that it can be desisted from ̃G. Then, R = 1

1+Ju
=

1
1+1
= 0.5. Hence, ̃G is not strong.

Definition 4.23: Let ̃G be SFG and 0 ≤ h ≤ 0.5 be a rational
number. An edge (say) (p1,p2) is said to be the considerable edge
if the following condition must be held.

f(p1,p2)
min{f(p1) , f(p2)}

≥ h,

g(p1,p2)
min{g(p1) ,g(p2)}

≥ h

and

h(p1,p2)
max{h(p1) ,h(p2)}

≤ h.

Otherwise, it is not a considerable edge. For SFMG ̃G, a
multiedge (p1,p2) ∈ V ×V is said to be considerable edge if
M(p1,p2) ≥ h, N(p1,p2) ≥ h, O(p1,p2) ≤ h, for each edge (p1,p2) in ̃G.

Theorem 4.24: A ̃G = (Ã, ̃B) is said to be a strong SPG, where h be
a considerable number. Then, the considerable edges in ̃G have at
most [ 0.49

h
] intersecting points (here [x] is the greatest integer not

exceeding x).
Proof. Let R be the value of spherical fuzzy planarity and

0 ≤ h ≤ 0.5. Let (p1,p2) be a considerable edge; it is seen that

( f(p1,p2)
min {f(p1),f(p2)}

≥ h and ( h(p1,p2)
max {h(p1),h(p2)

≥ h. So, f(p1,p2) ≥ h×
{min{f(p1),h(p2)} and h(p1,p2) ≤ h× {max{h(p1),h(p2)}. In this
case, M(p1,p2) ≥ h, N(p1,p2) ≥ h, and O(p1,p2) ≥ h. Let J1, J2,…, Ju be
the intersecting points among the considerable edges. Let J1 be
the intersecting point between the considerable edges (p1,p2) and
(p3,p4). Then,M1 =

M(p1,p2)+(M(p3,p4)
2

and O1 =
O(p1,p2)+(O(p3,p4)

2
.

M1 +M2 +⋯+Mu ≥ uh

N1 +N2 +⋯+Nu ≥ uh

O1 +O2 +⋯+Ou ≤ uh.

RM, RN ≤
1

1+uh
, and RN ≥

1
1+uh
.

Since ̃G is a strong SFPG, we have,

(0.67,0.67) ≤ R ≤ ( 1
1+ uh ,

1
1+ uh)

(0.67) ≤ 1
1+ uh

u ≤ [0.49
h
] .

This implies that

u = [0.49
h
]

and RN ≥
1

1+uh
.

0.67 ≥ R ≥ 1
1+ uh

0.67 ≥ 1
1+ uh

u ≥ [0.49
h
] .

This implies that

u = [0.49
h
] .

The crucial parameter of a SFPG is its face. The face of a
SFG is a region bounded by spherical fuzzy edges. Every SFF is
characterized by spherical fuzzy edges at its boundary. If all the edges
in the boundary of a SFF have membership values of truthfulness,
abstinence, and falseness (1,1,1), respectively, it becomes a crisp face.
If one of these edges is eliminated, SFF will not exist. So, the
existence of a SFF depends on the minimum value of the strength
of the spherical fuzzy edges in its boundary.

Definition 4.25: Let ̃G be a SFPG and

B = { (p1,p2) , fB(p1,p2)i,gB(p1,p2)i,hB(p1,p2)i, i = 1,2,…,k |

(p1,p2) ∈ V ×V },

for all (p1,p2) ∈ V ×V . A SFF of ̃G is a region
bounded by the set of spherical fuzzy edges Ě ⊂ E, of
a geometric representation of ̃G. The truthfulness degree,
abstinence degree, and falseness degree of the SFF are
defined as follows:min{ fB(p1,p2)i

min {fB(p1),fB(p2)}
, i = 1,2,3,…,k | (p1,p2) ∈ Ě},

min{ gB(p1,p2)i
min {gB(p1),gB(p2)}

, i = 1,2,3,…,k | (p1,p2) ∈ Ě}, and,

max{ hB(p1,p2)i
max {hB(p1),hB(p2)}

, i = 1,2,3,…,k | (p1,p2) ∈ Ě} respectively.

Definition 4.26: A SFF is called strong SFF if its value of
truthfulness and value of abstinence are greater than 0.5 and degree
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FIGURE 11
Example of not strong SFPG.

of falseness is less than 0.5; otherwise, the face is weak. EverySFPG
has an infinite region, which is called outer SFF . Other faces are
called inner SFF .

