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Transfer of knowledge through
reverse annealing: a preliminary
analysis of the benefits and what
to share

Eneko Osaba* and Esther Villar-Rodriguez

TECNALIA, Basque Research and Technology Alliance (BRTA), Derio, Spain

Being immersed in the noisy intermediate-scale quantum (NISQ) era, current
quantum annealers present limitations for solving optimization problems
efficiently. To mitigate these limitations, D-Wave Systems developed a
mechanism called reverse annealing, a specific type of quantum annealing
designed to perform local refinement of good states found elsewhere. Despite
the research activity around reverse annealing, no study has theorized about
the possible benefits related to the transfer of knowledge under this paradigm.
This work moves in that direction and is driven by experimentation focused on
answering two key research questions: i) is reverse annealing a paradigm that
can benefit from knowledge transfer between similar problems? and ii) can we
infer the characteristics that an input solution should meet to help increase the
probability of success? To properly guide the tests in this paper, the well-known
knapsack problem has been chosen for benchmarking purposes, using a total
of 34 instances composed of 14 and 16 items.
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quantum annealing, reverse annealing, D-wave, quantum optimization, transfer
optimization

1 Introduction

A quantum annealer (QA, [1]) is a specific kind of quantum device designed
to deal with optimization problems by means of a process inspired by classical
simulated annealing [2]. These computers leverage quantum mechanics to efficiently
explore solution spaces in an attempt to find the optimum value of a given objective
function. Today, advances in quantum technologies have contributed to the building
of intermediate-scale QAs that implement quantum annealing for programmable
use. There are different platforms for building quantum annealers, such as optical
tweezers [3] or superconducting integrated circuits [4], with the latter being the
most recognized to date. Additionally, several companies are working on this
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technology and building their own devices, such as NEC1,
Qilimanjaro2, and D-Wave Systems3.

However, all the progress made in recent years was born
in the noisy intermediate-scale quantum (NISQ) era [5], when
quantum devices presented great limitations in solving optimization
problems efficiently, even when these problems are small- or
medium-sized. As a consequence, the community as a whole is
striving to devise schemes and mechanisms to address the current
limitations and take advantage of the potential that quantum
computing currently offers. Among the most common strategies
are the design and implementation of advanced hybrid resolution
schemes, which leverage the best of both computing paradigms [6].
Other alternatives include the implementation of error mitigation
strategies [7] or making use of reliable quantum simulators [8].

As part of these activities, an interesting strategy studied in
works such as [9–11] involves initiating the quantum evolution with
a state that is an educated guess of the problem’s solution. It is
interesting to note that similar strategies have also been explored in
gate-based quantum computing, with the warm-start initialization
of quantum approximate optimization algorithms (QAOAs) being
particularly well known [12–14].

In this article, we focus on a specific strategy called reverse
annealing (RA, [15]), which was introduced by D-Wave Systems
in 2017. The motivation behind the implementation of RA lies in
the limitations of D-Wave’s annealers to conduct local refinement
of states previously found either through a forward anneal or by
means of a classical technique.Thus, RAallows quantum local search
by annealing backward from a previously specified state and then
forward to a new one.

Today, many practical studies employ RA to improve a solution
previously found by other solving schemes [16, 17]. A significant
amount of research has also been published studying theoretical
aspectsofRA, suchas its sensitivity toproperparameterization,mainly
regarding the RA Schedule [18, 19]. Despite the existence of this
buoyantresearchactivity, the fullpotentialofRAisyet toberevealed,as
some crucial aspects of its performance still require a deeper analysis.

On this basis and bringing to the fore the proven potential of RA,
this paper is committed to extending the frontiers of this promising
mechanism, exploring its application in situations not yet studied by
the community. To achieve this, the analysis provided in this work is
driven by experimentation focused on answering two key research
questions (RQ).

