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Weed management presents a major challenge to vegetable growth. Accurate
identification of weeds is essential for automated weeding. However, the wide
variety of weed types and their complex distribution creates difficulties in rapid
and accurate weed detection. In this study, instead of directly applying deep
learning to identify weeds, we first created grid cells on the input images. Image
classification neural networks were utilized to identify the grid cells containing
vegetables and exclude them from further analysis. Finally, image processing
technology was employed to segment the non-vegetable grid images based
on their color features. The background grid cells, which contained no green
pixels, were identified, while the remaining cells were labeled as weed cells.
EfficientNet, GooglLeNet, and ResNet models achieved overall accuracies of
over 0.956 in identifying vegetables in the testing dataset, demonstrating
exceptionalidentification performance. Among these models, the ResNet model
exhibited the highest computational efficiency, with a classification time of
12.76 ms per image and a corresponding frame rate of 80.31 fps, satisfying the
requirement for real-time weed detection. Effectively identifying vegetables and
differentiating weeds from soil significantly reduces the complexity of weed
detection and improves its accuracy.

KEYWORDS

weed detection, deep learning, image classification neural networks, image processing,
weed management

1 Introduction

Vegetables constitute one of the largest categories of crops in Chinese agriculture. Weeds
compete with vegetables for growth resources, resulting in reduced yields. Statistics reveal
that there are over 1,400 weed species in vegetable fields, with more than 130 species causing
significant harm to vegetables [1]. For example, the yield of tomato (Solanum lycopersicum
L.) was reduced by 48%-71% due to competition with weeds, including common cocklebur
(Xanthium strumarium L.), crabgrass (Digitaria sanguinalis (L.) Scop.), jimsonweed (Datura
stramonium L.), and tall morning glory (Ipomoea purpurea (L.) Roth) [2]. With a density of
65 broadleaf weeds per square meter, the yield of lettuce (Lactuca sativa L.) declined by more
than 90% [3]. Effective weed management is critical for enhancing crop yield and quality
[4, 5].

At present, the control of weeds in vegetable fields is heavily dependent on manual
weeding, a method that is both labor-intensive and inefficient [6]. As labor costs
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continue to escalate, the overall expense of vegetable cultivation rises
accordingly [2]. This increase significantly impacts the sustainable
development of the vegetable industry [7]. Consequently, there is
an urgent need for the research and promotion of innovative and
environmentally friendly weeding techniques, such as precision
mechanical weeding or electric weeding [1, 2, 8]. With the
advancement of precision agriculture technology, a growing
number of researchers have initiated studies on intelligent weeding
equipment [8-10]. However, the ability to rapidly and accurately
identify weeds is critical for achieving effective precision weeding.

Numerous researchers have conducted extensive studies on
weed identification [11-14]. Herrmann et al. utilized hyperspectral
imaging technology to acquire images of wheat fields and
distinguish wheat from weeds using the least squares classifier [15].
Nieuwenhuizen et al. combined color and texture features to classify
sugar beets under fixed and changing lighting conditions using an
adaptive Bayesian classifier, achieving recognition rates of 89.8% and
67.7%, respectively [16]. Deng et al. extracted 48 features, including
color, shape, and texture, from maize leaves and designed a model
using Support Vector Machines (SVMs) for weed identification [17].
Traditional weed identification methods typically use features such
as color, shape, texture, and spatial distribution, or combinations
thereof, and employ techniques such as wavelet analysis, Bayesian
discriminant models, and SVMs to distinguish crops from weeds [4,
18]. These methods require manual feature selection, rely heavily
on designer expertise, and are susceptible to small sample sizes and
human subjectivity [19]. Due to factors such as lighting changes,
background noise, and diverse target shapes, it is difficult to design
feature extraction models with high adaptability and stability. With
the development of deep learning technology, deep convolutional
neural networks have been widely applied in the field of machine
vision and have achieved excellent results [12, 20].

With the advancement of deep learning technologies,
Convolutional Neural Networks (CNNs) have seen widespread
application in various research fields, including Natural Language
Processing (NLP)
recognition [23]. In recent years, research on weed identification

[21], computer vision [22], and speech

based on deep learning has also been extensively conducted [24].
For example, Adel etal. used an SVM and an Artificial Neural
Network to identify four common weeds associated with sugar beet
crops, achieving an accuracy of 95% [25]. Wang et al. proposed
a recognition method based on the Shift Window Transformer
network, which can be used to identify corn and weeds during the
seedling stage. They used four models for real-time recognition,
with an average recognition rate of 95.04% [26]. Mu et al. used the
Faster R-CNN model to identify weeds in images of cropping areas,
with a recognition accuracy of >95% [27].