Example 4.27: Suppose SFPG as shown in Figure 12.The SFPG
has the following faces:

• SFF F1 is bounded by the edges ((p1,p2),0.1,0.3,0.5),
((p2,p3),0.2,0.3,0.2), and ((p1,p3),0.2,0.3,0.4).

• SFF F2 is bounded by the edges ((p1,p3),0.2,0.3,0.4),
((p1,p4),0.1,0.2,0.3), and ((p3,p4),0.3,0.2,0.2).

• SFF F3 is surrounded by the edges ((p1,p2),0.1,0.3,0.5),
((p1,p4),0.1,0.2,0.3), and ((p2,p4),0.1,0.2,0.1).

• Outer SFF F4 is surrounded by the edges
((p2,p3),0.2,0.3,0.2), ((p3,p4),0.3,0.2,0.2), and
((p2,p4),0.1,0.2,0.1).

Clearly, the values of truthfulness, abstinence, and falsehood
of SFF F1 are 0.5, 0.75, and 0.83, respectively. The values of
truthfulness, abstinence, and falseness of SFF F2 are 0.5, 0.66,
and 0.666, respectively. The values of truthfulness, abstinence, and
falseness of SFF F3 are 0.333, 0.666, and 0.833, respectively. The
values of truthfulness, abstinence, and falseness of SFF F4 are
0.333, 0.666, and 0.666, respectively. Now, the observation shows
that in this SFPG every face is weak.

5 Spherical fuzzy dual graph

Theconcept of duality is very useful in elaboratingmanymodels,
like integrated circuits, drainage systems for basins, and others. A
graph is planar if and only it has a dual graph.Thismeans that for any

planar graph, there exists a dual graph, and for any graph with dual
graph, it must be planar.This concept works well to deal with a wide
range of complicated and significant circumstances. By inspiring this
concept, we are going to present the idea of a (SFDG) of SFPG.
In a SFDG, vertices correspond to the strong SFF of the SFPG,
and between two vertices, every spherical fuzzy edge corresponds to
every edge in the boundary between two faces of the SFPG. The
formal definition is given below.

Definition 5.1: Let ̃G be SFPG and spherical fuzzy multiedge set

B = {((p1,p2) , fB(p1,p2)i,gB(p1,p2)i,hB(p1,p2)i) ,

i = 1,2,…,k | (p1,p2) ∈ ̆V × ̆V} .

Let F1, F2, …, Fm be the strong SFF of ̃G. The SFDG of ̃G is
a SFPG ̃G = (V̆, C̆, D̆), where V̆ = { ̆ui, i = 1,2,…,m}, and the vertex
̆ui of ̃G is considered for face Fi of ̃G. The values of truthfulness,

abstinence, and falseness of vertex ̆ui are given by the mapping C̆ =
(fC̆,gC̆,hC̆): V̆→ [0,1] × [0,1] × [0,1] such that:

fC̆ ( ̆ui) =max{ fD(p1,p2)i, i = 1,2,3,…, t, | (p1,p2)  is an edge of

the boundary of the strong SFFFi },

gC̆ ( ̆ui) =max{ gD(p1,p2)i, i = 1,2,3,…, t, | (p1,p2)  is an edge of the

boundary of the strong SFFFi }

and

hC̆ ( ̆ui) =min{ hD(p1,p2)i, i = 1,2,3,…, t, | (p1,p2)  is an edge

of the boundary of the strong SFFFi },

respectively. Between two faces Fi and Fj of ̃G, there may exist
more than one same edge. Hence, between two vertices ̆ui and ̆uj
in SFDG ̃G, there may exist more than one edge. Let fD( ̆ui, ̆xj),
gD( ̆ui, ̆xj), and hD( ̆ui, ̆uj) represent the degree of truthfulness, degree
of abstinence, and degree of falseness of the path edge between ̆ui
and ̆uj, respectively.

Example 5.2: Let the underlying set of vertices V =
{p1,p2,p3,p4,p5}, the SFS C = { (p1,0.2,0.3,0.7), (p2,0.4,0.3,0.2),
(p3,0.6,0.1,0.4), (p4,0.7,0.4,0.3) and the spherical fuzzy
multiedge set D = {((p1,p2),0.1,0.2,0.3), ((p1,p2),0.1,0.2,0.4),
((p1,p4),0.1,0.2,0.3), ((p2,p3),0.2,0.1,0.3), ((p2,p3),0.3,0.1,0.4),
((p2,p4),0.2,0.3,0.3), ((p2,p4),0.3,0.3,0.2), ((p3,p4),0.5,0.1,0.4).
Then, the SFPG ̃G = (A,B) has the following faces.