As mentioned before, RA was conceived as a local refinement
mechanism. For this reason, in order to solve a problem using this
paradigm, theQAmustbe initializedwithaknown(classical) solution.
RA explores the local space around that solution for bitstrings with
even lower energy. Despite the existence of intense research activity
around RA, no one has theorized about the possible benefits related
to the transfer of knowledge (ToK, [20]) under the umbrella of this
paradigm. So far, all studies feed the annealerwith an existing solution
to the sameproblem,with this existing solutionusuallyobtainedeither
by a forward annealing process executed immediately before the RA
[21] or by a classical optimization method [22]. However, it would

1 https://parityqc.com/a-new-quantum-annealer-by-nec

2 https://qilimanjaro.tech/

3 https://www.dwavesys.com/

be reasonable to think that, in a real application context where the
problems faced by the industry share analogies, a previous solution
may be a good starting point for the resolution of a new (or perhaps
not so new, as we argue) problem. At the time of writing, the use of
solutions from different problems has remained unexplored. In other
words, the influence of solving a specific problem through the RA
paradigm by using as input a solution from another similar but not
exactly the same problem has not been studied. In this context, the
first of the research questions is:

RQ1: Is RA a paradigm that can benefit from knowledge transfer
between problem instances with similar characteristics?

In relation to the analysis of RA behavior, several studies have
tried to provide insights about the requirements that input solutions
must meet, determining in many cases that RA is efficient when it
is fed by a solution close enough to the optimum of the problem to
be solved. However, the term close is usually ambiguously used [23],
with studies translating this closeness into energy [24], while others
into the composition of the solution itself, that is, the difference in
terms of the Hamming distance between the input solution and the
optimum one [25]. Thus, the second RQ posed in this paper aims to
shed light on the characteristics that an input solution should have
to increase the probability of success:

RQ2: Can we infer the characteristics that an input solution should
meet to help increase the probability of succeeding in an
RA process?

Moving in this direction is especially interesting for ToK because
it helps to identify which solution or solutions from the sampling
pool are the most promising to feed RA and to set the analysis
framework for future work in this area. For clarification purposes
and following the nomenclature of ToK, the term source refers to
the problem or task whose knowledge will be leveraged to solve a
target task [26].

To properly guide the experimentation of this paper, the
well-known knapsack problem (KP, [27]) has been used as a
benchmarking problem. We have chosen the KP because:

• It has been extensively used for benchmarking purposes inQC-
oriented studies [28–30].
• It is an appropriate problem to be formulated as a quadratic

unconstrained binary optimization (QUBO) problem [31].
• It is a complex problem to be solved by quantum algorithms,

as has been previously demonstrated in the literature [32, 33].

Two main instances were used in the planned experimentation,
composed of 14 and 16 items, respectively. We call these seed
instances parent-instances. From each of them, 16 new cases
with similar characteristics have been created, hereinafter named
descendant-instances. With all this, the main objective of the
experimentation is to analyze, given a target-instance, the impact of
feeding RA with solutions obtained from similar yet different tasks.

It is worth noting that the size of the instances was not chosen
randomly. This selection was made after thoroughly analyzing the
current state of the art in the conjunction between QA and KP.
Additionally, our motivation has been to construct instances that
are, on the one hand, large enough so that D-Wave’s QA would not
always solve them optimally through the forward annealing process
and, on the other hand, small enough to be efficiently embedded in
the quantum computer.
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Lastly, we have used the Hamming distance as a reference
measure to evaluate the difference between the two solutions. This
measure stands out particularly for its simplicity and efficiency in
calculation. Additionally, the Hamming distance is especially suited
for measuring the similarity among binary strings, which are often
used in quantum computing. It has also been frequently used to
compare DNA sequences and error-correction codes.

2 Methods

Asmentioned in the introduction, aQA is a specialized quantum
device engineered to tackle optimization problems through a
process inspired by classical simulated annealing. More specifically,
a QA operates on the principle of adiabatic computation, where
an initial, easily prepared Hamiltonian is gradually evolved from
its ground state to the ground state of a final, problem-specific
Hamiltonian. If this evolution is sufficiently slow, the adiabatic
theorem ensures that the system stays in the ground state throughout
the computation. In QA, the adiabatic theorem is deliberately
relaxed, permitting the process to evolve more quickly than the
adiabatic limit would normally permit. Consequently, transitions to
higher energy states often occur during the evolution. Despite this,
the computational model can also be considered universal [34]. The
D-Wave annealer, which is the one used in this study, is based on
an Ising Hamiltonian, which limits the kind of problems that can be
executed on the computer. Nevertheless, this type of QA is as well-
suited for solving combinatorial optimization problems as the one
addressed in this article [35].

