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algorithm optimization
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China, 3School of Information Engineering, Yangzhou University, Yangzhou, China

The operation of the power grid is closely related to meteorological disasters.
Changes in meteorological conditions may have an impact on the operation
and stability of the power system, leading to economic losses. This paper
proposes a Random Forest grid fault prediction model based on Genetic
Algorithm optimization (GA-RF) to classify the grid fault types, which improves
the distribution network fault prediction accuracy by constructing an optimized
random forest model. Specifically, the model’s performance is initially enhanced
by calculating the Gini index for each feature. The weather attributes with
higher Gini indices are subsequently selected as pivotal features to alleviate the
detrimental impact of unnecessary attributes on themodel. In addition, a genetic
algorithm is used to optimize the parameters of the random forest model for
early warning of grid fault occurrence. The experimental results demonstrate
that the proposed GA-RF in this paper achieves significantly higher accuracy
compared to Random Forest (RF), Support Vector Machine (SVM), and Linear
Regression (LR). Specifically, it outperforms them by 14.77%, 23.22%, and 13.77%
respectively. This method effectively supports the safe and stable operation of
the power system.
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1 Introduction

The reliability and stability of the grid system are crucial as modern society increasingly
relies on electricity, which is closely tied to people’s lives [1, 2]. As our dependence
on digital technologies and smart devices continues to grow, even minor disruptions
in power supply can have cascading effects on economic activities, public safety, and
individual well-being. The power equipment is exposed to the natural environment
for an extended duration, inevitably being influenced by factors such as typhoons
and other destructive weather phenomena. These environmental factors not only pose
a threat to the infrastructure but also complicate the operational dynamics of the
power grid, increasing the likelihood of failures. Consequently, this can result in line
fractures and equipment impairment, leading to inevitable detriment to the power
system. Such failures can contribute to widespread outages, which disrupt essential
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services including healthcare, transportation, and communication,
highlighting the critical need for resilient grid systems capable of
withstanding climatic challenges [3–5]. The accurate and timely
prediction and diagnosis of power grid faults are crucial for
implementing preventive measures and recovering from faults.
Furthermore, as the global climate continues to change, power
systems may face increasingly unpredictable weather patterns,
underscoring the urgency for ongoing research and innovation in
fault predictivemethodologies. Additionally, Our proposed accurate
fault prediction model has significant practical implications. In
terms of cost savings, it allows utility companies to avoid costly
emergency repairs, including overtime pay, expedited shipping, and
outage fines. Based on local grid data analysis, it could potentially
cut annual repair costs by 20%–30%. For risk mitigation, it helps
prevent major power failures, ensuring reliable power supply to
consumers and reducing negative impacts on critical infrastructure
and industrial production. In manufacturing-dependent regions, it
decreases the likelihood of production disruptions, safeguarding
economic stability and minimizing revenue and supply chain risks.

The power system is significantly influenced by meteorological
factors, and scholars from various countries have conducted studies
on meteorological disasters in power grids to some extent. Huang
Can [6] et al. proposed establishing association rules between
meteorological factors and transmission and substation equipment
faults using the Apriori algorithm. Based on this, they constructed
a fault warning process for transmission and substation equipment
based onmeteorological datamining, which alerted faults according
to meteorological forecast information. However, this method
analyzes the probability of faults occurring through association
rules and has some limitations. Primarily, it does not account
for the temporal dynamics of meteorological changes, which can
significantly impact the reliability of the established associations
over time. Moreover, this approach lacks the flexibility to adapt
to sudden and extreme changes in meteorological conditions,
which are common in dynamic weather scenarios. As a result,
its scalability and adaptability to real-world, complex and variable
meteorological environments are severely restricted. Zhou Xiaohua
[7] et al. proposed a method to forecast distribution network
faults based on the combination of weather forecast data and
distribution network abnormal operation cumulative data. It uses
the association rule algorithm to explore the correlation between
fault occurrence and meteorological data, as well as the correlation
between fault numbers and abnormal operation of the network.
The Random Forest regression model is then used to forecast fault
amounts in the Municipal Power Supply Company’s distribution
network, providing early warnings for power supply team. By
leveraging machine learning techniques, this approach seeks to
enhance the accuracy of fault predictions and enable proactive
maintenance strategies. However, this method fails to fully utilize
the complexity of data characteristics and nonlinear relationships,
resulting in underfitting models with insufficient prediction ability.
Its accuracy rate is only 89.9%. Such a performance level raises
concerns regarding the adequacy of themodel, asmissing contextual
factors may lead to misinterpretations of fault risk. Furthermore,
when facing rapid changes in meteorological data patterns or
new types of meteorological events, the model’s adaptability is
limited. It struggles to handle the dynamic nature of meteorological
conditions, which may lead to inaccurate forecasts and ineffective