Detecting weeds using deep convolutional neural networks
requires a substantial amount of images of diverse weed species for
training the model, resulting in a high cost of constructing a training
dataset [28]. Prior studies indicate that deep learning methods can
only accurately identify a limited number of weed species [29].
To simplify weed detection and enhance its accuracy, this research
presented a method for identifying weeds growing in vegetables
by combining convolutional neural networks and image processing
technology. The proposed method first uniformly divided the
original images captured by the camera into various grid images.
Afterward, the deep convolutional neural network models were
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utilized to identify the grid images containing vegetables, while
the remaining images were further divided into weed and soil
background grids via image segmentation technology. During the
neural network training, images with vegetables were labeled as
true positives, while those without were considered true negatives.
In other words, plant images without vegetables were marked
as containing weeds, allowing the neural network model to
focus specifically on identifying vegetable targets. This approach
effectively reduced the cost of building the training dataset
covering various weed species and enhanced the model’s recognition
robustness. Additionally, the size of the grid images corresponds to
the operational range of intelligent weeding equipment, allowing for
the seamless integration of intelligent weed recognition algorithms
with practical weeding operations. The objectives of this study
were to 1) assess and compare the performance of various deep
learning models in detecting vegetables and 2) explore the feasibility
of integrating image classification neural networks with image
processing techniques for vegetable and weed detection.

2 Materials and methods
2.1 Image classification neural networks

Three image classification deep convolutional neural networks,
including EfficientNet [30], GoogLeNet [31], and ResNet [32], were
selected for evaluating the feasibility of using deep convolutional
neural networks for detecting weeds growing in vegetables.
EfficientNet, GoogLeNet, and ResNet are three of the most
influential architectures in the field of deep learning, particularly
in the context of image recognition and classification tasks.
Their unique approaches to network design and scalability have
contributed significantly to advancements in computer vision.

EfficientNet is a family of convolutional neural networks
(CNNs) that sets new standards for efficiency, achieving much
higher accuracy with significantly fewer parameters compared to
previous models. Introduced by Mingxing Tan and Quoc V. Le in
2019, EfficientNet utilizes a novel scaling method that uniformly
scales all dimensions of depth/width/resolution using a compound
coeflicient, allowing for a balanced network expansion [30]. This
methodical scaling up results in models that are both lightweight and
high-performing, making EfficientNet ideal for applications where
computational resources are limited.

GoogLeNet, also known as Inception-vl, was introduced by
researchers at Google in 2014 [31]. It is notable for its inception
module, which allows the network to choose from filters of
various sizes in each layer. This architecture enables the model
to capture information at various scales effectively. GoogLeNet
significantly increased the depth of networks while maintaining
computational efficiency, winning the 2014 ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) with a record-low error
rate. Its design minimizes the use of computational resources by
incorporating dimensionality reduction techniques, allowing for
efficient processing and less overfitting.

ResNet, short Residual
by He etal. [32], revolutionized deep learning by enabling

for Networks, introduced

the training of extremely deep neural networks. Through the
introduction of residual blocks, ResNet allows for the easy flow
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of gradients throughout the network, solving the vanishing gradient
problem that plagued earlier architectures. This innovation enables
the construction of networks with hundreds, or even thousands,
of layers, achieving unprecedented performance on various
benchmarks. ResNets design is simple yet effective, significantly
reducing training time without compromising on accuracy.

EfficientNet, GoogLeNet, and ResNet each offer unique
advantages in the realm of image recognition. EfficientNet provides
a highly efficient model scalable across different resource constraints
while maintaining accuracy. GoogLeNet introduces a versatile
architecture capable of capturing complex patterns through its
inception modules. ResNet enables the training of very deep
networks by addressing the vanishing gradient problem, leading
to remarkable improvements in accuracy. These architectures
complement each other, covering a broad spectrum of needs in
image processing tasks, from efficiency and versatility to depth and
complexity. Consequently, this study selected these three models to
investigate their effectiveness in recognizing vegetables and weeds,
leveraging their distinct strengths to address the challenges of this
specific application.

