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Electron scattering cross section, as well as proton scattering cross section,
observes the point-proton and the point-neutron distributions, ρτ(r), (τ = p, n),
but both cross sections are not able to determine them separately. If they are
analyzed consistently with each other, there is a possibility to determine them
with less ambiguity. The consistency can be examined through the moments
of the charge distribution, ρc(r), which linearly depend on the moments of the
point-proton and -neutron distributions, ρτ(r), (τ = p, n). The fourth moment,
⟨ r4 ⟩c, of ρc(r) in

208Pb observed in electron scattering is well-reproduced by
the mean square radii, ⟨ r2 ⟩τ, of ρτ(r) obtained consistently in the non-relativistic
analyses of electron and proton scattering cross sections. The regression
analyses of the non-relativistic mean-field models reproduce well those values
of the moments.

KEYWORDS

neutron-skin, point-nucleon distribution, moments of the charge distribution, electron
scattering, proton scattering

1 Introduction

Electron scattering has played an important role for understanding nuclear structure
since the beginning of nuclear physics history [1]. The knowledge of the mean square
radius (msr)1, ⟨ r2 ⟩p, of the point-proton distribution, ρp(r), in nuclei is an indispensable
piece of information to nuclear physics. The reason why ⟨ r2 ⟩p is employed is because it is
believed that the value of ⟨ r2 ⟩p is well-determined by msr, ⟨ r2 ⟩c, of the charge distribution.
The charge distribution, ρc(r), is observed with the use of the electromagnetic probes
like electron scattering [2, 3] and muonic atoms [4, 5]. Electromagnetic interaction is
well-understood theoretically [6, 7] so that the reaction mechanism is almost completely
separated from assumptions on the nuclear structure, which is dominated by a strong
interaction [7]. As a result, the values of ⟨ r2 ⟩c are tabulated throughout the periodic tables
[2, 3, 5].

1 The abbreviation of the “rms” (root mean square) radius is frequently used in the literature, but it is

convenient for the present purpose to employ “msr” for the mean square radius because electron

scattering observes the value of the msr, together with the higher moments.
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The msr, ⟨ r2 ⟩n, of the point-neutron distribution, ρn(r), as the
counterpart of ρp(r), has been studied experimentally through the
strong interaction for a long time, as shown in [8–18]. It is because
ρn(r) has no charge and the above electromagnetic probes interact
very weakly with the neutron charge density, ρcn(r). In contrast
to the electromagnetic interaction, the strong interaction in the
nuclearmedium is not specifically understood yet. Indeed, the above
references employ various parameters and reaction mechanisms to
derive ρn(r) from their experiments. This fact may be a reason why
there is no data table, which summarized the values of ⟨ r2 ⟩n, as far
as the authors know.

Recently, the neutron-skin thickness, δR, defined by

δR = √⟨ r2 ⟩n −√⟨ r2 ⟩p

has been widely discussed by using the values of ⟨ r2 ⟩τ, (τ = p, n)
derived from the analyses of different probes. The value of δR in
208Pb is estimated to be approximately 0.1–0.3 fm [8–20], against
√⟨ r2 ⟩c = 5.503 fm obtained from electron scattering data [2, 3].
When discussing such a small difference of δR by using the values
derived in different experiments, one should analyze experiments
consistently by making clear the definition of ⟨ r2 ⟩τ. In electron
scattering, ρc(r) is observed, from which ρp(r) derived in the
non-relativistic framework is different from that in the relativistic
framework. As a result, the values of ⟨ rn ⟩p obtained from the
observed ρc(r) are different in the two frameworks. In proton
scattering, the Lorentz vector density, ρv,τ(r), used in the analysis
with the relativistic impulse approximation (RIA) is not identical
to ρτ(r) used in the non-relativistic impulse approximation (NRIA).
The former corresponds to ρτ(r) in the relativistic framework of
electron scattering, while the latter is obtained in the non-relativistic
framework of electron scattering.

When the analyses of experiments are performed consistently,
then one may compare their results with those of nuclear models.
In that case, the nuclear models should be chosen, which employ
the same definitions of ρτ(r) and their moments, as in the analyses
of the experiments. For example, among nuclear models, the
mean-field (MF) models are frequently used, where there are
two model frameworks. One is the relativistic mean-field (RMF)
framework, and the other is the non-relativistic mean-field (NRMF)
framework. Compared to the experiment, the consistent framework
should be chosen.

