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The nuclear ground state properties of 63Co and 63Ni nuclei have been
investigated within the framework of the relativistic mean field (RMF)
approach. The RMFmodel with density-dependent meson-exchange (DD-ME2)
interaction is used to calculate the potential energy curves (PECs) and nuclear
ground state deformation parameters (β2) of

63Co and 63Ni. The blocking effects
of the unpaired nucleon are considered using the equal filling approach for the
odd-A system. Later, the β-decay properties, including the stellar weak rates and
Gamow–Teller (GT) strength of 63Co and 63Ni, are studied using the proton-
neutron quasiparticle random-phase approximation (pn-QRPA) model. The β2
values computed from the RMFmodel are employed in the pn-QRPA framework
as an input parameter for the calculations of β-decay properties for 63Co and
63Ni. The stellar rates are compared with the projected shell model (PSM) results.
For all densities, the pn-QRPA rates are found to be higher than the stellar
rates computed via the PSM to a factor of 1.3 or more. The findings reported
in the present investigation might be useful for simulating the late-stage stellar
evolution of massive stars and the s-process of nucleosynthesis.

KEYWORDS

pn-QRPA, β-decay properties, GT strength distribution, deformation parameter, RMF
model, stellar rates

1 Introduction

The rapid neutron-capture process (r-process) is the primary nucleosynthesis
mechanism responsible for the production of nuclei more massive than iron [1, 2]. The r-
process often occurs in a stellar exploding scenario with a high neutron density flux. It was
noted that at the same astrophysical parameters of constant density and temperature, it is not
possible to synthesize all of the nuclearmatter simultaneously [3, 4]. Hence, neutron capture
proceeds farmore quickly than competing beta decay.The larger neutron-fluxmatter, which
has comparably little and roughly constant Sn (neutron separation energy), is followed by
the r-process route. The r-process flow of matter slows at neutron magic shell isotones. The
trajectory of the r-process and the abundance distribution are significantly influenced by the
half-life predictions.

The Gamow–Teller (GT) transition is widely believed to contribute to the stellar rates
[5]. GT distributions have been produced experimentally using various approaches [6, 7].
The GT strength may be measured by charge-exchange reactions for nuclei in or close to
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the beta stability valley under terrestrial conditions when the parent
nuclei stay in their ground states [8]. Several nuclei located beyond
the beta stability valley play a crucial role in various astrophysical
processes, including the r-process, the rp-process, and neutron star
cooling. In extremely hot and dense stellar scenarios, nuclei may
become thermally populated in their excited states. Existing study
techniques are still insufficient to conduct a thorough investigation
into the GT strength of nuclei beyond the beta stability valley or
when the parent nuclei exist in their excited states.

Weak interactions between finite nuclei hold significance
in various disciplines, including particle physics and nuclear
astrophysics [9–11]. Reliable weak-interaction rates of finite nuclei
in high temperatures and high-densities stellar scenarios are crucial
for understanding astrophysical challenges like stellar advancement
and the origins of heavy elements. There are three different sorts
of implications from stellar weak-interaction processes: converting
neutrons to protons, reducing the density of positrons or electrons
inside the stellar environment, and neutrino emissions [12–17].
Understanding the core-collapse supernova is therefore dependent
on the stellar weak rates [18], the s-process (slow neutron-capture
process) [19, 20], the r-process (rapid neutron-capture process) [21],
and the rp− process (rapid proton-capture process) [22].

The GT strength and the weak-interaction rates have been
studied theoretically using a variety of nuclear structure models
that have been developed over the past few decades. Fuller,
Fowler, and Newman (FFN) accomplished groundbreaking work
for the systematic calculation of nuclear stellar weak-interaction
rates [12–14]. For the analysis of GT transition and stellar weak-
interaction rate, themost dependable approach in current practice is
the shell model (SM), which has a full diagonalization of an effective
Hamiltonian in a selected model space [23]. Additional methods are
anticipated for theGT strength and stellar weak rates in applications,
such as the hybrid model based on the shell model Monte Carlo
approach and the random-phase approximation (RPA) [24], the
quasiparticle random-phase approximation (QRPA) [25], and the
most recent traditional projected shell model (PSM) [26, 27].