maintenance planning in the long run. Based on analyzing the
relationship between historical failures of electric power equipment
and meteorological disasters, Kou Zheng [8] et al. developed a
risk model for electric power equipment exposed to single or
multiple meteorological disasters based on Lorentz’s theory. This
theoretical framework facilitates the quantification of risk, providing
valuable insights into the likelihood of equipment failure under
various weather scenarios. They also considered the type and
severity of the disaster to determine the probability of failure
under specific meteorological conditions. Such considerations are
crucial, as different types of weather events, such as storms or
heatwaves, can have markedly different impacts on power system
integrity. However, in practical applications, there are still numerous
random factors and uncertainties thatmay cause deviations from the
predicted outcomes. In addition, themodel’s scalability is challenged
when dealing with large-scale and complex meteorological datasets.
It may encounter difficulties in processing and analyzing extensive
amounts of data in a timely and accurate manner, which could limit
its practical application in large power grid systems with extensive
meteorological monitoring.

Brief Conclusion

Compared with the methods of the aforementioned scholars,
a Random Forest (RF) grid fault prediction model based on
Genetic Algorithm (GA) optimization (GA-RF) is proposed in this
paper. The parameters of RF are optimized by GA to improve the
accuracy and robustness of the model prediction, and comparative
experiments are carried out on the grid fault dataset to verify
the effectiveness and superiority of the proposed method. The
approach in this paper shows improvements in several aspects.
It considers the temporal dynamics of meteorological changes,
handles data complexity and nonlinear relationships, and addresses
data uncertainty. The GA-RF model continuously optimizes the
parameters of the random forest through genetic algorithms,
enabling better adaptation to changes in meteorological data over
time. Genetic algorithms can automatically search for the optimal
parameter combination, enhancing the model’s adaptability to
meteorological data in different periods and predicting power
grid failures more accurately. Genetic algorithms combined with
random forests can also effectively deal with data complexity and
nonlinearity. Additionally, features with high Gini index are selected
as important weather attributes to reduce the negative impact of
unnecessary features on the model and improve its ability to handle
complex data and capture the relationship between meteorological
factors and power grid failures more accurately. Lastly, the GA-
RF model improves the robustness by optimizing random forest
parameters through genetic algorithms, enabling better coping
with data uncertainties. The genetic algorithm can automatically
adjust model parameters so that it can maintain better prediction
performance in the face of different random factors. The main
contributions are as follows:

• We propose the GA-RF model, which combines GA and RF to
extract key features from meteorological data, overcoming the
limitations of manual feature selection.
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• We screen features with high Gini index as important weather
attributes to reduce the negative impact of unnecessary features
on the model, and used genetic algorithm to optimize the
parameters of the random forest model.

• Through a large number of simulation experiments, results
show that the proposed GA-RF model is superior to traditional
methods and other advanced prediction models in multiple
evaluation metrics.

The remaining sections of this paper are organized as
follows: Section 2 introduces the relevant theoretical foundation.
Section 3 describes the proposed framework in detail. Section 4
demonstrates the effectiveness of the approach through
experiments. Finally, Section 5 concludes the paper.