The MF models reproduce gross properties of nuclei as
phenomenological models efficiently. They, however, have a set of
different interaction parameters from each other even in the same
framework, according to their own different purposes to explore
specific physical quantities. Compared to the experiment, therefore,
it is not appropriate to choose one model among more than 100
versions, accumulated for the last 50 years [21]. Instead of finding
onemodel to reproduce experimental values, [22, 23] have proposed
to perform the linear regression analysis (least squares analysis
(LSA)) using a set of the MF models.

At present, the most consistent analyses to determine
experimentally the value of δR in 208Pb may be performed in
electron and proton scattering, based on the non-relativistic
framework [8–12], where the relationship between the moment
of ρc(r) observed in electron scattering and those of ρτ(r) in proton
scattering is clearly defined in the same framework.The comparison

of their results with the NRMF models is also possible by using the
LSA [24, 25].

The purpose of the present paper is to show the consistency
between the analyses of electron and proton scattering for the
determination of δR, and the consistency of the comparison between
their results and the NRMF results. In the next section, the
definitions of ρc(r), ρτ(r) and their moments in electron and proton
scattering are briefly reviewed. In Section 3, the least squaresmethod
to analyze the observed moments and those of the NRMF in [24,
25] are mentioned, in particular, showing the difference from those
in [22, 23]. In Section 4, the experimental results are discussed,
compared to those of NRMF models by the LSA. In Section 5, the
brief summary of the present paper is presented.

2 Electron and proton scattering

Let us briefly review the descriptions of ρc(r) and ⟨ r
n ⟩τ in

electron scattering according to [24, 26, 27]. Electron scattering cross
section is analyzed by providing the charge distributions, ρc(r). The
relativistic nuclear charge density is written as [27]

ρc (r) = ∑
τ
(ρcτ (r) +Wcτ (r)) ,

where the proton and neutron charge densities, ρcτ(r), are obtained
by convoluting a single-proton and -neutron density, respectively, as

ρcτ (r) =
1
r
∫
∞

0
dx xρτ (x) (gτ (|r− x|) − gτ (r+ x)) , (1)

Wcτ (r) =
1
r
∫
∞

0
dx xWτ (x) ( f2τ (|r− x|) − f2τ (r+ x)) . (2)

In the above equations, ρτ(x) and Wτ(x) represent the point-
nucleon and point spin-orbit distributions, respectively, and the
convolution functions are given by

gτ (x) =
1
2π
∫
∞

−∞
dq eiqxGEτ (q

2) , f2τ (x) =
1
2π
∫
∞

−∞
dq eiqxF2τ (q

2) ,

where GEτ(q2) denotes the Sachs form factor, and F2τ(q2) denotes
the Pauli form factor [6]. For calculating ρcτ(r), we have to choose
GEτ(q2) and F2τ(q2) in various estimations in other experiments,
whose detailed discussions are given in [24, 26]. [24] employed
the form factors with the msrs of single-proton and -neutron
charge distributions to be r2p = (0.877)2 = 0.769 and r2n = − 0.116
fm2, respectively.

The point-nucleon density, ρτ(r), and the spin-orbit density,
Wτ(r), in Equations 1, 2 are given, respectively, by [26]

ρτ (r) = ⟨0 | ∑
k∈τ

δ(r − rk) |0⟩, (3)

Wτ (r) =
μτ
2M
(− 1

2M

∆2ρτ (r) + i

∆⋅ ⟨0 | ∑
k∈τ

δ(r − rk)γk |0⟩), (4)

where the subscript k indicates the nucleon from 1 to Z for τ = p and
to N for τ = n. Moreover, M denotes the nucleon mass, 939 MeV,
and μτ, the anomalous magnetic moment, μτ = 1.793 for p and
−1.913 for n. The definition of the Dirac matrix, γk, is given in
[6]. The first equation satisfies ∫d3r ρτ(r) = Z for τ = p and N for
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τ = n, respectively, while the second equation ∫d3r Wτ(r) = 0, as
it should. Their explicit forms in the RMF models are written as
[26, 27]

ρτ (r) = ∑
α∈τ

2jα + 1

4πr2
(G2

α + F2α) , (5)

Wτ (r) =
μτ
M
∑
α∈τ

2jα + 1

4πr2
d
dr
(
M−M∗ (r)

M
GαFα +

κα + 1
2Mr

G2
α −

κα − 1
2Mr

F2α). (6)

In the above equations, jα denotes the total angular momentum
of a single-particle, κα = (−1)jα−ℓα+1/2(jα + 1/2), with ℓα being the
orbital angular momentum, andM

∗
(r) is the nucleon effective mass

defined byM
∗
(r) =M+Vσ(r), where Vσ(r) represents the σmeson-

exchange potential which behaves in the same way as the nucleon
mass in the equation of motion. The functions Gα(r) and Fα(r)
stand for the radial parts of the large and small components of the
single-particle wave function, respectively, with the normalization,

∫
∞

0
dr(G2

α + F2α) = 1.