The RA method is a specific type of quantum annealing process
designed to perform local refinement of good states found elsewhere
[15]. To achieve this, RA resorts to a time-dependent Hamiltonian:

H (t) = A (s (t))H0 +B (s (t))H1 (1)

in which s(t) ∈ [0,1], A(s), and B(s) are time-dependent amplitudes
that must satisfy A(0) ≫ B(0) and A(1) ≪ B(1). Additionally, H0
defines the initial Hamiltonian, while the final Hamiltonian H1
corresponds to the unconstrained optimization problem, with a
ground state that represents the computational solution. In contrast
to forward annealing, RA reverses the time-evolution procedure by
starting in an eigenstate of H1 and evolving under Equation 1 in
the opposite direction. Thus, H(t) =H(1) at t = 0, and the process
is divided into three different steps in which the Hamiltonian.

1. First, it evolves backward to a previously specified point sp in
the control schedule in a time tr = t1 coined ramp-time.

2. Then, it is paused for a time tp = t2 − t1 (this step is optional).
3. It finally evolves forward from sp at t2 to the final Hamiltonian

at time T for a tq = T− t2 quench time.

Therefore, the RA Schedule can be defined as shown in the
following Equation 2 [18]

s (t) =

{{{{{{{
{{{{{{{
{

1+
sp − 1

t1
t, 0 ≤ t ≤ t1,

sp, t1 ≤ t ≤ t2,

sp +
1− sp
T− t2
(t− t2) , t2 ≤ t ≤ T.

. (2)

3 Experimentation and discussion

Before starting with the description of the experimentation, it
is important to note that, at present, no metric accurately indicates
how similar any two problems are to each other (in order to make
them good candidates for ToK). The existence of such a metric
would be very advantageous for this purpose. More specifically,
similarity should be measured in terms of overlap in the energy
landscape of a unified search space [36]. However, in the real world,
it is not possible to determine this overlap beforehand without
having executed and, therefore, solved the problem. Given this
circumstance, similarity becomes amatter of intuition and is subject
to the domain knowledge acquired by the expert.This situation does
not detract an iota of value because, in real industrial contexts, most
problems have a repetitive nature: a pool of recurring customers in
routing problems, production of similar materials with stable task
typologies and machines, etc. In such situations, ToK is a promising
strategy to resort to past solutions in order to improve the results or
speed up the computation of a new yet similar task.

With this in mind, the experiment carried out in this paper
uses the well-known KP as a benchmarking problem. In a nutshell,
KP consists of a set P composed of n items, describing each item
pi by profit (vi) and weight (wi), which must be packed into a
container with a maximum capacity W. The objective, therefore, is
to select a subset of items to be stored that, without exceeding W,
maximizes the profit obtained. It is worth noting that themetric used
in this study for measuring the quality of a solution corresponds
to the energy provided by the quantum annealer, which should be
minimized. That is, the less energy, the better the solution.

Aiming to provide an answer to the RQs, we have designed two
separate experiments focused on two parent-instances of the KP,
which are composed of 14 (s14) and 16 (s16) items, respectively.
Both instances have been generated ad hoc for this study with
the values v and w randomly selected from {1,2,3,4}. Finally, W =
(∑n

i=1wi)/2.
Taking these cases, each descendant-instance has been generated

by applying the following strategy.

• First, the newly generated descendant-instance starts out as an
exact copy of the corresponding parent-instance.
• Then, a set P′ is created, consisting of all the unique items in P

along with their energy impact. Provided that each item pi in P
is described as a tuple vi,wi, a unique item in P′ means that it
differs from the others in at least one element of the tuple.
• Next, a certain number of items of the descendant-instance

are modified following this criterion: when the purpose is to
increase the energy impact of an item pi, it is replaced by the
next highest energetic item in P′. Analogously, pi is replaced
by the next lowest energy item in P′ when the objective is to
reduce the energy. It should be noted that the items with the
highest and lowest energy are never modified in the creation
of descendant-instances.

