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Sodium magnetic resonance imaging is a non-invasive technique that provides
information about sodium levels in tissues. It has significant applications in brain
research due to the important role of sodium in both normal brain function
and pathological processes. Total sodium concentration is the most widely
used derived metric; it offers insights into sodium content across different
brain regions. However, the functional role of sodium is closely linked to its
distribution within intra- and extracellular spaces. Sodium osmotic homeostasis
affects the intracellular volume fraction, a parameter that can be altered in
various neurological disorders. Unfortunately, distinguishing intracellular from
extracellular sodium nuclear magnetic resonance signals is challenging, even
with the use of contrast agents. In recent years, several methodologies have
been proposed to study sodium compartmentalization in humans, typically
involving tailored acquisition techniques and modeling approaches. This mini-
review provides a brief overview of the challenges, methodologies, and potential
applications of compartmentalized sodiumMR imaging in human neuroscience.

KEYWORDS
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Introduction

Magnetic resonance imaging (MRI) is a non-invasive imaging technique widely used
in clinical practice. Conventional MRI is based on hydrogen nuclei because of their large
gyromagnetic ratio and abundance in the human body. Notwithstanding the ubiquitous
presence of 1H-based MRI and its flexibility for multiple contrasts, other nuclei can
offer insights into specific mechanisms. In recent years, the use of heteronuclear MRI,
and in particular, of sodium MRI, has significantly expanded. The dynamics of sodium
is crucial for several physiological processes, including neuronal excitability, synaptic
transmission, and cellular energy metabolism; indeed, approximately 15% of the gray
matter energy budget and 44% of the white matter ATP turnover is believed to be
used only to maintain the resting potential, neglecting signaling. Overall, up to 50%
of the cortical energy budget is assigned to Na+/K+ ATPase [1] and is thus needed to
maintain sodium and potassium concentration gradients across the cellular membrane.
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For sodium, the intracellular and extracellular concentrations
are approximately 10–15 mM and 140 mM, respectively [2,
3]. Dysfunctions in sodium homeostasis are associated with
various neurological conditions, including multiple sclerosis (MS),
Alzheimer’s disease (AD), stroke, epilepsy, and brain tumors [4].
Therefore, sodium represents a promising biomarker [5].

Sodium is the most abundant cation, providing the second
strongest nuclear magnetic resonance (NMR) signal in the human
body after hydrogen, but its lower gyromagnetic ratio (11.3 MHz/T),
lower abundance in the human brain, and nuclear spin of 3/2
imply a sensitivity which is only 9.3% of that of the proton.
These factors lead to a poor signal-to-noise ratio (SNR) [2], which
is partially compensated by the use of ultra-high field strengths
(7 T ad above) [6–9]. Sodium is characterized by a quadrupole
magnetic moment, leading to two distinct T2 relaxation times: a
slow component of 15–40 m and a fast component of 0.5–8 ms
[10–13]. The fast component accounts for approximately 60% of the
total sodium NMR signal, requiring MR sequences with very short
echo time (TE).

After the first pioneering sodium studies on humans and intact
animals, performed in the early 1980s [14, 15], the feasibility of 23Na-
MRI in clinical settings has benefited from recent advances in MRI
technology and acquisition strategies. In particular, non-Cartesian
k-space sampling offers advantages in terms of spatial resolution and
acquisition time [16], while ultrashort TE (UTE) or zero TE (ZTE)
sequences allow the detection of the short T2 tissue components
[17]. UTE sequences begin the acquisition with a minimal delay
after the excitation pulse [18], while in ZTE sequences, the sampling
gradients are turned on before the radiofrequency (RF) excitation
pulse. In ZTE sequences, the center of the k-space is crossed at zero
echo time, and due to the switching of hardware from the transmit
to receive mode, the center of the k-space is not sampled. Different
strategies have been developed to overcome this problem, such as
single-point acquisitions (PETRA) [19]. UTE and ZTE acquisition
techniques can be customized in terms of SNR, total acquisition
time, and point spread function by adapting the density of the
k-space points. Examples include density-adapted radial sequence
[20], 3D cones [21], twisted projection imaging (TPI) [16, 22], and
FLORET [23]. Non-Cartesian sequence reconstructionmethods use
regridding, which involves interpolating the sampled data points in
a rectilinear grid [24], and performing fast Fourier transform (FFT)
or non-uniform FFT [12] on the regridded data [25].