Massive stars have an onion-like structure prior to the supernova
stage, where the Fe, Co, and Ni mass-region nuclei play crucial
roles in the core. Depending on neutron excess, nuclear beta
decays and electron captures compete before the core collapses [28].
However, it is anticipated that most heavy nuclei close to or inside
the beta stability valley originated from the s-process. 63Ni is a
potential candidate for the s-process and similarly, 63Co is a potential
candidate in the pre-supernova collapse stage.

In the present work, we employed the RMF approach with
density-dependent meson-exchange interactions to examine the
nuclear ground state properties, including the binding energies and
β2 related to A = 63 (63Co and 63Ni). We analyzed the potential
energy curves (PECs) that are important for the extraction of β2.
For the analysis of GT strength and stellar weak rates of 63Co and
63Ni, we utilized the pn-QRPA approach.We revised the calculations
based on our present recipes to investigate beta decay properties.
For example, our first aim is to extract the ground state deformation
parameter (β2) from theminima of relative energy curves computed
via the RMF framework. Then, we will check the potential effects
of β2 on the GT strength distributions and stellar weak rates for
63Co and 63Ni. The present model-based analysis is compared with
previously observed and predicted data.

The paper is organized as follows. In Section 2, we provide a
brief explanation of the RMF and pn-QRPAmodels used to calculate
the nuclear structure and β-decay properties, respectively. Section 3
presents our resultswith relevant discussion. Section 4 concludes the
findings of the current investigation.

2 Theoretical framework

2.1 The RMF model

The RMF model is a theoretical tool used for the description
of nuclear structure properties of nuclei (see [29] and related
references). The preliminary model [30] struggled to describe
nuclear surface features and the incompressibility of nuclear matter.
To address this, a nonlinear model was developed [29]. The later
versions of the model were termed covariant density functional
theory and included a density-dependent meson-exchange model
[31]. In the present investigation, the ground state parameters for
nuclei have been determined by employing the density-dependent
meson-exchange (DD-ME2) [32] version of the RMF framework.
According to the RMF model, nucleons interact by exchanging
various mesons and photons [30]. The first version of the RMF
model ran into several issues while attempting to describe the
incompressibility of nuclear matter and the surface characteristics
of nuclei. This led to the introduction of the model’s nonlinear
variant [29]. Subsequent versions of the RMF framework, known
as covariant density functional theory, developed with elements
including point coupling (PC) and meson-exchange (ME) [31, 33,
34]. We utilized the density-dependent -(ME) framework in our
analysis. The density-dependent meson-exchange variant of the
RMF model considers the isoscalar scalar σ meson, the isoscalar
vector ω meson, and the isovector vector ρ meson fields for the
analysis of nuclear matter and single-particle nuclear properties.
In the DD-ME model, the coupling constants are self-consistently
governed by nuclear functions. The definition of the Lagrangian
density is given below.

LDDME = ψ̄[γμ (i∂
μ − Γωω

μ − Γρτ ⋅ ρμ) − (M− Γσσ)

− eγμAμ
1− τ3
2
]ψ− 1

2
(∂μσ∂μσ−m2

σσ
2)

−1
4
ΩμνΩμν +

1
2
m2

ωω
μωμ −

1
4
R⃗μν ⋅ R⃗μν

+1
2
m2

ρρ⃗
μ ⋅ ρ⃗μ −

1
4
Fμν ⋅ Fμν.

(1)

In Equation 1, the terms Γσ, Γω, and Γρ depend on the (nucleon)
density, which is further defined by Equation 2:

Γi (ρ) = Γi (ρsat) fi (x) , (2)

where i is generalized for the ρ, ω, and σ, respectively. Similarly, x
is the ratio of ρb (density of baryon), and ρsat (density of baryon at
saturation). f(x) is defined for the σ or ωmeson by Equation 3:

fj (x) = aj
1+ bj(x+ dj)

2

1+ cj(x+ dj)
2 , j = ω, σ (3)

whereas for the ρmeson, f(x) is defined by Equation 4:

fρ (x) = e
−aρ(x−1). (4)
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TheDD-ME2 interactions ([35–38]) are often employed as covariant
density functionals in the DD-ME model.