Following this strategy, 16 descendant-instances have been
created for each parent-instance, equally divided into four
categories.

• X_L2L: Lowest-Energy-to-Lower-Energy: X% of the less
energetic variables (i.e., items) of the parent-instance are
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selected and modified so that their energetic impact is
even lower.
• X_L2H: Lowest-Energy-to-Higher-Energy: X% of the less

energetic variables of the parent-instance are selected and
modified so that their energetic impact is greater.
• X_H2L: Highest-Energy-to-Lower-Energy: X% of the highest

energetic items of the parent-instance are selected and
modified so that their energetic impact is lower.
• X_H2H: Highest-Energy-to-Higher-Energy: X% of the highest

energetic variables are selected and modified so that their
energetic impact is even greater.

It is noteworthy that solutions to these problems are represented
by a (n+ s)-long vector, where n is the number of items that compose
the instance, and s are slack terms introduced by the penalties. For
both s14 and s16, s = 5, so that the decision variables for each
problem are 19 and 21, respectively. In our study, the variables
eventually modified correspond only to the first n items.

Systematically, knowledge transfer materializes in our
experimentation by taking a descendant-instance as the source-
task and a parent-instance as the target-task to be solved. That is,
the goal is to solve a parent-instance leveraging the knowledge of a
previously solved descendant-instance.

First, all instances have been independently executed 10
times using D-Wave’s Advantage_system6.4 by means
of the common forward annealing process. Regarding the
parameters, the number of runs was set to 1,000. Furthermore,
the Knapsack class belonging to the Qiskit v0.6.0 Optimization
Applications open library was employed for generating the KP
QUBOs4. Thus, Table 1 includes.

• The best energy found for each instance across the 10
independent runs.
• The energy of the parent-instance objective function if the

best solution of the descendant-instance were applied, and the
nominal value of the difference with respect to the energy
of the best solution of the parent-instance. For example, let
us take the row related to s16_0.2_L2L; the best solution
found in the s16_0.2_L2L resolution corresponds to an
energy of −10,133. This solution, when applied to the objective
function of the parent-instance, that is, s16, produces an
energy outcome of −10,712. In turn, the energy of the best
solution found for thes16 instance was −10,716, which causes
a difference of 4.
• The Hamming distance between the best solutions of parent-

and descendant-instances when executed independently. In
addition, the decomposition of the Hamming distance is
added. We specify, among the total number of variables that
differ (h), which ones represent an item (nh) andwhich ones are
slack variables (sh). Taking the same example, the Hamming
distance between the best solutions found for s16_0.2_L2L
and s16 is equal to 9, meaning that the bitstrings of these
solutions differ in nine bits, seven of which correspond to
variables representing items and two to slack variables.

4 https://qiskit-community.github.io/qiskit-optimization/stubs/qiskit_

optimization.applications.Knapsack.html

With all this in mind, we now proceed to answer the two
questions posed in the introduction.

3.1 RQ1: is RA a paradigm that can benefit
from knowledge transfer between problem
instances with similar characteristics?

A second set of tests has been conducted to properly answer
RQ1, consisting of solving each target-instance s14 and s16 by
means of the RA procedure and using as the input solution the best
solutions found for each descendant-instance through the first tests
summarized in Table 1.

A fixed RA schedule has been used for all the tests, [(0.0,
1.0), (2.5, 0.5), (102.5, 0.5), (102.75, 1.0)], which has been obtained
through an empirical procedure performed in the lab. More
precisely, an experiment was carried out in which 25 different RA
schedules were tested. Minor adjustments were made to the sp,
tr, tp, and tq parameters. To assess the quality of the designed RA

schedule, each one was used to solve the two target-instances
10 times each, using one random solution for the problem as
input. The aforementioned schedule was selected due to its superior
performance compared to the others.