Sodium compartmentalization

Sodium MRI of the brain can follow different approaches
according to the information of interest. The basic approach
treats the brain as a single compartment and uses UTE or ZTE
sequences to collect spin-density weighted (SDW) 23Na MR data.
Then, a calibration is performed in order to determine the tissue
sodium concentration (TSC). However, changes in TSC can be
the result of independent changes within the intracellular and
extracellular compartments (IC and EC, respectively). Moreover,
pathologies are often associated with changes in the volume
fraction [26]. Distinguishing IC from EC sodium requires a
combination of acquisition techniques and mathematical models.
Most experimental approaches exploit the different relaxation times

between bound sodium and free sodium [27], assuming that the
intracellular component is mainly composed of bound sodium.
Being generally suppression techniques, that is, techniques that
selectively suppress or filter a component of the signal, they tend to
suffer from low SNR and incomplete suppression.

Sequences

Some sequences have been introduced to isolate IC sodium,
but their effectiveness is still debated. These include triple quantum
filtering (TQF), double single-quantum (SQ) acquisition, inversion
recovery (IR), and bi-exponential weighting.

TQF
The sodium nucleus is a spin 3/2 system with four degenerate

spin states (3/2, ½, −½, and −3/2), and is thus characterized by a
quadrupolar moment. The transition between the levels can occur
via single, double, or triple quantum coherence; SQ relaxation
involving the ±3/2 states (outer levels) is faster (T2short) than the
relaxation involving the inner levels (T2long). However, if sodium is
free (that is, the motional correlation time is much smaller than the
Larmor period), the two exponential decays degenerate to a single,
longer decay time [13].

The TQF sequence consists of three excitation pulses with the
same flip angle and three different phases.The delays between pulses
create higher-order coherences, and the read-out signal consists of
contributions from all coherence pathways, which can be selected
by phase cycling or gradients. The goal is to retain the signal
from bound sodium (intracellular) [28]. The intracellular sodium
molar fraction (ISMF) and the TSC can be measured directly with
MRI, while the intracellular sodium concentration (ISC) and the
intracellular volume fraction can be obtained by the combination of
the first two quantities (see theMathematical models section). These
parameters can give complementary information about tissue state:
for example, an increase of TSC and ISC with no increase of ISMF
can follow cellular death, while an increase of ISMFwith no increase
of TSC is associated with cell swelling [29]. TQF presents several
problems: low signal from filtering, high SAR from the multiple RF
pulses, and the dependence on T2 leads to low SNR, long acquisition
times, and poor quantification. Fiege et al. proposed a method for
simultaneous acquisition of single quantum and TQF to reduce
total scan time, called SISTINA [30], which was later optimized and
enhanced to include relaxometry [31, 32].

Dual SQ acquisition
Bound (intracellular) sodium is characterized by a bi-

exponential decay with a T2short component amounting to
approximately 60% of the signal [7, 33–41]; the contribution of
the T2long component can be obtained by subtracting an SQ image
acquired with a short echo time, where the T2short component
is suppressed, from one obtained with an ultrashort echo time,
including signals from nearly all sodium nuclei. This technique
is characterized by lower SAR and higher SNR than TQF at the
expense of incomplete suppression of the T2long signal [27].