2 Relevant theoretical foundations

2.1 Random forest

Random forest (RF) [9, 10] is an integrated learning algorithm
[11, 12] based on decision trees, proposed by Leo Breiman and
Adele Cutler in 2001, which is schematically shown in Figure 1.
The key to the RF algorithm is the decision tree. A decision tree
is constructed on each training set based on randomly selected
features, which is continuously split using specific splitting criteria,
such as information gain and Gini coefficient, until a preset
condition is reached to stop splitting. When the random forest
algorithm is applied for classification, the prediction or regression
results are obtained by applying voting or weighted averaging to
the prediction results of each decision tree. In addition, in order
to reduce the influence of overfitting and random errors on the
prediction results, the original data are generally divided into
training and test sets, and then theBootstramethod [13] is utilized to
extract the training set. RF are capable of handling high-dimensional
data and large-scale datasets with high prediction accuracy.

2.2 Genetic algorithm

Genetic Algorithm (GA) [14–17] originated from computer
simulation studies on biological systems and is a stochastic
global search optimization method.It simulates the phenomena of
replication, crossover and mutation that occur in natural selection
and inheritance. Starting from any initial population, random
selection, crossover and mutation operations are performed.
Generations of continuous reproduction and evolution, and finally
converge to a group of individuals best adapted to the environment,
so as to find a high-quality solution to the problem [18]. The key
elements to GA are as follows:

(1) Evaluation of individual fitness: the size of individual fitness
is used to determine the probability of the individual
being inherited into the next-generation of the population.
Individuals with higher fitness scores represent better
solutions, which aremore likely to be selected for reproduction
and have traits that will be expressed in the next-generation.
As the GA proceeds, the quality of the solution improves, the

fitness increases, and the GA is terminated once a solution
with a satisfactory fitness value is found [19].

(2) Proportional selection operator: the most commonly used
and basic selection operator, it means that the probability
of an individual being selected and inherited into the next-
generation of the population is directly proportional to the size
of that individual’s fitness, and individuals with higher values
aremore likely to be selected and pass on their genetic material
to the next-generation.

(3) Single-point crossover operator: crossover of some
chromosomes from the currently selected biparental sample to
create two new chromosomes representing the offspring.

(4) Basic positional variation operator: periodic random updates
of the population to introduce new patterns into the
chromosomes, accomplished by randomly changing one or
more chromosome values.

3 Random forest grid fault prediction
method based on genetic algorithm
optimization

3.1 Methodological framework

Aiming at the problems of data complexity and lack of accuracy
in grid fault prediction, this paper designs a Random Forest
(RF) grid fault prediction model based on Genetic Algorithm
(GA) optimization (GA-RF), which aims to provide an efficient
and accurate fault prediction scheme through the analysis of
meteorological factors. The overall method consists of three
modules: data pre-processing, GA-RF model building and grid fault
prediction. In the data pre-processing module, meteorological and
grid fault data are collected and features are selected. In the GA-RF
model building module, a training set is used to train the RF, and
the parameters in the model are optimized by combining the GA,
and the optimized parameters are used to construct the model. In
the grid fault prediction module, the test set is used to verify the
accuracy of the model, and appropriate preventive measures can
be taken based on the prediction results. The method architecture
is shown in Figure 2.

3.2 Data pre-processing

In the data pre-processing module, the acquired meteorological
data are first subjected to data cleaning, followed by feature
selection of the cleaned data using the random forest algorithm.
During this process, we address the issue of missing values. We
use an interpolation method based on the temporal and spatial
characteristics of the meteorological data. For example, for a
missing value at a specific time and location, we consider the
values of adjacent time points and nearby locations with similar
meteorological patterns to estimate themissing value.This approach
takes into account the inherent continuity and correlation of
meteorological variables such as temperature, humidity, and wind
speed. After data cleaning, the random forest algorithm [20] is
applied for feature selection. Subsequently, a 7:3 ratio is adopted
to split the data into training and testing sets. The 70% training
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FIGURE 1
The schematic of RF.

set enables the model to capture more complex patterns. Our
experiments show that a smaller training set leads to a decline
in model accuracy and generalization. The 30% testing set offers
an adequate and unbiased evaluation, ensuring validation on
unseen data and preventing overfitting. Additionally, this ratio
aligns with machine learning norms, facilitating comparisons with
related studies.