For the sake of fair comparison, the annealing_time of
all the forward annealing processes has been adjusted to the RA
schedule duration so that all runs carried out in this research
access the quantum computer for the same amount of time. We
recommend papers such as [18] to readers interested in the analysis
of the reverse annealing schedule. Lastly, reinitialize_

state=True.
For each (source instance–target instance) combination, 10

independent runs have been executed, with Table 2 depicting the
best result found among these executions, along with the average
and the standard deviation. As an example, 10 independent runs
have been executed to solve s14, using the best solution found
for s14_0.2_L2L as the input bitstring in the RA process (i.e.,
source of knowledge). For this combination, the energy of the best
solution found is −12,421, while the average and standard deviation
are −12,420.2 and 0.74, respectively. For comparison purposes, we
also depict in Table 2 the baseline results obtained by s14 and s16
using forward annealing. In these cases, the source of knowledge has
been represented as “–.” It is important to highlight that the optimal
results for each instance have been achieved using the industry-
oriented Quantagonia Hybrid Solver (QHS, [6]). In essence, this
algorithm is divided into two distinguishable steps: Initially, it
executes a set of primal heuristics to solve the entire problem. These
heuristics can be classical or quantum, utilizing external services.
Subsequently, QHS enhances the best solution identified by the
primal heuristics through a classical Branch-and-Bound algorithm.
One of the key strengths of QHS is the inclusion of an optimality
proof mechanism, which provides the optimality gap along with the
results. The optimality gap indicates the remaining potential in the
optimization process. This feature is the primary reason we selected
QHS as the solver to achieve optimal results for the considered
instances.

The results shown in Table 2 provide answers to RQ1. If we pay
attention tos14, we could preliminarily conclude that the sharing of
knowledge does not imply an improvement with respect to the best
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TABLE 1 Instances used in the experimentation. Energy wrt. sXX represents the energy value of the best-found solution for the descendant-instances,
using as a base the objective function of sXX. Hamming distances are calculated using as reference the best solution found for the parent-instances and
the descendant-instances along 10 independent runs. Hamming distances are represented by the total value (h) and divided into variables that
represent items (nh) and slack variables (sh).

Instance Best energy Energy wrt.
s14

Hamming
distance

Instance Best energy Energy wrt.
s16

Hamming
distance

s14 −12422 — — s16 −10716 — —

s14_0.2_L2L −12,019 −12,419 (3) 7 (7, 0) s16_0.2_L2L −10,133 −10,712 (4) 9 (7, 2)

s14_0.2_L2H −13,222 −12,421 (1) 3 (3, 0) s16_0.2_L2H −11,583 −10,713 (3) 5 (4, 1)

s14_0.2_H2L −12,021 −12,391 (31) 5 (5, 0) s16_0.2_H2L −10,137 −10,715 (1) 4 (3, 1)

s14_0.2_H2H −12,820 −12,388 (34) 4 (4, 0) s16_0.2_H2H −10,995 −10,668 (48) 12 (11, 1)

s14_0.4_L2L −12,820 −12,388 (34) 8 (8, 0) s16_0.4_L2L −8,974 −10,714 (2) 5 (4, 1)

s14_0.4_L2H −13,620 −12,387 (35) 4 (4, 0) s16_0.4_L2H −11,294 −10,712 (4) 5 (5, 0)

s14L_0.4_H2 −11,218 −12,294 (128) 8 (7, 1) s16_0.4_H2L −9,845 −10,676 (40) 8 (8, 0)

s14_0.4_H2H −13,621 −12,418 (4) 5 (5, 0) s16_0.4_H2H −11,579 −10,674 (42) 8 (7, 1)

s14_0.6_L2L −11,620 −12,297 (125) 7 (7, 0) s16_0.6_L2L −8,463 −10,563 (153) 11 (10, 1)

s14_0.6_L2H −13,620 −12,416 (6) 8 (7, 1) s16_0.6_L2H −12,161 −10,709 (7) 10 (9, 1)

s14_0.6_H2L −10,418 −12,297 (125) 5 (4, 1) s16_0.6_H2L −10,136 −10,677 (39) 8 (7, 1)