• SFF F1 is bounded by the edges ((p1,p2),0.1,0.2,0.3) and
((p1,p2),0.1,0.2,0.4).

• SFF F2 is bounded by the edges ((p2,p4),0.2,0.3,0.3) and
((p2,p4),0.3,0.3,0.2).

• SFF F3 is bounded by the edges ((p2,p3),0.2,0.1,0.3) and
((p2,p3),0.3,0.1,0.4).

• SFF F4 is bounded by the edges ((p1,p2),0.1,0.1,0.4),
((p1,p4),0.1,0.2,0.3), and ((p2,p4),0.2,0.3,0.3).

• SFF F5 is surrounded by the edges ((p2,p4),0.3,0.3,0.2),
((p2,p3),0.2,0.1,0.3), and ((p3,p4),0.5,0.1,0.4).
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FIGURE 12
Faces of SFPG.

• SFF F6 is bounded by the edges ((p1,p4),0.1,0.2,0.3),
((p1,p2),0.1,0.2,0.3), ((p3,p4),0.5,0.1,0.4), and
((p2,p3),0.3,0.1,0.4).

Here, F6 is an outer SFF and remaining all are inner SFF . By
direct computations, it can be easily observed that all the SFF are
strong SFF . Suppose the vertex set

V̆ = { ̆u1, ŭ2, ŭ3, ŭ4, ŭ5, ŭ6} ,

where the vertex ̆uj is taken corresponding to the strong SFF Fj, j
= 1, 2, 3, 4, 5, 6.

Thus, we get the values of truthfulness, abstinence, and falseness
for the vertex ̆uj, respectively, as follows:

For vertex ŭ1:

fC̆ ( ̆u1) =max {0.1,0.1} = 0.1,gC̆ ( ̆u1) =max {0.2,0.2} = 0.2,hC̆ ( ̆u1)

=min {0.3,0.4} = 0.3.

For vertex ŭ2:

fC̆ (ŭ2) =max {0.2,0.3} = 0.3,gC̆ (ŭ2) =max {0.3,0.3} = 0.3,hĂ ( ̆u2)

=min {0.2,0.3} = 0.2.

For vertex ̆u3:

fC̆ ( ̆u3) =max {0.2,0.3} = 0.3,gC̆ ( ̆u3) =max {0.1,0.1} = 0.1,hC̆ (ŭ3)

=min {0.3,0.4} = 0.3.

For vertex ŭ4:

fC̆ (ŭ4) =max {0.1,0.1,0.2} = 0.2,gC̆ ( ̆u4) =max {0.2,0.2,0.3}

= 0.3,hC̆ (ŭ4) =min {0.3,0.3,0.4} = 0.3.

For vertex ŭ5:

fC̆ ( ̆u5) =max {0.2,0.3,0.5} = 0.5,gC̆ ( ̆u5) =max {0.1,0.1,0.3}

= 0.3,hC̆ (ŭ5) =min {0.2,0.3,0.4} = 0.2.

Finally, for vertex ̆x6:

fC̆ ( ̆u6) =max {0.1,0.1,0.3,0.5} = 0.5,gC̆ (ŭ6) =max {0.2,0.2,0.1,0.1}

= 0.2,hC̆ (ŭ6) =min {0.3,0.3,0.4,0.4} = 0.3.

Now, the values of truthfulness, abstinence, and falseness of
edges of SFDG are given below.

For an edge ( ̆u1, ŭ6):

f( ̆u1, ŭ6) = f(p1,p2) = 0.1,g( ̆u1, ̆u6) = g(p1,p2) = 0.2,h( ̆u1, ŭ6) = h(p1,p2) = 0.3.

For an edge ( ̆u1, ŭ4):

f ( ̆u1, ̆u4) = f(p1,p2) = 0.1,g ( ̆u1, ̆u4) = g(p1,p2) = 0.2,h ( ̆u1, ŭ4) = h(p1,p2) = 0.4.

For an edge ( ̆u4, ŭ2):

f ( ̆u4, ŭ2) = f(p2,p4) = 0.2,g ( ̆u4, ŭ2) = g(p2,p4) = 0.3,h ( ̆u4, ŭ2)

= h(p2,p4) = 0.3.

For an edge ( ̆u2, ŭ5):

f( ̆u2, ŭ5) = f(p2,p4) = 0.3,g( ̆u2, ŭ5) = g(p2,p4) = 0.3,h( ̆u2, ŭ5)

= h(p2,p4) = 0.2.

For an edge ( ̆u3, ŭ5):

f( ̆u3, ŭ5) = f(p2,p3) = 0.2,g( ̆u3, ŭ5) = g(p2,p3) = 0.1,h( ̆u3, ŭ5)

= h(p2,p3) = 0.3.