The Gini index is a metric used to assess the purity of data. In
the decision tree model, when we perform node splitting through
a certain feature, the Gini index will reflect the effectiveness of the
feature in improving the classification accuracy.

A specific variable (feature) can significantly reduce the
difference in the Gini index before and after splitting, meaning that
this feature plays a key role in better classifying the sample into
different categories. Therefore, this suggests that these features play
an important role in distinguishing between different categories.
Selecting meteorological attributes that have a stronger correlation
with grid faults can help the model predict more effectively.

In the feature selection section, with N feature vectors
(X1, ⋅ ⋅ ⋅,Xi, ⋅ ⋅ ⋅,XN), C categories, and S decision trees, the Gini index
Gm of nodem is:

Gm =
C

∑
c=1

pcm (1− p
c
m) , (1)

where pcm denotes the probability valuation that the sample nodem is
of class c. The importance score Fmi of feature quantity Xi on nodem
is the amount of change in Gini index before and after branching
of node m is denoted as Fmi = Gm −Gl −Go, where Gl, Go are the
Gini indexes of the two new nodes l, o after branching of node m,
respectively. If the branching decreases the Gini index, this feature

plays a key role in improving the purity of the classification. Features
with higher importance are often preferred.

Let the set of nodes in which feature vectorXi appears in the s-th
decision tree beM. The importance of feature vector Xi in the s-th
decision tree can be expressed as:

Fsi = ∑
m∈M

Fmi . (2)

Therefore, the importance score of feature vector Xi in RF is:

Fi =
1
S

S

∑
s=1

Fsi . (3)

Our meteorological data are taken from Yangzhou Electric
Power Company. As shown in Table 1, a total of 21 categories of
meteorological factors are used as inputs to the feature vectors of
the random forest algorithm, i.e., N = 21. These feature vectors are
ranked in terms of importance scores, and the top 10 feature vectors
are selected.

3.3 GA-RF model construction

The training data obtained after data processing is trained using
RF and combined with GA to optimize the four hyperparameters
in the RF model, which are: the number of decision trees (S), the
maximum depth of the decision tree (μ), the minimum number of
samples contained in the leaf nodes (λ), and the minimum number
of nodes that can be divided into samples (γ).

3.3.1 Genetic coding design
In the GA-RF model, a 14× 10 matrix encoding is used, with

each row representing an individual and each column representing
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FIGURE 2
The schematic of random forest fault prediction method based on genetic algorithm optimization.

a locus, using binary coding to represent the four hyperparameters
in the RF. For example, in the first row of matrix B, B1,1⋯B1,4 form
a 4-bit binary code to represent the number of decision trees S.
B1,5⋯B1,8 form a 4-bit binary code to represent themaximum depth
of the decision treeD.B1,9⋯B1,11 form a 3-bit binary code to indicate
the minimum number of samples λ contained in the leaf nodes,
and B1,12⋯B1,14 form a 3-bit binary code to indicate the minimum
number of samples γ divisible by the nodes.

3.3.2 Design of the fitness function
We use the precision rate after macro averaging (Macro_P) of

model as the fitness function. And the temperature parameter temp
is quoted to control the smoothness of each individual adaptation

value. There are C fault types in the grid, and when the model
predicts a fault category c, the remaining C− 1 fault categories are
considered as counter examples of the binary classification. So the
model’s precision rateMacro_P is expressed as follows:

Macro_P =
C

∑
c=1

TPc
TPc + FPc

, (4)

where TPc denotes correctly predicting the sample as category c and
FPc denotes incorrectly predicting the true category d as category c.

The fitness function of individual k is Fitk, where K is the
total number of individuals in the population. This design controls
the smoothing of individual fitness values through temperature
parameters, with small differences in fitness values of individuals
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TABLE 1 Relevant meteorological factors and their range of values.