s14_0.6_H2H −14,020 −12,294 (128) 6 (6, 0) s16_0.6_H2H −11,581 −10,676 (40) 4 (3, 1)

s14_0.8_L2L −11,619 −12,139 (287) 8 (7, 1) s16_0.8_L2L −8,465 −10,563 (153) 6 (5, 1)

s14_0.8_L2H −14,418 −12,413 (9) 9 (8, 1) s16_0.8_L2H −12,108 −10,644 (52) 14 (11, 3)

s14_0.8_H2L −10,819 −11,925 (497) 8 (7, 1) s16_0.8_H2L −10,138 −10,569 (147) 5 (5, 0)

s14_0.8_H2H −14,413 −12,287 (135) 7 (5, 2) s16_0.8_H2H −11,582 −10,710 (6) 7 (7, 0)

solution found by the annealer. This reflection cannot be replicated
if we look at the values relative to the mean and standard deviation,
where the use of solutions from descendant-instances clearly implies
better performance. In summary, the sharing of knowledge through
RA leads to more reliable and robust behavior of the annealer in the
case of s14.

The results are even more interesting in the case of s16. In
this case, the results offered by the forward annealing process are
considerably worse as a consequence of facing a larger and more
complex problem. In this specific case, the ToK between problems
stands as a mechanism that directly implies superior performance
for the annealer. More specifically, the use of RA under the criteria
established in this research leads, in the vast majority of cases, to a
more reliable and robust performance and even to an increase in the
probability of obtaining the optimal solution to the target problem.

In summary, in view of the results shown in Table 2, we can
conclude, at least preliminarily, that knowledge sharing through RA
is a promising strategy for solving optimization problems. However,
all that glitters is not gold, as the good performance shown in
these tests reveals a clear line of investigation. This is because,
despite better results, there is no clear pattern to shed light on the

requirements that two problems must meet to ensure productive
knowledge sharing.

These varying results reveal thatRQ1 requires inspecting further
the reasons why some descendant-instances produce better results
than others. This inspection requires a more detailed examination
of the relationship between the characteristics of the descendant-
instances and the performance shown in Table 2.

3.2 RQ2: can we infer the characteristics
that an input solution should meet to help
increase the probability of succeeding in an
RA process?

Although there is a widespread belief in the literature that RA
is more effective when the initial state is “close” to the ground state
[24], there is no exact definition for the term “close” in this context.
Some papers base this concept on the energetic proximity between
the input solution and the ground state [23], while others suggest
that usingmetrics such as theHamming distance could be beneficial,
contrasting with only choosing states that are low in energy, which
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TABLE 2 Results of the reverse annealing experimentation. Optimal results obtained using the industry-oriented Hybrid Solver from Quantagonia: s14
= 12,422; s16 = 10,718.

Performance analysis on s14 Performance analysis on s16

Source of knowledge (best, avg., std.) Source of knowledge (best, avg., std.)

— (−12,422, −12,418.9, 2.02) — (−10,716, −10,712.0, 3.00)

s14_0.2_L2L (−12,421, −12,420.2, 0.74) s16_0.2_L2L (−10,716, −10,714.7, 1.27)

s14_0.2_L2H (−12,422, −12,421.6, 0.48) s16_0.2_L2H (−10,718, −10,716.2, 0.97)

s14_0.2_H2L (−12,422, −12,421.0, 0.63) s16_0.2_H2L (−10,718, −10,716.6, 0.80)

s14_0.2_H2H (−12,422, −12,420.8, 0.60) s16_0.2_H2H (−10,714, −10,711.5, 1.43)

s14_0.4_L2L (−12,421, −12,420.6, 0.48) s16_0.4_L2L (−10,717, −10,715.7, 0.90)

s14_0.4_L2H (−12422, −12,420.8, 0.60) s16_0.4_L2H (−10,717, −10,716.0, 1.00)

s14_0.4_H2L (−12,421, −12,419.4, 1.11) s16_0.4_H2L (−10,716, −10,714.8, 0.87)