The spin-orbit density appears, owing to the anomalous
magnetic moment of the nucleon, in the relativistic framework,
and its role is enhanced by the effective mass in relativistic nuclear
models. This enhancement is shown to be necessary for the RMF
models to reproduce the difference between the charge distributions
of 48Ca and 40Ca in [26]. The reason why Equation 6 is called the
spin-orbit density is explained in [26, 27].

Note that the wave function of the ground state in Equations 3,
4 is defined in the relativistic framework, as seen in Equations 5,
6. Equation 5 is nothing but the Lorentz vector density, ρv(r), used
in the RIA analysis of the proton scattering cross section [14, 15].
The equation in the non-relativistic framework corresponding to
Equation 3 is given below. The spin-orbit density in Equation 6
depends not only on ρv(r) but also on the scalar (G2

α + F2α) and tensor
(GαFα) densities defined in the RIA of [14]. Those densities, together
with the spin-orbit interaction in theHamiltonian, yield the spin-orbit
current through the continuity equation of the four currents [28].

The mean 2nth moment ⟨ r2n ⟩c of ρc(r) is given by

⟨ r2n ⟩c =∑
τ
⟨ r2n ⟩cτ, Z⟨ r2n ⟩cτ = ∫d

3r r2n (ρcτ (r) +Wcτ (r)) .

The explicit expressions of ⟨ r2n ⟩c are provided in [24, 25, 27].
Until now, all equations have been given in the relativistic

framework. As far as the authors know, there is no RIA analysis of
the proton scattering cross section, which is as consistent as
the NRIA one at present [29]. In NRIA, the careful analyses
were reported in [8–12]. They explain the optical potential,
U(r), for NRIA as

U (r) = ∑
τ
∫d3r′ρτ (r) tτ (|r − r

′|) ,

where tτ indicates the nucleon–nucleon t-matrix [12]. They
determined the density distribution, ρτ(r), so as to reproduce both
electron and proton scattering cross sections consistently by the
iteration method [9], including the relativistic corrections to the
charge densities [30].

The non-relativistic description of ρc(r) and the moments
with the relativistic corrections in electron scattering theory

are given in [24, 27]. The description for the two-component
wave function in the non-relativistic framework is obtained
by the Foldy–Wouthuysen (FW) unitary transformation of
that for the four-component wave function [6]. Because the
realistic nuclear Hamiltonian is not known, however, [7, 30,
31] have used the Dirac equation with electromagnetic field
for the relativistic framework. In the case of the relativistic
Hamiltonian in the σ-ω model, [28] has obtained the charge
operator ρ̂(q) for ̃ρ(q) = ⟨0 | ρ̂(q) |0⟩ up to order 1/M∗2(r).
Here, the matrix element is calculated using the wave functions
in the two-component framework, and the operator is
written as [27]

ρ̂ (q) =
A

∑
k=1

eiq⋅rk (D1k (q2) + iD2k (q2)q ⋅ ( pk × σk)) ,

where D1 and D2 are defined as

D1k (q2) = F1k (q2) −
q2

2
D2k (q2) ,

D2k (q2) =
1

4M∗2 (rk)
(F1k (q2) + 2μkF2k

M∗ (rk)
M
),

with the Dirac form factor F1(q2) related to the Sachs and Pauli form
factors as [6]

F1τ (q
2) = GEτ (q

2) + μτq
2F2τ (q

2)/(4M2) .

The Fourier transformation of ̃ρ(q) provides the charge
distribution in the non-relativistic framework with the relativistic
corrections up to order of 1/M∗2(r),

ρc (r) = ∫
d3q
(2π)3

exp (−iq ⋅ r) ̃ρ (q) . (7)

For replacing M
∗
(r) by M, the above equations are the same

as those in [7, 30, 31]. Thus, the relativistic corrections with M
employed in the NRMF models [32] are not equal to those by the
RMF models withM

∗
(r).

[9] solved Equation 7 with M
∗
(r) =M to obtain ρp(r),

providing the experimental charge density on the left-hand
side and nucleon form factors in the right-hand side. The
point-neutron density required in the right-hand side was
given in the iterations from the proton scattering analyses,
while the spin-orbit density calculated by a one-body potential
model was used [9].