IR
Inversion recovery acquisition is a widespread technique used to

suppress the signal coming from a specific compartment, exploiting

Frontiers in Physics 02 frontiersin.org

https://doi.org/10.3389/fphy.2025.1487822
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Egidi et al. 10.3389/fphy.2025.1487822

different T1 relaxations between tissues. The sequence is a standard
spin echo preceded by a 180° RF preparation pulse, where the
excitation pulse is applied at the specific inversion time (TI)
corresponding to the minimum magnetization in the compartment
to suppress. While the extracellular space is rich in molecules, it
is less dense than cytoplasm. Thus, EC T1 is expected to be longer
than ICT1 [42], allowing IR-based selective suppression; in IR-based
suppression, SAR canbe high, SNR low, and suppression incomplete.
However, long (soft) inversion pulses reduce SAR. In sodium MRI,
relaxation during long RF pulses cannot be ignored because of
very low T2. It has been shown that by tailoring the duration of
a soft inversion pulse, the different relaxation properties of IC and
EC compartments allow for efficient extracellular signal attenuation
while increasing intracellular magnetization at the EC-nulling TI
(Soft Inversion Recovery FLuid Attenuation, SIRFLA) [42]. In vivo
acquisitions at 4.7 T showed an SNR of 18 for brain tissues and an
SNR of 3 for the cerebrospinal fluid (CSF) [43].

Bi-exponential weighting
Another approach is to differentiate between bound and free

sodium by exploiting the differences in transverse relaxation [44].
The method is still based on multiple-quantum filtering techniques
but with the benefit of improved SNR. Two images with different
contrasts are acquired and subtracted to generate a bi-exponential
weighted image contrast [44]. The first image is an SDW acquired
after the first 90° RF pulse, containing the contribution of all sodium
ions, and the second one is a single quantumfiltering (SQF) acquired
after a second 90° RF pulse, containing mostly signals from mono-
exponentially (free) relaxing sodium. The difference image can be
calculated as follows [44]:

SDIM = SSDW–vSSQF,

where S indicates the signal, DIM is the difference image method,
and v is a weighting factor that takes into account the signal losses
between the two acquisitions due to T2

∗relaxation, namely:

v =
exp(− TE1

T∗2
)

exp(− τ1
T∗2
)exp(− τ2

T∗2
)exp(− TE2

T∗2
),

where TE1 and TE2 are the two echo times of the acquisitions,
and τ1 and τ2 are the preparation time and the evolution time,
respectively. With this method, 3D biexponentially weighted 23Na
images can be obtained with an increase of up to 200% of SNR
compared to TQF [44].

Mathematical models

An estimate of tissue-specific sodium concentration can be
obtained by applying mathematical models to data acquired with
the appropriate weighting. The most used method considers
two compartments, IC and EC, but the inclusion of more
compartments has been proposed. Madelin et al. [2] developed
a three-compartment model by dividing the brain into IC, EC,
and a solid-like compartment constituted of cell membranes and
nuclei, proteins, and other large molecules. The model was further
developed by Gilles et al. [45] to include a CSF compartment.

2CM model
The two-compartment (2CM) approach [8, 46] partitions the

tissue into homogeneous IC and EC compartments, characterized
by volume Vi, sodium amount Mi, and sodium concentration Ci (i
= 1 is IC, and i = 2 is EC). The total sodium concentration TSC (CT
in the equations) is

CT =
M1 +M2.
V1 + V2

The intracellular volume fraction η and the intracellular sodium
molar fraction ISMF (χ in the equations) can thus be written as

η =
V1

V1 + V2
=

C2 −CT

C2 −C1.

χ =
M1

M1 +M2
=
C1

CT
η.

Combining these equations, it is possible to obtain C1 and η in
terms of CT, χ, and C2 [29]:

{{{{
{{{{
{

C1 =
χCTC2

C2 − (1− χ)CT
.

η = 1− (1− χ)
CT

C2

Total sodium concentration CT and intracellular sodium molar
fraction χ are measurable with MRI (e.g., using TQF). C2 is
assumed to be constant in a range between 136 mmol/L and
142 mmol/L [29].

3CM model
The three-compartment model (3CM)adds to IC and EC a solid

compartment (SC, index i = 3) that includes cell membranes, nuclei,
proteins, and other metabolites. The solid compartment has no
sodium content (M3 = 0 mol and C3 = 0 mmol/L) [2, 47, 48]. The
volumes can be expressed by equating V1 +V2 to the fluid (water)
volume fraction w, that is generally 0.7 in the white matter and 0.85
in the grey matter and can be considered equal to 0.775 for the
total brain [49].