s14_0.4_H2H (−12,422, −12,420.6, 0.80) s16_0.4_H2H (−10,717, −10,714.9, 1.22)

s14_0.6_L2L (−12,421, −12,420.7, 0.45) s16_0.6_L2L (−10,715, −10,713.8, 0.74)

s14_0.6_L2H (−12,421, −12,418.9, 1.04) s16_0.6_L2H (−10,715, −10,713.9, 0.94)

s14_0.6_H2L (−12,422, −12,420.6, 0.66) s16_0.6_H2L (−10,716, −10,715.1, 0.94)

s14_0.6_H2H (−12,421, −12,420.4, 0.66) s16_0.6_H2H (−10,718, −10,715.8, 0.87)

s14_0.8_L2L (−12,421, −12,419.7, 1.10) s16_0.8_L2L (-10,718, -10715.0, 1.34)

s14_0.8_L2H (−12,420, −12,419.1, 1.30) s16_0.8_L2H (−10,714, −10,710.7, 1.55)

s14_0.8_H2L (−12,421, −12,419.5, 1.02) s16_0.8_H2L (−10,717, −10,716.5, 0.50)

s14_0.8_H2H (−12,421, −12,420.2, 0.60) s16_0.8_H2H (−10,717, −10,715.6, 0.79)

Bold results equalize or improve the performance of the forward annealing baseline (which is −12422 for s14 and −10716 for s16).

may be far from the correct ground state in terms of the quantum
annealing procedure [25].

Thus, experimentally answering this second question can be
done by sorting the results depicted in Table 2, using as references
both energy differences and Hamming distances (represented in
Table 1). This is the purpose of the plots shown in Figures 1, 2.
To facilitate the visualization of the outcomes, we show the results
obtained by solving each target-instance through forward annealing
in the leftmost part of these images. It should also be noted that
the figures focused on the energy difference are based on the results
shown in column Energy wrt. sXX of Table 1. That is, on the energy
value that each best-found solution returns using as a basis the
objective function of its related target-instance. In addition, the total
Hamming distance h has been used as a reference in Figures 1b, 2b.

On the one hand, by carefully analyzing the results of
Figures 1a, 2a, it is difficult to detect a clear correlation between the
energy difference among the solutions and their good performance
as an input instance in an RA-based optimization process.
Although the closest solutions offer competitive results, there
are many cases that make it impossible to draw a generalizable
conclusion.

In the case of s14, s14_0.8_L2H has emerged as the
worst instance for feeding the RA mechanisms despite its energy
value being close to the ground-state solution (−12,413 vs.
−12,422, +9). In contrast, s14_0.6_H2L has shown adequate
performance despite its remoteness in terms of energy (−12,297
vs. −12,422, +125). Turning our attention to s16, it is also
possible to detect that closer solutions produce good results.
Even so, there are contradictory cases such as s16_0.6_L2H,
s16_0.8_H2L, or s16_0.8_L2L. Regarding s16_0.6_L2H,
its performance has proven to be poor, even being near the
reference solution (−10,709 vs. −10,716, +7). Finally, the other two
descendant-instances mentioned have emerged as good alternatives
to feed the RA despite being among the most distant in terms
of energy.

On the other hand, a clear trend is detected by analyzing
Figures 1b, 2b, where the Hamming distance emerges as a key
factor in finding good solutions for the target-instances. In other
words, using as a source of knowledge a descendant-instance
whose best solution minimizes the Hamming distance regarding
parent-instances has proven to be efficient. Even a quick glance
at the results obtained leads to the conclusion that as the
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FIGURE 1
Results related to the resolution of s14 using as input the best solution found for each descendant-instance over 10 independent runs. The blue
boxplots represent the baseline results obtained through forward annealing. The lower the energy value, the better the solution. (a) Results for s14
sorted by energy difference. (b) Results for s14 sorted by Hamming distance.

Hamming distance increases, the performance of the RA degrades
significantly.