Non-relativistic expressions of the nth moment of ρc(r) are
provided in [24, 25, 27, 33]. In the present paper, we discuss
mainly the second (msr) and the fourth moments of ρc(r) and ρτ(r),
respectively.The non-relativistic expression for the msr of the above
ρc(r) is described as

⟨ r2 ⟩c = ⟨ r
2 ⟩p + r

2
p + r2n

N
Z
+Crel. (8)

The relativistic correction, Crel, up to an order of
1/M
∗2(r), is written as

Crel = ⟨0 |
1
2Z

A

∑
k=1

μk (2ℓk ⋅ σk + 3(1−M
∗ (rk)/M))

MM∗ (rk)
+ 1
4Z

Z

∑
k=1

2ℓk ⋅ σk + 3
M∗2 (rk)

|0⟩.
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When using the free Dirac equation for the Hamiltonian, the
above relativistic correction is reduced to [24]

Crel =
1
M2 (

1
Z

A

∑
k=1

μk⟨0 |ℓk ⋅ σk |0⟩ +
3
4
+ 1
2Z

Z

∑
k=1
⟨0 |ℓk ⋅ σk |0⟩).

The last term of the right-hand side in the above equation is
obtained in the FW transformation, together with the first two terms
which have been employed in the literature [32].

The fourth moment of the charge distribution depends not only
on the fourth and the second moments of ρp(r) [27] but also on the
second moment of ρn(r). [24] provides ⟨ r

4 ⟩c as

⟨ r4 ⟩c = ⟨ r
4 ⟩p +

10
3
r2p⟨ r2 ⟩p +

10
3
r2n⟨ r2 ⟩n

N
Z
+Δ4, (9)

where Δ4 represents the fourth moment of a single proton and
neutron charge distribution and relativistic corrections. [24, 27]
show the explicit expression of Δ4, and its value is estimated model
dependently in [24]. The last three terms of Equation 8 for ⟨ r2 ⟩c are
expressed as Δ2 hereafter in the same way.We note that, as discussed
in detail in [24, 27], the relationship between ⟨ rn ⟩c and ⟨ r

n ⟩τ in
Equations 8, 9 is model-independent and should be kept in any
estimation of the moments in the non-relativistic framework. It will
be shown in the next section that ⟨ r2 ⟩n dependence of Equation 8
plays a role as a bridge between the analyses of electron and proton
scattering.

3 Comparison of the experimental
values with those of the nuclear
models

The experimental values should be compared with those of the
nuclear models in the same framework, as in the analyses of the
experiments. One of the best frameworks of the phenomenological
modes for heavy nuclei may be the MF frameworks. Among them,
the NRMF models should be used for the present purpose. We are
not interested in individual models in the MF framework because
they have different interaction parameters from each other, which
reproduce similarly gross properties of nuclei [21]. Instead, our
interest is whether or not the MF framework has the ability to
reproduce the experimental values of the various moments. For this
purpose, the analysis using the LSA employed in [24] is useful.

Let us review the LSA explained in [24, 25] but in a different
way. First, the LSA prepares a set, M, composed of the MF
models, mi, which are chosen arbitrarily in the same framework,
the NRMF framework or the RMF one. Second, the reference
formula, like Equation 9, is provided as

Y =
N

∑
j=1

cjXj, (cj:constant) . (10)

The value of Y is able to be determined by the experiment, like
⟨ r4 ⟩c, while Xj is its component, like ⟨ r2 ⟩τ, with the constant, cj,
which is definitely given as in Equation 9. N denotes the number of
the components in the reference formula. Third, the values of the
two correlated variables Xj and Y, are calculated in each model, mi,
as (Xji,Yi). Fourth, by plotting the values, (Xji,Yi) in the (X–Y)-plane,

the linear regression line, which we call the least squares line (LSL),
is obtained as

Y = ajXj + bj, (j = 1,2,⋯N) . (11)

Fifth, the experimental value of Y is written in the (Xj,Y)-plane
as Yexp = c, (c = constant). Finally, the cross point of the lines, Yand
Yexp, determines the LSL value, XjL, for the component, Xj, of Y.

The meaning of the LSL value, XjL, is as follows. On one hand,
writing the mean value of the results calculated by the models
in the set as

< Yi >=
N

∑
j=1

cj < Xji >, (12)

we have

Yi− < Yi >=
N

∑
j=1

cj (Xji− < Xji >).

On the other hand, the LSL of Equation 11 yields

Yi− < Yi >= aj (Xji− < Xji >).

The above two equations yield a sum rule for the slopes of
the LSLs as

N

∑
j=1

cj
aj
= 1. (13)

Now, the LSL value is defined by

Yexp = ajXjL + bj,

which provides

< Xji >= XjL −
1
aj
(Yexp− < Yi >).