V1 = (w− α)VT.

V2 = αVT.

V3 = (1−w)VT.

where α is the extracellular volume fraction. With the 3CM
model, the unknown variables are the extracellular volume
fraction α and the intracellular sodium concentration C1. Two
sodium measurements are required to estimate these quantities,
unsuppressed and suppressed in the EC (e.g., via IR). Considering
the TSC as S1, and the IC signal as S2, C1 and α can be
calculated as [12]:

α =
CT −

C1V1
VT
,

C2

C1 =
C2

C1V1
VT

C2w−CT +
C1V1
VT

,
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where C1V1/VT is the apparent ISC that is observed with EC
suppression, andw can be estimated by segmentation of coregistered
proton images.

4CM model
The four-compartment model (4CM) [45] is a further

refinement of the 3CM. Here, the CSF is considered a distinct
compartment (i = 4), and

V1 = α1VT,

V2 = α2VT,

V3 = (1−w)VT,

V4 = α4VT,

where αi is the volume fraction of each liquid compartment,
that is α1 + α2 + α4 = w. The model uses the same assumptions
of 3CM and considers C4 = C2 ≈ 140 mmol/L. The model is
conceptually similar to 3CM but includes a more realistic
segmentation. The variables are C1, and the volume fractions αi. The
estimation requires the simulation of the signal and a multi-pulse
sequence exploiting the different relaxation between compartments
[45].

Compartmentalized sodium MRI in
brain diseases

23Na-MRI is sensitive to physiological and pathological
processes that happen during the progression of several neurological
diseases [50, 51]: in fact, many brain disorders show sodium
concentration anomalies associated with sodium–potassium pump
dysfunction or cellular membrane impairment, allowing a sodium
MRI to target specific features of the pathology. Anomalies in overall
sodium are often caused by an increase in the intracellular sodium
concentration or the extracellular volume fraction. Therefore,
differentiating the compartments can help and improve the
diagnostic information of sodium imaging.

Anomalies in sodium levels play a crucial role in the
pathophysiology of multiple sclerosis [52]. The most common
form of MS is characterized by a first period of relapsing/remitting
(RR) symptoms that later converts into a secondary progression
phase (SPMS). RRMS is primarily characterized by demyelination,
resulting in impairment of action potential conduction. The
demyelinated axons can experience an overexpression of
sodium channels along their membranes. Albeit this process
re-establishes signal transduction and contributes to clinical
remission in RRMS, it is responsible for higher sodium influx,
resulting in an increased energy demand to maintain resting
potential and sodium homeostasis. Moreover, intra-axonal sodium
accumulation contributes to axonal degeneration by reversal of the
sodium/calcium exchanger that increases intra-axonal calcium (Ca),
ultimately causing irreversible damage, whose accumulation leads
to SPMS [53–55].

Considering the fundamental role of sodium in MS, 23Na-
MRI has been widely employed. TSC has been studied in normal-
appearing white matter (NAWM), normal-appearing grey matter
(NAGM), CSF, and MS lesions [55–58]. Various studies have
shown an increase of TSC in lesions as well as in cortical
gray and white matter across primary, secondary, and relapsing-
remitting multiple sclerosis (RRMS) [55–57]. Additionally, sodium
levels are linked to clinical measures of disability and impairment
[57]. Studies on lesions have demonstrated that TSC is elevated
in contrast-enhancing lesions, T1 hypointense lesions, and T1
isointense lesions, while non-enhancing lesions with a reduced
apparent diffusion coefficient (ADC) exhibit TSC levels that
are comparable to those in NAWM. This consistency in TSC
suggests that the tissue structure may be preserved early on,
prior to any breakdown of the blood–brain barrier (BBB). Thus,
TSC may represent a sensitive biomarker of chronic tissue
abnormalities, BBB disruption, and vasogenic edema in contrast-
enhancing lesions. Normal levels of TSC in lesions with a
decreased ADC may indicate that the lesions are in an early stage
[10, 59, 60].