For an edge ( ̆u3, ŭ6):

f( ̆u3, ŭ6) = f(p2,p3) = 0.3,g( ̆u2, ŭ3) = g(p2,p3) = 0.1,h( ̆u3, ŭ6)

= h(p2,p3) = 0.4.

For an edge ( ̆u5, ŭ6):

f( ̆u5, ŭ6) = f(p3,p4) = 0.5,g( ̆u5, ŭ6) = g(p3,p4) = 0.1,h( ̆u5, ŭ6)

= h(p3,p4) = 0.4.
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For an edge ( ̆u6, ŭ4):

f( ̆u6, ŭ4) = f(p1,p4) = 0.1,g( ̆u6, ŭ4) = g(p1,p4) = 0.2,h(ŭ6, ŭ4)

= h(p1,p4) = 0.3.

Thus, we get the edge set of SFDG as follows:

B̆ ={((ŭ1, ŭ4) ,0.1,0.2,0.4) , ((ŭ1, ŭ6) ,0.1,0.2,0.3) , ((ŭ2, ŭ4) ,0.2,0.3,0.3) ,

((ŭ2, ŭ5) ,0.3,0.3,0.2) , (( ̆u3, ŭ5) ,0.2,0.1,0.3) , ((ŭ3, ŭ6) ,0.3,0.1,0.4) ,

((ŭ6, ŭ5) ,0.5,0.1,0.4) , (( ̆u4, ŭ6) ,0.1,0.2,0.3)} .

In Figure 13, the SFDG Ğ = (V̆, C̆, D̆) of G is plotted by
dotted lines.

6 Application

In real-world power distribution systems, maintaining
efficient and reliable connections between transformers and
households is crucial. Using the spherical fuzzy multigraph
model allows us to better visualize and optimize these complex
networks. By representing transformers as vertices and the wires
connecting them to households as edges, we can account for
uncertainties or varying degrees of connectivity in the system.
This approach provides insights into how power is distributed,
identifies potential vulnerabilities, and suggests improvements in
efficiency and reliability. In the example of a transformer system
represented as a spherical fuzzy planar graph, the transformer is
considered a node and the electrical connections (wires) between
components are treated as edges. The number of intersecting
points (where wires cross) directly impacts the damage rate.
The more intersections there are, the higher the likelihood of
damage, as each crossing increases the risk of overheating or failure.
Using the spherical fuzzy graph, we can model the uncertainty
and degree of risk associated with each connection, helping
minimize the damage rate by optimizing the placement of wires
and reducing intersections. A vertex denotes each transformer
L1,L2,L3,L4,L5,L6,L7, while the edge denotes each electric
connection made between the transformer via a small wire as given
in Figure 14.

The rate of decomposition grows with the number of
crossings. Z1, Z2, Z3, Z4, Z5, and Z6 are crossings among
the pairs of wire (L1L6,L2L7), (L1L3,L2L7), (L1L3,L2L6),
(L1L3,L2L5), (L2L5,L3L6), (L2L5,L4L6), respectively. The strength
of the wire L1L3 = (1,0.666,0.833), L2L6 = (0.75,0.8,0.8), L1L6 =
(0.5,0.75,0.83), L2L7 = (0.666,0.6,0.8), L2L5 = (0.5,0.75,0.8), L3L6 =
(0.4,0.33,0.75), andL4L6 = (1,0.8,0.714). For crossings, the points of
intersection are

TZ1
= (0.58,0.675,0.816) ,TZ2

= (0.833,0.63,0.8165) ,

TZ3
= (0.875,0.733,0.8165) ,

TZ4
= (0.75,0.708,0.8165) ,TZ5

= (0.45,0.54,0.775) ,

TZ6
= (0.75,0.775,0.755) .

Thus, the spherical fuzzy planarity value R =
(0.1909,0.1976,0.1721). When the planarity value is at minimum,

FIGURE 13
Dual of SFPG.

  INPUT: 1. Let L represent a collection of

electric connections, where L = L1, L2,…, Ln

2. The set of edges that connect the units L =

{L1,L2,…,Ln}is denoted by E = {E1,E2,E3,…,Em}, and the

set of intersecting points is denoted by C =

{b1,b2,…,br}.

3. Compute the strength of the edge Ei= (Lj,Lk) ∈ Lby

the equation

(
f(Lj,Lk)

min(f(Lj) ,f (Lk))
,

g(Lj,Lk)

min(g(Lj) ,g (Lk))
,

h(Lj,Lk)

max(h(Lj) , (Lk))
).