Substituting the above equation in Equation 12, using
the sum rule, Equation 13, we obtain

Yexp =
N

∑
j=1

cjXjL. (14)

The expression of Equation 13 in taking into account the
standard deviation of the LSL is given in [25]. Thus, the LSA
provides uniquely the value of each component of Y by the LSL
value, XjL. It is clear that the LSL values are not the experimental
values of the components Xj, but the values of the components
which the model framework employed require for reproducing the
experimental value of Y.

For derivation of Equation 14, the following remarks should
be kept in mind. First, one should know the reference formula,
Equation 10, as in Equation 9, in the present LSA, in order
to choose the variable correlated with the experimental value.
Otherwise, even if the LSL is obtained between the two physical
quantities, we cannot prove that the LSL value is the one which is
necessary for reproducing the experimental value, as in Equation 14.
For example, [24] showed the following well-defined correlation,

⟨ r2 ⟩c = acp⟨ r
2 ⟩p + bcp, (15)
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⟨ r2 ⟩p = apn⟨ r
2 ⟩n + bpn, (16)

⟨ r2 ⟩c = acn⟨ r
2 ⟩n + bcn. (17)

Thefirst equation is a result of the reference formula, Equation 8,
while the second equation holds in the MF framework mainly
through the symmetry- and Coulomb-energy, according to the
Hugenholtz–Van Hove (HVH) theorem [34]. The third equation,
which has no reference formula, is due to the first two equations.
If the experimental value of ⟨ r2 ⟩c is given in Equation 15, as one
of the input values for the MF models, then the LSL determines
the values of ⟨ r2 ⟩p and ⟨ r2 ⟩n by the above first two equations.
According to this procedure, it is trivial for the experimental
value of ⟨ r2 ⟩c in Equation 17 to accept any value of ⟨ r2 ⟩n already
determined by the first two equations. Thus, Equation 17 does not
mean that the experimental value of ⟨ r2 ⟩c determines the one of
⟨ r2 ⟩n. This fact of Equation 17 is called a spurious correlation in
[34]. The similar discussions were given for the correlation between
δR and the slope of the symmetry energy, L, in [34]. The reference
formula between δR and L is not described as in the form of
Equation 10 [34].

Second, the set of the models should have the same definition
of Equation 10. Hence, for example, NRMF and RMF models
should not be included in the same set. Indeed, [24, 25, 34] show
that the NRMF and RMF frameworks yield different LSL values
from each other. The part of those differences stems from the
difference between the reference formulas, while the other part is
due to Equation 16, which is different between the two frameworks,
as shown in [24]. If the models are mixed in the same set, an
unreasonable correlation would appear, as shown in [34] in the case
of L.

Third, Equation 14 does not require that the mean value of Y in
the set of the models, which are chosen arbitrarily, reproduces its
experimental value. Moreover, the LSA does not require necessarily
preparing a set by the state-of-the-art models only in the same
framework.

One comment should be added to this section. The above LSA
in [24, 25, 34] was inspired by [22, 23] but cannot be applicable to
the analyses of the correlation between δR and the parity violating
asymmetry, APV [19,35], because there is no reference formula
which shows explicitly the relationship between δR andAPV or ⟨ r2 ⟩n
and APV in their phase-shift analyses of the electron scattering cross
section. Even in the PWBA for the conventional electron scattering,
the form factor squared is not expressed linearly in terms of ⟨ r2 ⟩c. It
is given by [7],

|Fc (q) |2 =
∞

∑
n=0
(−1)nq2n

n

∑
k=0

⟨ r2k ⟩c ⟨ r
2(n−k) ⟩c

(2k+ 1)! (2n− 2k+ 1)!
 

= 1− 1
3
q2⟨ r2 ⟩c +

1
180

q4 (3⟨ r4 ⟩c + 5⟨ r
2 ⟩2c)

− 1
2520

q6 (⟨ r6 ⟩c + 7⟨ r
4 ⟩c⟨ r

2 ⟩c) +⋯, (18)

which is not a type of Equation 10 for Y = |Fc(q)|
2 and Xj = ⟨ r

2j ⟩c.
In order for the second term with ⟨ r2 ⟩c only to dominate the
form factor squared, as in Equation 10, the value of q2 should be
about less than 0.01 fm−2 in 208Pb, where the convergence of the
alternating series in Equation 18 is ensured and the remainder term
is estimated to be negligible through the Leibniz criteria [33]. The

JLab experiment [19] has been performed at q2 = 0.158 fm−2, where
the convergence of Equation 18 as the alternating series is obscure as

|Fc (q2 = 0.158) |2 = 1− 1.599+ 1.129− 0.348+⋯.