The well-demonstrated increase of TSC in MS can be driven by
intracellular sodium accumulation, expansion of the extracellular
space, or both [57]. Strategies based on single-quantum, inversion
recovery, and triple-quantum filtering have been used to disentangle
the intracellular contribution [8]. Findings suggest that intracellular
sodium concentration can give complementary information about
MS lesions and inflammatory processes. Petracca et al. [8] found
an increase in ISC in both WM and GM of RRMS patients;
a decrease of the intracellular volume fraction was observed in
several clusters in WM and GM, while changes at the whole-brain
scale were significant only in WM. Interestingly, lesion burden
and disability were correlated to TSC and intracellular volume
fraction but not to ISC, suggesting that the latter is a consequence
of early neuro/axonal metabolic dysfunction, while the former
reflects tissue loss [8]. Studies on lesions have demonstrated a
different intracellular concentration between hyperacute, acute, and
chronic ones [61, 62], suggesting the sensitivity of ISC to reveal
inflammatory mechanisms during the first stage of the disease
(see Table 1).

Alzheimer’s disease is characterized by extracellular deposits of β
amyloid peptides (Aβ). Postmortem studies have shown a correlation
between Aβ accumulation and ion imbalance [69–71]; disruption
of Na+ homeostasis is induced by Aβ oligomers and is responsible
for neuronal network destabilization in the early stage of the disease
[71]. TSC was found to be high in AD patients, suggesting that
sodium imbalance during the progression of the disease might have
a key role in energy failure [72, 73]. However, recent ex vivo studies
have shown that sodium increase in brain tissue does not correspond
to an increase in the CSF, indicating that anomalies can be associated
with the intracellular pool [69]. However, no direct evidence exists
for this hypothesis so far.

Stroke is one of the most common causes of death and the
leading cause of long-term disability. During a stroke, the blood flow
in the brain is compromised, resulting in a breakdown of cellular
energy production, followed by the piling of sodium and calcium in
the intracellular compartment. A measure of intracellular sodium
would have the benefit of being related to the direct pathological
consequence of stroke. A study on non-human primates has shown
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that the duration of brain ischemia can be associated with a
threshold on the TSC beyond which tissue reperfusion would be
of little benefit [74]. Studies on humans have demonstrated how
sodium can be considered a promising biomarker for tissue viability
and cell integrity, and how its integration into clinical practice can
have an impact on future diagnosis and treatments [75–77]. It is
likely that knowledge about IC sodium would help personalized
decisions on reperfusion.

Epilepsy is characterized by recurring seizures, causing a large
inflow of sodium. Intracellular 23Na-MRI is thus an obvious
biomarker to quantify the physiological effects of seizures.Moreover,
cell shrinkage and cerebral atrophy have been reported in epileptic
areas [78, 79]. Both phenomena are associated with an increase
in the extracellular volume fraction, resulting in an increase of
TSC in the epileptogenic zone [80]. An increase in TSC in
epileptogenic zones suggests intracellular sodium accumulation,
even in interictal periods [81], and demonstrates long-term changes
in sodium levels [80, 82]. A decrease in TSC was observed
in a patient who suffered non-convulsive seizures during the
scan, suggesting transient neuronal swelling and reduction of
extracellular volume fraction [82]. Some recent studies [80, 83]
investigated the ratio between T2

∗
short and T2

∗
long, showing an

increase of the short component mainly localized to epileptogenic
zones, whereas TSC was increased in all regions. These results
suggest that a differential weighting of intracellular/extracellular
sodium can be sufficient to highlight specific pathophysiological
phenomena.