Studying even-even systems within the mean field approach is
a good approximation. In this case, the configurations, neglected
above the mean field ground state, are 4- or higher-quasiparticle
(qp) configurations. The 2-qp configurations do not couple to the
Hamiltonian (H20 = 0). Mixing configurations are relatively few
and separated by the pairing gaps. The exact solution has only a
small admixture of higher qp configurations (4-qp and higher).
On the other hand, investigating odd-A nuclei using the RMF
model is rather challenging. In this case, there are many 3-qp
states in the region close to the ground state, which may mix. The
pairing gap even increases the level density of neighboring 1-qp
states. Only a few of the H31 matrix elements vanish. The mean
field approximation in odd-A cases is not as good as in even-even
nuclei. Of course, sometimes symmetries help (K-value in deformed
nuclei), but this is not always the case. We performed the HFB
calculations in odd-A systems by using the blocking technique.
The blocking was carried out by replacing one U-vector with the
corresponding V-vector (see Section 6.3.2 of [39]). We carried out
the blocking calculations with small modifications of the HFB code
[40]. Pairing correlations play an important role for open-shell
nuclei, and the Bardeen–Cooper–Schrieffer (BCS) approximation
was used to tackle these correlations. Furthermore, constant G
approximation [41] was used for the PEC calculations.

2.2 The pn-QRPA model

The pn-QRPA model is employed to analyze GT strength
distributions and stellar weak rates. The Hamiltonian configuration
in the pn-QRPA model may be characterized using Equation 5:

HQRPA =Hsp +Vpair +Vpp
GT +V

ph
GT. (5)

The Hamiltonian for a single particle is denoted as Hsp, while
Vpair represents the interaction between nucleons. The terms Vpp

GT
and Vph

GT correspond to interactions involving particle-particle
(pp) and particle-hole (ph) GT interactions, respectively. Wave
functions and energies of individual particles are calculated via
the Nilsson model [42]. The oscillator constant is determined
using ℏω = (45 A−1/3 − 25 A−2/3). Other crucial factors affecting
weak-interaction rates consist of β2, the nucleon pairing gap
(Δnucleon), parameters of the Nilsson potential (PNP), and the Q-
values. The PNP parameters were sourced from [43], and Q-
values were derived through the calculation of mass excess values
as presented in the compilation [44]. In order to obtain proton
and neutron quasiparticle energies and occupation probabilities,
the BCS equations were solved with pairing gaps computed using
Equations 6, 7:

Δnn =
1
8
(−1)A−Z+1 [2Sn (A+ 1,Z) − 4Sn (A,Z) + 2Sn (A− 1,Z)] , (6)

Δpp =
1
8 (−1)

1+Z [2Sp (A+ 1,Z+ 1) − 4Sp (A,Z)

+ 2Sp (A− 1,Z− 1)] ,
(7)

where Sp (Sn) is the separation energy of protons and neutrons,
respectively. As mentioned earlier, the β2 values were determined
using the RMF model. β2 is determined by using Equation 8:

β2 =
125Q2

1.44A2/3Z
, (8)

where Q2 denotes the electric quadrupole moment chosen from
[45] or the RMF framework. In the pn-QRPA model, the charge-
changing reaction transitions are defined by phonon creation
operators. The pn-QRPA phonons are given as Equation 9:

A+ω (μ) =∑
pn
(Xpn

ω (μ)a+pa
+
̄n −Y

pn
ω (μ)anap̄) . (9)

Here, the summation is taken on all the p-n pairs having μ = mp −
Mn = 0, ±1, and mn(mp) represents the angular momentum third
component of the neutron (proton). The operators a+n(p) signify
the creation of a quasiparticle (q.p) state for either a neutron or
a proton, and p̄ represents the time-reversed state of p. In the
context of QRPA phonons, the theory defines the ground state as the
vacuum, symbolized by Aω(μ)|QRPA〉 = 0. The phonon operator’s
excitation energy (ω) and amplitudes (Xω,Yω) are acquired by
solving Equation 10, which is the well-known RPA equation.