The right-hand side of the above equation is evaluated,
employing the experimental values of ⟨ rn ⟩c obtained by the sum-
of-Gaussians (SOG) analyses of the electron scattering cross section
[24, 25]. If a linear correlation between |Fc(q)|2 and ⟨ r2 ⟩c is found
numerically at a given value of q2 in calculations by the MF models,
it may be q-dependent [25], as seen in Equation 18. In [36], it
is specified that there is the disparity between the δR-values of
208Pb and 48Ca [37] in the JLab analyses. The difference itself
between those values, however, is not a problem because δR has the
I = (N−Z)/A dependence, which appears as a result of the HVH
theorem in the MF models [34]. The value of δR is larger in 208Pb
than in 48Ca. Such a difference has been observed in the LSA in [24].

In the same way as for APV, there is no reference formula for
the relationship between δR and the dipole polarizability, αD, as
is known [20, 38]. Note that APV provides δR = 0.283± 0.071 fm,
while αD 0.156+0.025−0.021 fm. If one accepted the LSL value without the
reference formula, Equation 17 would be enough for determining
the value of ⟨ r2 ⟩n in the MF frameworks. Such an equation was
derived in [24], employing the conventional electron scattering data
for ⟨ r2 ⟩c [2, 3].They obtained δR = 0.270 fm in the RMF framework
and δR = 0.155 fm in the NRMF framework, according to the LSA.
Against these values, LSA with respect to ⟨ r4 ⟩c, according to the
reference formula, provides δR = 0.279 fm in the RMF framework
and δR = 0.160 fm in the NRMF framework.

4 Discussions

The value of ⟨ r2 ⟩c is one of the examples which are well-
determined experimentally in nuclear physics, as used for an input
in the MF models. Fortunately, ⟨ r2 ⟩c does not depend on the value
of ⟨ r2 ⟩n. As a result, the value of ⟨ r2 ⟩p is derived from ⟨ r2 ⟩c but
depends on what kind of the model-framework is employed. [24]
provides √⟨ r2 ⟩p to be 5.447 fm in the NRMF framework, while

√⟨ r2 ⟩p to be 5.453 fm in the RMF framework, using√⟨ r2 ⟩c = 5.503
fm, rp = 0.877 fm, and r2n = − 0.116 fm2. Moreover, as mentioned
at the end of the previous section, there is a difference of 0.119 fm
between the values of δR in the NRMF and the RMF frameworks
estimated by LSA. In determining the small value of δR, the analysis
of the experiment to derive the value of ⟨ r2 ⟩n should be consistent
with that used for ⟨ r2 ⟩p.

[9] aimed to analyze electron and proton scattering consistently
for the determination of ρn(r), employing the following method.
In the first step, the author obtained ρτ(r) by using experimental
values of ρc(r) determined by electron scattering but assuming each
contribution of ρτ(r) to it model dependently [30] because electron
scattering cannot observe them separately as mentioned before.
Next, proton scattering is analyzedwith the use of the obtained ρτ(r),
and the author determined the best ρτ(r) to reproduce the proton
scattering cross sections. Third, the obtained new ρτ(r) is examined
if the original electron scattering data are reproduced. According to
such iterations, it is found that a few repetitions are enough for the
convergence, if the first trial function of ρτ(r) is well-prepared [9].
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The model dependence in the first step is expected to recede in the
iterations.

Such analyses were repeated in [8, 10–12] to confirm their
results. Nevertheless, even after their studies, investigations of ⟨ r2 ⟩n
have still been continued [16–20, 29, 35]. One of the reasons why
the consistent analyses performed approximately 30 years ago were
not recognized as a benchmark of the studies on ⟨ r2 ⟩c is because
the reaction mechanism is not uniquely established yet. Another
reason is because of the ρn(r)-profile near the center, which was
not well-determined [10, 11], compared with ρp(r) derived from
the SOG analyses of electron scattering [39]. This fact implies that
by comparing ρn(r) obtained by one proton scattering analysis
with others obtained within the proton scattering ones, we cannot
recognize the consistency between analyses of electron and proton
scattering.