Traumatic brain injury (TBI) is the result of acute events in
which an external force damages the brain. TBI causes stretch-
induced damage to the cell membranes along the axons, causing
mechanical damage and mechanoporation [84], triggering ionic
and proteolytic cascades, and ultimately resulting in disruption
of ionic homeostasis. Sodium imbalances following mild TBI are
associated with patient outcomes [85]. Surprisingly, a decrease of
TSC in TBI was reported [84, 85], contrary to what could be
expected. A recent longitudinal study [86] has investigated TSC
levels 3 months after the injury, when no significant variations of
TSC were found, suggesting normalization of the sodium ionic
equilibrium.

Brain tumors represent another important application for
23Na-MRI. The most aggressive are characterized by rapid cell
proliferation and angiogenesis: both of these factors are linked to
a reduced Na+-K+-ATPase activity [87], resulting in an increase
of the intracellular sodium concentration. Cellular proliferation
can also be associated with an increase in extracellular volume
fraction [88]. The level of Na+ in malignant tumors is higher than in
healthy tissues [46, 89–95]. IC sodium is thus a potential biomarker
for cancer staging. Moreover, EC volume fraction is expected
to increase following treatment. Therefore, compartmentalized
sodium measurements are a promising biomarker for evaluating
response to treatment. Studies on compartments have demonstrated
a decrease in the signal associated with intracellular sodium (see
Table 1) [30, 48, 64, 66, 96]. However, Nagel et al. [6] reported
an increased IR signal (associated with intracellular sodium)
for tumors with high proliferation rates: a positive correlation
between the MIB-1 proliferation rate and the IR signal was
found, and no correlation considering TSC values was found.
These results suggest the potential of compartmentalization to

discriminate among different types of brain tumors [6, 67] and their
progression [68].

Technical remarks

The disentanglement of IC and EC sodium needs specific
acquisition sequences and mathematical models. The scanning
sequences developed for selective acquisition from a single
compartment suffer from some limitations: they are based on the
idea that intracellular and extracellular pools are composed of bound
sodium and free sodium, respectively, and have different relaxation
properties, but this hypothesis is likely an oversimplification, leading
to partial or poor compartment specificity [97]. Moreover, all
scanning approaches for compartmentalized sodium quantification
suffer from poor SNR and a very long scanning time.

Sodium imaging is, in general, impaired by hardware and
technical limitations. The challenge with RF technology for sodium
MRI lies in the ability to detect small signals with very short
T2 relaxation times [98, 99], thus requiring high sensitivity and
fast switching between transmit and receive modes. While most
sodium coils used to be custom-built or handmade, commercial
RF coils, including 23Na/1H birdcage coils and surface coils, are
now available. Surface coils are more sensitive, but limited coverage
and highly inhomogeneous B1 field impair quantitative studies [98,
100]. In recent years, phased array sodium RF receive coils have
been introduced. The efficient design of phased array receive coils
and the added benefit of potential parallel imaging are attractive,
but these coils necessitate correction methods for accurate sodium
quantification [26, 101–103]. Acquisition strategies may also be
optimized; recent studies have proposed methods to reduce scan
time using postprocessing with convolutional neural networks [77]
or fingerprinting to simultaneously acquire sodium density and
sodium relaxation parameters and improve sodium MRI resolution
[104–107].

Part of the ongoing research still relies on simulations
and phantom studies. Phantoms with varying sodium and
agar concentrations can simulate the relaxation behavior of
compartments and aid in optimizing sequence parameters.
However, further development is required regarding the quality
of agar phantoms and the development of more stable alternatives
to enhance optimization and sodium quantification [108].

Finally, improvements are expected from the diffusion of deep-
learning-based methods for denoising or model optimization and
fitting, but the relatively limited size of 23Na datasets requires
tailored solutions [109].

Conclusion

The first MRI studies on compartmentalization of 23Na
were presented more than 20 years ago. Because sodium
compartmentalization is directly linked to cellular homeostasis, it
can provide unique, relevant, and specific clinical information about
tissue integrityandphysiology inseveral seriouspathologies, including
cancer and neurodegenerative or neuroinflammatory diseases.

However, technical difficulties of scanning and postprocessing,
as well as scanning time, currentlymake compartmentalized sodium
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imaging a tool for clinical research that is not expected to expand to
clinical practice in the near future.
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