[
C D
−D −C

][
X
Y
] = ω[

X
Y
], (10)

Here, X(Y) represent forward (backward) amplitudes. The ω shows
the energy eigenvalues of the eigenfunctions, and the two sub-
matrices are specified by Equations 11, 12:

Cpn,p′n′ = V
pp
pn,p′n′ (upunup′un′ + vpvnvp′vn′) +V

ph
pn′,p′n′ (upvnup′un′ + vpunvp′vn′)

+ δ(pn,p′n′)(εn + εp) , (11)

Dpn,p′n′ = +V
pp
pn,p′n′ (upunvp′vn′ + vpvnup′un′)

−Vph
pn,p′n′ (upvnvp′un′ + vpunup′vn′) . (12)

Here, the εn(p) shows the q.p energies of the neutron (proton),
whereas vp(n) and up(n) represent the occupation and unoccupation
amplitudes and are treated in the BCS theory. The detailed solution
of the RPA matrix equation can be seen in [46]. The pairing force
is calculated using the BCS approximation. These calculations were
performed separately for both proton and neutron. We took a
constant pairing force of strength G (Gp and Gn for protons and
neutrons, respectively),

Vpair = −G ∑
jkj′k′
(−1)l+j−ks†jks

†
j−k × (−1)

l′+j′−k′sj′−k′sj′k′ , (13)

where l is orbital angular momentum, and summation over k and
k′ is restricted to positive values. The proton-neutron residual
interactions take place through the pp and ph GT forces, which
were characterized by interaction constants κ and χ, respectively,
in the pn-QRPA framework. The pp GT force is explained using
Equations 14, 15:

Vpp
GT = −2κ

1

∑
μ=−1
(−1)μO†μO−μ, (14)

with

O†μ = ∑
jpkpjnkn

< jnkn ∣ (t±σμ)
† ∣ jpkp > ×(−1)

ln+jn−kns†jpkps
†
jn−kn
. (15)
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In order to calculate the ph GT force, we used Equations 16, 17:

Vph
GT = +2χ

1

∑
μ=−1
(−1)μUμU

†
−μ, (16)

with

Uμ = ∑
jpkpjnkn

< jpkp ∣ t± σμ ∣ jnkn > s
†
jpkp

sjnkn . (17)

The κ and χ interaction strengths were determined using the
relation 0.58/A0.7 and 5.2/A0.7, respectively, taken from [47].
Our results fulfilled the model-independent Ikeda sum rule
[48]. The reduced GT transition probabilities were calculated
using Equation 18:

BGT (ω) = |⟨ω,μ‖τ±σμ‖QRPA⟩|2, (18)

where σμ is the spin operator, and τ± = τx ± ιτy are the
isospin raising and lowering operators, respectively. The
model-independent Ikeda sum rule may be evaluated
using Equation 19 for the operators:

S− + S+ =∑
f
|〈 f|Ô−|i〉|2 +∑

f
|〈 f|Ô+|i〉|2 = 3 (N−Z) , (19)

where |i〉 represents the parent state, and | f〉 represents the daughter
state connected via the GT operator. For further details, see [49–51].

The stellar β-decay (we subsequently refer to this as electron
emission EE) and positron capture (PC) rates between parent
level n and daughter state m have been determined utilizing
Equation 20:

λEE/PCmn = ln 2
fEE/PCmn (ρ,T,E f)

( ft)mn
, (20)

where ( ft)mn corresponds to the GT and Fermi transitions shown in
Equations 21–23:

Bmn = (gA/gV)
2Bmn

GT +B
mn
F , (21)

Bmn
GT =

1
2Jm + 1
⟨n‖∑

k
τk±σ⃗k‖m⟩|2, (22)

Bmn
F =

1
2Jm + 1
⟨n‖∑

k
τk±‖m⟩|2. (23)

The construction of low-lying excited levels and computation of
nuclear matrix elements in our present analysis may be found in
[46]. fmn is the phase space and depends on the core temperature
(T), core density (ρ), and Fermi energy (E f). It was calculated using
Equation 24:

fEEmn = ∫
Eβ

1
Ek√E2k − 1(Eβ −Ek)

2F(+Z,Ek) (1−R−)dEk, (24)

forEE decay rates.The fnm forPCwere computed using Equation 25:

fPCmn = ∫
∞

El
Ek√E2k − 1(Eβ +Ek)

2F(−Z,Ek)R+dEk, (25)

where Ek is the kinetic energy of the electron, and El is the total
capture threshold energy. The Fermi functions, F(±Z,Ek), were

calculated using the method described in [52]. The total β decay
energy was determined using Equation 26:

Eβ =mp −md +Em −En, (26)

where En is the excitation energy of the daughter nucleus having
massmd, while Em is the corresponding quantities of parent nucleus
withmassmp.Thedistribution functions have been determinedwith
Equations 27, 28:

R− = [exp(
Ek −E f

kβT
)+ 1]

−1

, (27)

R+ = [exp(
Ek + 2−E f

kβT
)+ 1]

−1

, (28)

where kβ is the Boltzmann constant. The electron number density,
which is related to nuclei and protons, was determined using
Equation 29:

ρYeNA =
1
π2
(
mec
ℏ
)
3
∫
∞

0
(R− −R+)p2dp. (29)

Here, NA represents the Avogadro number, Ye is the ratio of
the electron number to the baryon number, and p represents the
momentum of positron/electron. The total stellar weak rates were
computed using Equation 30:

λEE/PC =∑
mn

Pmλ
EE/PC
mn , (30)

where Pm, which was calculated using the Boltzmann distribution, is
the occupancy probability of the parent excited states.We continued
to sum the initial and final states until our rate computation reached
the necessary degree of convergence.

3 Result and discussion

In the initial phase of our Investigation, we are focusing on the
nuclear structure properties of 63Co and 63Ni isobars by utilizing the
DD-ME2 interaction parameters within the RMF framework. The
oddA nuclei are considered in the present investigation utilizing the
relativistic Hartree–Bogoliubov (RHB) approach. We consider the
blocking effects of the unpaired nucleon, which are included in the
equal filling assumption, in order to compute the odd-A system. We
examined the β2 for

63Co and 63Ni in detail. To accomplish this, we
analyzed the PECs for 63Co and 63Ni within the RMF framework.
The constraints on the quadrupole moment are implemented in
order to compute binding energy for the analysis of PECs.

In Figure 1, the PECs are expressed as a function of β2 for
63Co

and 63Ni. For the analysis of PECs, the lowest binding energy is used
as a reference. The PECs are derived by analyzing the differences
between the predicted binding energy for certain β2 values and
the reference binding energy for 63Co and 63Ni. Nuclear shapes
are determined by the PEC minima. Prolate nuclei resulted from
PEC minima located on the positive value of β2, whereas for the
oblate shape nuclei, the PEC minima are found on the negative
values of β2. In the present investigation, the nuclear shapes in
the ground state for 63Co and 63Ni are predicted to be prolate
and oblate, respectively. Furthermore, one can see that two energy
minima appear on both the prolate and oblate sides of the PECs.
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FIGURE 1
Binding energy against the constraint β2 for

63Co and 63Ni within the RMF framework via DD-ME2 interaction.

The oblate energy minimum for 63Co is more shallow than the
prolate energy minimum. Therefore, the prolate shapes have a
more probable occurrence in the ground state for 63Co. The oblate
minimum existed at excitation energy 0.156 MeV. Similarly, 63Ni
has an oblate shape in the ground state; however, it has prolate
energy minima that existed at excitation energy 0.412 MeV. In
addition to these structural changes, the present analysis predicts
a prolate-oblate shape coexistence with a small energy difference,
as displayed in Figure 1. The phenomenon of shape coexistence is
associated with the occurrence of a low-lying state arising from
intruder configurations in addition to the ground state. The β2
computed via the RMF framework, where the DD-ME2 interaction
for the 63Co is 0.188, and the interaction for 63Ni is −0.264. The
earlier computed β2 for 63Co was 0.108 and for 63Ni was 0.107
[45]. They predicted a prolate shape for both nuclei. Similarly, on
the website [53], the information related to the PEC is displayed
graphically, where 63Co has a prolate shape, and 63Ni has an
oblate shape.

The nuclear deformations computed via the RMF model are
used as an input parameter in the pn-QRPA model to perform self-
consistent calculations of the β-decay properties, including the GT
strength and stellar rates of 63Co and 63Ni.

At higher temperatures and densities, 63Co is one of the most
important candidates in the core collapse of a massive star. Figure 2
depicts the present model-based computed GT strength along
with the measured GT strength [54] and previously computed GT
strength based on PSM [27] within theQ-window. It is obvious from
Figure 2 that the present computed GT strength agrees well with
the results of [54]. The pn-QRPA calculation based on the RMF
interactions predicted the strength distribution better than [27].The
splitting of the GT strength into a strong and weak state close to
2.0 MeV fits well with the experimental results. We observe that the
present scheme seems able to predict effects due to the fine nuclear
structure.