In noticing that those proton scattering analyses do not utilize
the shapes of ρτ(r) as parameters and maintain the consistency of
ρτ(r) for reproducing electron and proton scattering cross sections,
we expect that the ambiguity of ρn(r) near the center reflects
the insensitivity of proton scattering to the inside of nuclei, but
the sensitivity to the nuclear surface is constrained by electron
scattering. According to this speculation, we can use themoments of
ρc(r) to explore the consistency of the analyses of the experiments,
instead of ρτ(r) profiles. If ρτ(r) are determined consistently near the
surface, theirmoments should reproduce ⟨ rn ⟩c, which are a function
of the moments of ρτ(r). We can expect that the ρn(r) profile near
the center is not important for ⟨ r2 ⟩n because the moment is given
by (4π/Z)∫drrn+2ρn(r).

Fortunately, [12] summarized their results together with those
of [8–11]. In Table IV of [12], the values of the nth moment of
ρτ(r) determined by their consistent analyses are listed, where the
values of ⟨ rn ⟩c observed in electron scattering are also listed but by
assuming the three-point Gaussian distribution for ρc(r) in [40].The
purpose of [12] published in 1995 was not to reproduce the value of
⟨ rn ⟩c, according to their analysis of proton scattering because the
description of ⟨ rn ⟩c in terms of ⟨ rn ⟩τ was not given, until [27] was
published in 2019.

Table 1 shows the results of [12], together with other analyses.
The (p,p) row lists their results except for those of themoments of the
charge distribution from electron scattering. In order to reproduce
the values of ⟨ r2 ⟩c and ⟨ r

4 ⟩c using the values of ⟨ r
2 ⟩τ and ⟨ r

4 ⟩p in
the (p,p) row, Equations 8, 9 require Δ2 = 0.475 fm2 and Δ4 = 3.416
fm4, respectively, as

30.265 = 29.790+ 0.475,

1173.3 = 1119.6+ 69.400− 19.117+ 3.416, (19)

where each value in the right-hand side corresponds to those in
Equations 8, 9, but [9] cited in [12] used the values of rp and r2n to be
0.836 fm and −0.117 fm2, respectively, which were taken from [41].
These values of Δn (n = 2,4) are similar to those required in the
LSA, as mentioned below.

The experimental values of ⟨ rn ⟩c (n = 2,4,6) listed in the (e,e)
row are obtained with the use of the charge distribution by the
SOG analysis of electron scattering cross sections [42]. They are
used as the experimental values in the LSA(n) (n = 2,4,6) [24, 25]
to determine the values of the corresponding rows in Table 1. The

expression of ⟨ r6 ⟩c in terms of ⟨ rn ⟩τ (n = 2,4,6 for p, n = 2,4 for n) is
given in [25, 33]. The values of Δn (n = 2,4) required to reproduce
the experimental values in the LSA(2) and (4) rows are 0.612 fm2

and 2.605 fm4, respectively, as

30.283 = 29.671+ 0.612,

1171.981 = 1111.855+ 76.241− 18.720+ 2.605. (20)

Table 1 shows that the remarkable agreement of the values
of the moments in the LSA (4) row with those in the (p,p)
one, which are constrained by the value of ⟨ r4 ⟩c. The sum of
the first two terms related to ⟨ r4 ⟩p and⟨ r2 ⟩p is represented as
⟨ r4 ⟩p +

10
3
r2p⟨ r

2 ⟩p in Equation 9. These sums in Equations 19, 20
become 1,189.000 fm4 and 1,188.096 fm4 in the proton scattering
analysis and the LSA (4), respectively. Thus, it is seen that
electron scattering provides a strong constraint on the values of the
moments of ρp(r).

Table 1 shows the results of the LSA in the relativistic framework
in the RLSA(n) (n = 2,4,6) rows for reference. It is seen that
the experimental values of ⟨ rn ⟩c (n ≥ 4) play a useful role in
exploring the consistency in the experimental determination
of ⟨ rn ⟩p and ⟨ rn ⟩n. The (p̄N) and (γ,π0) rows list the results
of the analyses of the p̄208Pb atom [17] and the coherent pion
photoproduction [18], respectively. They assumed the two-point
Fermi distributions describing the point-proton and -neutron
densities. The former obtained the diffuseness parameter, an =
0.571 fm, and the half-height radius, cn = 6.684 fm, to reproduce
the experiment, assuming ap = 0.446 fm and cp = 6.684 fm for
the point-proton distribution, which are determined by electron
scattering data [5]. The latter provides an = 0.55 fm and cn =
6.70 fm, using ap = 0.447 fm and cp = 6.80 fm. The values of the
moments, ⟨ rn ⟩p, calculated using above parameters are given in the
parenthesis of the two rows. By those values together with rp = 0.877
fm and r2n = − 0.116 fm2, the values of ⟨ r4 ⟩c are obtained as in the
parentheses in Table 1.They aremuch smaller than the experimental
value, implying that consistent analyses are necessary for
discussions of ⟨ r4 ⟩c.