Meteorological factor Range of value Meteorological factor Range of value

Wind speed(m/s) (0− 30) Wind direction(°) (0− 360)

Average wind speed(m/s) (3− 15) Extreme wind speed(m/s) (20− 25)

Precipitation(mm) (0− 250) 24-hour precipitation(mm) (0− 250)

Maximum air temperature(°C) (30− 40) Minimum air temperature(°C) (−15− 10)

Average air temperature(°C) (−5− 30) Near-ground temperature(°C) (−10− 30)

Relative humidity(%) (0− 100) Minimum relative humidity(%) (0− 50)

Average relative humidity(%) (10− 80) Total cloud amount(%) (0− 100)

Snowfall(mm) (0− 30) Snowfall in 24-h(mm) (0− 30)

Horizontal visibility(km) (1− 10) Atmospheric pressure(hpa) (870− 1050)

PM2.5(μg/m3) (0− 150) PM10(μg/m3) (0− 350)

at high temperatures and large differences in fitness at low
temperatures to improve the diversity and global search ability of
the algorithm. The formula is expressed as follows:

Fitk =
e

Precisionk
tempk

K

∑
k=1

e
Precisionk
tempk

. (5)

3.3.3 Algorithm flow
Firstly, a set of initial parameter codes are randomly generated

within the range of values of the hyperparameters to be optimized
in the RF, forming an initial population K = {1, ⋅ ⋅ ⋅,k, ⋅ ⋅ ⋅ ,K}.
Next, the fitness value Fitk is calculated for each individual and
the individual with the largest fitness value is selected as the
optimal solution pop_best. The algorithm then enters an iterative
phase, where in each iteration, multiple individuals are selected
as parents using a roulette wheel. Then crossover and mutation
operations are performed on different individuals according to the
crossover probability and mutation probability. New individuals are
generated, which together form a new population. At the same time,
compare the individual with the largest fitness value in the new
population with the fitness value of pop_best, and select the one
with the larger fitness value to be the updated pop_best. During
the iterative process, we also keep track of the average fitness
value of the population in each generation. This helps us monitor
the convergence trend of the algorithm. If the difference between
the average fitness values of consecutive generations is less than
a predefined small threshold, it indicates that the algorithm is
approaching convergence. Additionally, we implement an elitism
strategy, where a certain number of the best-performing individuals
from the previous generation are directly carried over to the new
population. This ensures that the best solutions found so far are not
lost during the evolutionary process. Repeat the above operation
until the number of iterations or the fitness value of an individual
reaches the maximum. When the maximum fitness value in the

Require: Sample after data pre-processing

  1: Population K = {1, ⋅ ⋅ ⋅,k, ⋅ ⋅ ⋅,K}, best individual

     pop_best← ∅, maximum fitness value Fitmax←−∞

  2: for gen = 1 to max_gen do

  3:  Calculate Fitk, and select individual k with

     the largest fitness value

  4:  if pop_best = ∅ or Fitk > Fitmax then

  5:    pop_best← k

  6:    Fitmax← Fitk

  7:   else

  8:    Roulette wheel selection

  9:    Crossover operation

  10:    Mutation operation

  11:   end if

  12: end for

  13: return optimal parameter combination {S,μ,λ,γ}

Algorithm 1. GA-RF.

iteration process does not change, the algorithm will converge, and
then output a set of optimal hyperparameter combinations in the RF.
The GA-RF is shown in Algorithm 1.

4 Analysis of experimental results

4.1 Experimental setup

The environment configured for this experiment is as follows:
the operating system is Windows 11, the computer processor is
13th Gen Intel (R) Core (TM) i9-13900HX, the RAM is 2.20 GHz
and 16 GB RAM, and the Python version is 3.12. In this paper,
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we simulate 3,000 records of grid fault types, and the samples are
indexed in rows by date, containing 21 characteristic variables such
as wind speed, precipitation and temperature, as shown in Table 1.
The daily fault occurrence type is the dependent variable, which is
normal (0), wind fault (1), ice-covered fault (2), pollution fault (3),
and rain damage fault (4). The characteristic variables play a key
role in our research, Which are closely related to the occurrence
of grid faults. For example, strong winds may lead to wind faults
(1), and heavy rain may cause rain damage faults (4). By analyzing
and incorporating these characteristic variables into the model,
we can better understand the causes of grid faults and improve
the accuracy of predicting grid fault types. The data is organized
and applied to the prediction of grid fault types. The sample sizes
of grid fault types in the test set are 617, 584, 566, 620 and
613, respectively.