4. Calculate the value of intersecting points.

5. Determine the value of planarity for SFPG.

Algorithm 1. Method to calculate the value of planarity for electric
connections.

it indicates that graph has a high number of edge crossings, which
can make it harder to interpret and manipulate, as shown in Figure
15. The spherical fuzzy planarity value indicates a high number of
edge crossings at the Z5 intersection, which increases complexity
and the risk of damage. Reducing the number of these crossings
can improve the system’s planarity and lower the destruction rate.
To mitigate the risks of electric hazards, high-quality wires are
recommended for critical connections, specifically between L3
and L6, and L2 and L5. These high-quality wires help minimize
the potential for overheating and failures at the intersection.
This model aids in monitoring and detecting destruction rates
in real-time, enabling proactive management of the system and
identification of high-risk areas, such as the Z5 intersection, to
reduce potential hazards. By applying these strategies, the Z5
intersection’s risk can be minimized, improving both the safety
and efficiency of the system. Through meticulous examination and
the implementation of enhanced security measures, it is feasible
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FIGURE 14
Transformer unit connections.

FIGURE 15
Spherical fuzzy electric connection model.

to diminish the percentage of destruction, thereby safeguarding
numerous lives.

6.1 Comparison with already existing
methods

There are already existing methods, such as fuzzy planar graph
and interval-valued planar graph, which can be used to determine if

a discrete process is planar or if an interval representing a continuous
process is planar, respectively. However, spherical planar graphs can
be understood by combining principles from spherical fuzzy sets and
planar graphs.

In planar graphs, interval-valued planar graphs are considered
simultaneously [40].However, we use amore versatile technique that
involves three types of degree of membership such as truthfulness,
falseness, and abstinence memberships, which gives more clear
information about uncertain data.
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7 Limitation and advantages

The proposed technique of spherical planar graph is restricted
to undirected graphs only.

The spherical fuzzy planar graph extends traditional fuzzy
graph theory by incorporating membership, non-membership, and
hesitancy degrees, offering a more comprehensive representation
of uncertainty. Compared to standard fuzzy graphs, it provides
higher precision in modeling ambiguous or imprecise relationships.
Its planar structure simplifies visualization and analysis of complex
networks, reducing computational complexity.Theapproach supports
dynamic adaptability, making it suitable for systems with evolving
uncertainties. It also enhances decision-making capabilities by
capturingpartial truthsmore effectively than traditional fuzzymodels.
Furthermore, its multi-dimensional representation is particularly
useful for handling conflicting and incomplete information in
engineering andoptimizationproblems.Theproposed study, applying
spherical fuzzy planar graphs to transformer systems, effectively
models uncertain and dynamic connections between components
like wires and nodes. It can address network reliability analysis,
fault detection, and load balancing in power systems by capturing
imprecise data and ambiguous relationships. This approach also aids
in optimizing energy distribution and minimizing losses through
flexible modeling of uncertainty. Additionally, it supports scalability
and adaptability, making it suitable for evolving smart grid systems
and renewable energy integration challenges.

8 Conclusion

Graph theory has enormous applications to problems in
transportation, operations research, computer science, image
capture, data mining, etc. Sometimes, to deal with uncertainty and
vagueness in various network problems, various graph theoretical
concepts are used based on Zadeh’s fuzzy relations. SFG as
the generalization of fuzzy graphs, intuitionistic fuzzy graphs,
Pythagorean fuzzy graphs, and picture fuzzy graphs can be used
to tackle various models based on real-world problems more
effectively due to the enlargement of the space of uncertainty. In
this article, the idea of spherical fuzzy graphs is utilized, as are the
notions of SFG, SFMG, and SFPG. The concept of spherical
fuzzy planarity value provides a new method to evaluate the edge
intersection. Furthermore, the spherical fuzzy planarity value has
been defined based on strong, weak, and considerable edges. In
addition, we present the idea of a SFPG. Planar graphs are very
useful in designing circuits as well as various networkmodels. In this
article, we delve into potential synergies between SFPG and two
distinct yet interconnected fields: neutral networks and geographical
information system(GIS). By harnessing this strength of SFPG, we

aim to enhance the capabilities of neutral networks in modeling
complex relationships, while also extending the functionality of GIS
for spatial analysis and decision-making. We can deal with such
problems using a planar graph. Planar graphs can be used to build
circuits and road networks. We gave an example of transformer
connections to check crossing between edges, so the planarity value
can also be calculated. Our future plans regarding our research work
are as follows:

Soft fuzzy planar graphs, vague planar graphs, hesitant SFG,
spherical fuzzy hypergraphs, and single-valued SFG.
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