We note that the values of ⟨ rn ⟩p in the parentheses of Table 1 are
calculated by the following analytic formulas using the Sommerfeld
expansion, instead of the approximate ones used frequently in the
literature [1] because the exact values of the fourth moments are
required for comparison. For the two-point distribution,

ρp (r) = ρp0(1+ exp((r− cp)/ap))
−1.

We have

⟨ r2 ⟩p =
3
5
c2p
1+ 10

3
(
πap
cp
)
2
+ 7

3
(
πap
cp
)
4

1+(
πap
cp
)
2 ,

⟨ r4 ⟩p =
3
7
c4p
1+ 7(

πap
cp
)
2
+ 49

3
(
πap
cp
)
4
+ 31

3
(
πap
cp
)
6

1+(
πap
cp
)
2 .

Table 1 does not list the errors of the experimental values and
those in the LSAs because the experimental values are not yet precise
enough to determine the values of the moments quantitatively. The
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TABLE 1 nth moments of the charge (c), proton (p), and neutron (n) distribution in 208Pb obtained in various analyses.

⟨r2 ⟩p ⟨r4 ⟩p ⟨r2 ⟩n ⟨r4 ⟩n ⟨r2 ⟩c ⟨r4 ⟩c ⟨r6 ⟩c δR

(p,p) 29.790 1119.6 31.900 1317.3 30.265 1173.3 0.190

(e,e)   30.283 1171.981 52939.613

LSA (2) 29.671 30.283

LSA (4) 29.738 1111.855 31.507 1171.981 0.160

LSA (6) 29.810 1117.338 31.611 1282.926 52939.613 0.163

RLSA (2) 29.733 30.283

RLSA (4) 29.843 1118.322 32.964 1171.981 0.279

RLSA (6) 29.936 1125.605 33.070 1408.983 52939.613 0.279

(p̄N) (29.554) (1098.016) 31.311 (1156.047) 0.159

(γ,π0) (29.569) (1096.854) 31.114 (1155.040) 0.140

The neutron-skin thickness, δR, is defined by (√⟨ r2 ⟩n −√⟨ r2 ⟩p). The values of (p,p) are taken from the analysis of proton scattering [12], while those of (e,e) are taken from electron scattering [2,
42]. The LSA(n) row shows the results of the analysis by the least squares method on the non-relativistic mean-field models with respect to the nth moment of the charge distribution observed in
electron scattering [24, 25].The values of (p̄N) and (γ,π0) indicate the experimental values obtained in the p̄N [17] and (γ,π0) [18] analyses, respectively.The values in the parentheses are calculated
with the proton distributions assumed in their analyses. All the values are given in units of fmn. For the details, see the text.

values of δR estimated in each analysis are also listed without errors.
The value of the (p,p) row is taken from [12]which did not report the
errors, while [8–11] provide 0.182,0.158,0.14± 0.04,0.197± 0.042
fm, respectively. These values may reflect the fact that there remain
ambiguities in their proton scattering analyses, in addition to the
experimental errors. The experimental value of ⟨ r2 ⟩c in electron
scattering has an error of ±0.5% [2], while ⟨ r4 ⟩c ± 1.5% [42].
Because of these errors and the standard deviation of the LSL, the
LSA (4) of the NRMF models provides 0.162± 0.068 [24]. [25] did
not estimate the errors in LSA (6) because [2] did not list enough
experimental data for their estimations. The RLSA (4) yields δR =
0.275± 0.070 fm in [24]. For a more precise determination of the
experimental values of the moments and δR, further investigations
are required.

5 Summary

In order to obtain the experimental value of δRwithout invoking
the help of specific phenomenological nuclearmodels, the consistent
analyses for determination of the experimental values of ⟨ r2 ⟩p
and ⟨ r2 ⟩n are necessary. Such analyses of the experiments are
provided for 208Pb using electron and proton scattering data in
the non-relativistic framework [2, 12]. The experimental result is
compared with those of the analyses of the least squares method on
the mean-field models within the same non-relativistic framework
[24, 25]. The nth moments of the charge distribution observed in
electron scattering play a role as a bridge between the analyses
of electron and proton scattering for confirming the consistency
between them [43]. In order to determine the value of δR, however,
it should be explored if ambiguities in proton scattering [8–12] are
reduced more. In electron scattering also [44], the more precise

determination of the value of ⟨ r4 ⟩c is necessary for quantitative
discussion on δR. The consistent analyses of the electron and proton
scattering in the relativistic framework [16], together with the
relativistic mean-field models, would improve our understanding
δR in nuclei.
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