This finding, despite being almost unexplored in studies related
to RA, is in line with the premises of the classical computing
field known as transfer optimization [20]. There are several studies
related to this classical research stream that conclude that for
efficient knowledge sharing, there must be at least a partial
overlapping in the optimal solutions to the problems at hand. More

specifically, two problems present a partial overlapping if the optima
of both tasks are exactly the same in the unified search space
regarding a subset of variables and different from the remaining
variables [37].

Furthermore, conclusions related to RQ2 are also coherent with
the work proposed in [10]. That paper is focused on a specific
kind of quantum annealing called biased annealing, which involves
complementing the driver Hamiltonian with a longitudinal bias
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FIGURE 2
Results related to the resolution of s16 using as input the best solution found for each descendant-instance over 10 independent runs. The blue
boxplots represent the baseline results obtained through forward annealing. The lower the energy value, the better the solution. (a) Results for s16
sorted by energy difference. (b) Results for s16 sorted by Hamming distance.

field. The importance of the Hamming distance between the driver
Hamiltonian and the ground state is highlighted in a specific process
called iterative biased quantum annealing, despite the same author
minimizing its impact in a subsequent study when solving problems
of large size [38].

Lastly, all the instances used in this paper and the complete set
of results shown are openly available [39].

4 Conclusions and further work

In this work, we have preliminarily studied the influence of
transferring knowledge between similar tasks through the reverse

annealing mechanism implemented by D-Wave. To do that, two
research questions have been posed:

RQ1: Is RA a paradigm that can benefit from knowledge transfer
between problem instances with similar characteristics?

RQ2: Can we infer the characteristics that an input solution should
meet to help increase the probability of succeeding in an
RA process?

First, answeringRQ1 and in view of the positive results obtained,
the transfer of knowledge in quantum computing appears to be
a promising research avenue that undoubtedly deserves further
investigation. As for RA, it is commonly applied as a local refinement
procedure right after an optimization process carried out by forward
annealing or a classical optimization technique. In this work, RA
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serves as a mechanism for knowledge transfer, allowing the reuse
of a solution obtained in an independent optimization process.

It is important to highlight that, aside from the results regarding
performance, knowledge sharing pursues savings in the use of
computational resources. These savings are mainly materialized
by resorting to previous outcomes when solving a new task
under the assumption that industries are likely to face tasks
that have much in common with each other. This is especially
useful in real-world environments where companies accumulate
results from past planning exercises and continually receive new
tasks that are sometimes not very distinct from those already
executed.

Second, answering RQ2 and according to the results depicted,
the closeness in terms of energy is not related to the performance of
RA, and only the closeness with respect to the Hamming distance
is. This means that the neighborhood must be based on solution
codification and not energy, making it a priority to organize the
coding of the target problem so that it fits as much as possible
with the source problem through a unified search space [36].In
light of these positive results, several open research questions should
be further studied in subsequent investigations, which can be
summarized as

■ Future work of considerable importance will likely focus on
advancing toward the generalization of the conclusions drawn
from this study. To reach this ambitious goal, the following
steps are essential:

• Inspired by the findings described in [38], further
experiments should be carried out with larger instances,
with the intention of determiningwhether the conclusions
are replicable in such cases.

• Further study the impact of the RA Schedules on
knowledge transfer. To do this, the preliminary study
already described in Section 3 will be revisited, and the
knowledge transfer paradigm will be examined under the
mentioned 25 RA Schedules.

• Carry out a thorough analysis of computational
resources and time.

• Examine whether the findings from the experimentation
can be replicated in other optimization problems,
such as the traveling salesman problem or the bin
packing problem.

• Study the potential limitations when applying RA to more
real-world scenarios.

■ Fairly compare RA as a local refinement method (using the
same instance for source- and target-tasks) with RA as a
transfer knowledge procedure.
■ Define a similarity measure for transfer of knowledge

purposes. This means, given a potential source-task and its
results, designing ametric that calculates how good a candidate
source-task is for knowledge transfer purposes. The findings
provided by the experimentation of this paper, particularly
that focused on Hamming distance, are a good starting point
for formulating this metric. Thus, a validated metric accepted

by the community would be a milestone for the transfer of
knowledge research line.
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