4.2 Evaluation metrics

In order to effectively illustrate the real effect of this model and
accurately predict grid faults, the accuracy rate (Accuracy) as well as
the precision rate after macro averaging (Macro_P), the recall rate
(Macro_R) and the F1 value (Macro_F1) are used as the evaluation
indexes, and the specific formulas are as follows:

Accuracy =
C

∑
c=1

TPc
TPc + FPc

, (6)

Macro_P = 1
C

C

∑
c=1

Pc,Pc =
TPc

TPc + FPc
, (7)

Macro_R = 1
C

C

∑
c=1

Rc,Rc =
TPc

TPc + FNc
, (8)

Macro_F1 =
2× (Macro_P) × (Macro_R)
(Macro_P) + (Macro_R)

, (9)

where TPc = TcPc denotes correctly predicting the true
categorization c as categorization c. FPc = ∑

C
d=1,d≠cFdPc denotes

incorrectly predicting the true categorization d as categorization
c; FNc = ∑

C
d=1,d≠cFcPd indicates incorrectly predicting the true

categorization c as other classes. In grid fault prediction, the
larger values of the indicators Accuracy, Macro_P, Macro_R, and
Macro_F1 indicate the more accurate prediction results.

4.3 Comparative analysis

4.3.1 Detection of grid fault types
In order to verify the effectiveness of the method proposed in

this paper, the traditional Random Forest (RF) [21], Support Vector
Machine (SVM) [22], Linear Regression (LR) [23] and the GA-
RF proposed are used as the fault prediction models. Accuracy,
Macro_P, Macro_R, and Macro_F1 are selected as evaluation
metrics and the results are shown in Table 2.

As can be seen from Table 2, the Accuracy, Macro_P, Macro_R
and Macro_F1 of the RF model optimized by GA in this paper
reach 91.44%, 92.31%, 91.44% and 91.49%, respectively, which are
the best among the comparative models.Although the traditional
prediction model has been widely used in many fields, with the

increase of data volume and complexity, the traditional algorithm
may show limitations when dealing with high-dimensional and
large-scale data. The SVM algorithm has high computational
complexity in multi-classification problems, and its performance
depends toomuch on the selection of kernel function and parameter
tuning. The LR algorithm can’t capture the complex nonlinear
relationship in data features well, which leads to poor performance.
In contrast, The GA can effectively improve the performance of the
algorithm by optimizing model parameters and feature selection,
and can search for the global optimal or near-optimal solution
by simulating natural selection and genetic mechanisms in the
evolution process.

In this experiment, by optimizing random forest with
genetic algorithm, we can not only adjust the parameters of
random forest better, but also select the feature subset with the
most predictive ability, thus improving the prediction accuracy
and stability of the model. These results not only prove the
effectiveness of genetic algorithm in optimizing machine learning
models, but also highlight the application of this method in
electricity Potential and application value in network fault
prediction task.

4.3.2 ROC curve comparison
According to the classification results of the model in 3,000

datasets, the predicted power grid fault types are taken as “Normal
(0)” and “Wind Fault (1)” respectively, and the ROC curves of GA-
RF and RF are made, as shown in Figure 3. The abscissa of the
curve shows the proportion of prediction error (FP) in all negative
samples, and the ordinate shows the proportion of prediction
correctness (TP) in all positive samples. From the figure, it can be
seen that the AUC area of the GA-RF is 0.96 and 0.99 for predicting
the results of category 0 and category 1, respectively, and the AUC
area of the RF is 0.86 and 0.98 for predicting the results of category
0 and category 1, respectively. The AUC area of the GA-RF in
predicting the results of category 0 and category 1 is higher than that
of the RF, which has a higher degree of accuracy and differentiation.