FIGURE 2
GT strength for 63Co via β2 from the RMF model calculated in the
present work (open circles) along with GT strength of [27] (solid
squares) and [54] (lower triangles).

The temperature conditions in the stellar environment are so
high (in order of 109 K) that parent nuclei in excited states have high
likelihood of occupancy. This means that the contributions of each
excited state to the total weak rates are quantifiable. Consequently, all
partial decay rates resulting from distinct parent excited states must
be included in the analysis of the microscopic rate. This state-by-
state analysis of weak rates is the foundation of the pn-QRPAmodel.
The pn-QRPA model was initially used to determine microscopic
weak-interaction rates for a large number of nuclei far from the
stability line. The pn-QRPA technique utilizes a mean field basis
and potentials, including the Woods–Saxon potential, the Nilsson
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FIGURE 3
Computed stellar β decay rates for 63Co along with the data of Zi et al. [27] and LLSM [5].

FIGURE 4
Computed stellar β decay rates for 63Ni along with the data of Zi et al. [27].
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potential, and the finite-range droplet model. Here, we investigated
the β− rates of 63Co → 63Ni at ρ Ye = 107−10 g cm−3. At high
temperatures, the various excited states of the daughter nucleus
have a sizeable impact that could additionally contribute to stellar
weak decay rates. It is obvious from Figure 3 that at lower densities
and high temperatures, the β− rates are maximum. The present pn-
QRPA-based analysis provides larger decay rates than the PSM and
smaller decay rates than the results mentioned in [5]. For example,
at ρYe = 107 g cm−3 and T9 = 10, the present model-based β−

rates are higher by a factor 1.3 than PSM. Meanwhile, at the same
temperature and density, the rates of [5] exceeded the pn-QRPA
rates by a factor of 4. Almost the same behavior is followed at ρYe
= 108 g cm−3 and T9 = 10. At higher density ρYe = 1010 g cm−3,
the pn-QRPA rates almost collapse with the PSM and [5] computed
rates as mentioned in Figure 3. The GT strength has a dominant
impact on the stellar beta decay rates.Furthermore, we analyzed
the stellar rates for 63Ni → 63Cu in the s-process environments
at ρ Ye = 102−5 g cm−3 and T9 ≤ 1. The present model-based
results for rates, along with the predictions of PSM [27], are
depicted in Figure 4. We found that at T9 ≊ 1, the present pn-QRPA
based predictions for rates at all densities (ρYe = 102−5 g cm−3)
show good agreement with the rates computed via PSM in [27].
One should note that the stellar weak rates computed at lower
temperatures are considerably smaller than rates computed at higher
temperatures. The primary factor contributing to the decay rates
at low temperatures is the transition between ground states. As
the temperature increases, the stellar population probability of the
parent nucleus (63Ni) in the ground state decreases while the excited
state increases, leading to an increase in the decay rates with the
temperature. The stellar weak-interaction rates for both nuclei,
that is, 63Co and 63Ni, have been computed within a complete
microscopic fashion without assuming the Brink–Axel hypothesis
for the analysis of GT strength in the excited states. The small
difference is attributed to the usage of the Brink–Axel hypothesis
and the incorporation of the quenching factor in the shell model
calculation.

4 Conclusion

The RMF model has been utilized to analyze the nuclear
structural properties, including PECs and deformation parameters
for 63Co and 63Ni. The analysis was performed using the DD-
ME2 interaction under the blocking technique. The RMF-based
analysis predicted an oblate shape for 63Co and a prolate shape
for the 63Ni in their ground states. The β2 values computed
via the RMF framework are later utilized as input parameters
in the pn-QRPA model to perform the analysis of the GT
strength and stellar weak rates. The calculated GT distributions
were found to be in reasonable agreement with the measured
data. The stellar weak-interaction rates for 63Co and 63Ni have
been computed within a complete microscopic fashion without
assuming the Brink–Axel hypothesis for the analysis of GT
strength in the excited states. The pn-QRPA-based computed
weak rates have been compared with the previously shell model-
based computed rates. The reported weak rates are larger than
the previous calculations by as much as a factor of 4. The

difference is attributed to the usage of the Brink–Axel hypothesis
and the incorporation of the quenching factor in the shell model
calculation. The reported stellar rates could prove useful for r-
process nucleosynthesis calculations and simulations of late-time
stellar evolution.
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