As shown in Figure 4, 5, the results of GA-RF on 3,000 datasets
are comparedwith the experimental results of RF on 4,000 and 5,000
datasets. The AUC area of GA-RF and RF prediction category 1
reaches 0.99, which shows that GA-RF can achieve the same effect as
RF prediction category 1 with less datasets. However, even if more
data sets are used, the accuracy of RF in predicting category 0 is still
not as good as GA-RF.

The GA-RF model performs better than RF model on ROC
curve, which is due to the optimization of key aspects of the model
by genetic algorithm, including feature selection, hyperparameter
adjustment, ensemble learning effect and generalization ability
improvement. This analysis result can provide guidance for further
improving and optimizing the model, so as to obtain better
prediction performance and application effect.

4.3.3 Error analysis
Figure 6 shows the results of the Root Mean Square Error

(RMSE) calculation for the four models on the test set. From the
figure, it can be seen that the GA-RF has the lowest rootmean square
error value of 0.1878. The RF has a slightly higher error than the
GA-RF in the prediction task. The SVM, as a traditional machine
learningmodel, has the largest root mean square error value.The LR
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TABLE 2 Comparison of assessment indicators.

Method Accuracy(%) Macro_P(%) Macro_R(%) Macro_F1(%)

GA-RF 91.44 92.31 91.44 91.49

RF 76.67 79.58 76.67 75.42

SVM 68.22 66.85 68.22 67.09

LR 77.67 77.09 77.67 77.19

FIGURE 3
ROC curve on 3,000 datasets.

FIGURE 4
ROC curves of GA-RF on 3,000 datasets and RF on 5,000 datasets.

has an average prediction effect with an error value between the RF
and the SVM. Therefore, the results based on the root mean square
error values show that theGA-RF performs the best in predicting the
grid fault types with higher prediction accuracy and smaller error
compared to the other models.

FIGURE 5
ROC curves of GA-RF on 3,000 datasets and RF on 4,000 datasets.

FIGURE 6
The schematic of RMSE calculations.

Error analysis further shows the effectiveness of this method
in power grid fault prediction, proves the practicability of
this method in power grid operation safety and reliability,
and also provides powerful decision support for power system
managers to help them effectively manage and optimize power
grid operation.
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4.4 Calculation cost analysis

Using GA to optimize parameters may increase the initial
calculation cost, because GA needs to find the optimal
superparameter combination through multiple generations of
selection, crossover, mutation and other operations. However, this
process can effectively reduce the evaluation of invalid parameter
combinations, thus reducing unnecessary calculations in the
subsequent stage. The overall calculation cost will be lower than
RF. The training time of SVM is closely related to the number and
dimension of samples. Especially in the case of high dimensions, the
computational complexity increases exponentially. Very consuming
computing resources and time. LR is usually a relatively lightweight
model with the lowest computational cost. However, its high
dependence on feature selection means that the performance of
the model may be limited in some cases.

5 Conclusion

This paper collects and analyzes power grid fault types
and meteorological data, and establishes a Random Forest (RF)
grid fault prediction model based on Genetic Algorithm (GA)
optimization (GA-RF).

• The integration of Genetic Algorithm (GA) with Random
Forest (RF) for meteorological fault prediction in power
grids is a novel approach. GA is used to optimize the
hyperparameters of RF, which significantly improves the
model’s performance. This combination allows for a more
accurate and comprehensive prediction of power grid faults
compared to traditional models like RF, SVM, and LR, as
demonstrated by the enhanced evaluation metrics such as
Accuracy,Macro_P,Macro_R,Macro_F1.

• The utilization of meteorological variables along with fault
types enriches the dataset, providing a more in-depth
understanding of the complex relationships that lead to
power grid failures. This multi-faceted dataset approach is an
important contribution as it can potentially guidemore targeted
grid management and preventive measures.

The GA-RF shows good prediction performance in grid fault
prediction, which has a broad application prospect and provides
an effective tool and method for grid management and operation.
However, further research and practice are still needed to verify
the reliability and stability of the model. And more optimization
strategies and model improvement methods are also explored to
meet the ever-changing demands and challenges of the grid system.
As the power sector increasingly seeks smart and resilient solutions,
the continued evolution of such models will play a critical role in
shaping the future of grid management and reliability.
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