2.2 Image acquisition

A total of 600 original images of bok choy (brassica rapa
spp. chinensis) and weeds were acquired in September 2020
from multiple vegetable fields in Baguazhou, Nanjing, Jiangsu
Province, China (32.12°N, 118.48°E). To ensure dataset diversity, the
collected images encompassed variations in environment, lighting,
and growth stages of vegetables and weeds. A digital camera
(HV1300FC, DaHeng Image, Inc., Beijing, China) was used to
capture vertical shots from approximately 60 cm above the ground.
The images had a resolution of 1,792 x 1,344 pixels and were in
JPEG format. The collected images were uniformly divided into
48 grid images in a 6-row and 8-column arrangement, with each
grid image having a resolution of 224 x 224 pixels. These grid
images can be categorized into four types: those containing only
soil (Figure 1A), those containing only vegetables (Figure 1B), those
containing vegetables and weeds (Figure 1C), and those containing
only weeds (Figures 1D-F). After being manually categorized, grid
images were used as the image data for training and testing the
neural network models.

2.3 Training and testing

In the process of data preparation, the acquired original images
were divided into 48 grid images arranged in a 6-row and 8-column
layout, with each grid image having a resolution of 224 x 224
pixels. This grid division was implemented using a custom Python
script, which provided flexibility and ensured compatibility with
the experimental framework. During the manual inspection and
classification phase, grid images were categorized into two classes:
those featuring only vegetables or both vegetables and weeds were
grouped into the “vegetable” class, while those without vegetables
were placed in the “background” class. This classification resulted
in a total of 6,200 samples for each class. To ensure robust model
training and evaluation, these samples were then randomly allocated
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into training, validation, and test sets in proportional amounts.
Specifically, the training set comprised 5,000 samples from each
class, the validation or testing set included 600 samples from
each class.

To rigorously evaluate the models’ performance and ensure
their ability to generalize across diverse conditions, three subsets
(Datasets 1, 2, and 3) were created using a standard three-fold
cross-validation approach. Each subset was randomly sampled from
a diverse dataset that includes variations in lighting conditions,
weed distributions, and vegetable growth stages. By dividing the
original dataset into three subsets, this approach allows each model
to be trained and tested on different combinations of data, thereby
enhancing the reliability of the evaluation. This diversity ensures
that the datasets reflect a wide range of real-world scenarios, further
improving the robustness and generalizability of the models. Each
dataset contains 5,000 training samples and 600 validation or testing
samples per class.

In this study, image classification neural networks underwent
training and testing within the PyTorch (version 1.8.1) deep
learning framework (available at https://pytorch.org/; developed
by Facebook, San Jose, California, United States) on an NVIDIA
GeForce RTX 2080 Ti graphics processing unit (GPU). The
initialization of weights and biases utilized transfer learning,
employing pre-trained CNNs from the ImageNet dataset [33, 34]. To
ensure a fair comparison across the evaluated deep learning models,
we used consistent hyperparameter settings, as outlined in Table 1.
Specifically, we employed the cross-entropy loss function, which
is well-suited for classification tasks, and optimized the networks
using Stochastic Gradient Descent (SGD) with a momentum of
0.9. All models were trained with a base learning rate of 0.001,
adjusted dynamically during training using a LambdaLR scheduler.
To mitigate overfitting, regularization techniques, including weight
decay (L2 regularization) with a factor of le-4, were applied. Each
model was trained for 24 epochs with a batch size of 16.

The performance of the neural networks for image classification
was assessed using a binary classification confusion matrix, which
delineated four outcomes: true positives (tp), true negatives
(tn), false positives (fp), and false negatives (fn). To evaluate
the effectiveness of the image classification neural networks, we
employed four classification metrics, including precision, recall,
overall accuracy, and the F, score.

Precision measures the accuracy of positive predictions made
by the neural network. It is the ratio of correctly identified positive
samples to all samples predicted as positive (Equation 1) [35]. High
precision indicates fewer false positives.

tp
tp+fp

Recall, also known as sensitivity or true positive rate, measures

1)

precision =

the neural network’s ability to identify all positive instances correctly.
It is the ratio of correctly identified positive samples to all actual
positive samples (Equation 2) [35]. High recall indicates fewer false
negatives.

tp
tp+ fn

Overall accuracy represents the proportion of correctly classified
samples (both true positives and true negatives) among all samples

recall =

@)
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FIGURE 1

Sample grid images. (A) Soil only (B) bok choy only (C) bok choy and weed (D-F) weed only.

TABLE 1 Hyper-parameters used for training the neural networks.

Neural networks

Optimizer Base learning rate Learning rate policy Batch size

Training epochs

EfficientNet SGD 0.001 LambdaLR 16 24
GoogLeNet SGD 0.001 LambdalLR 16 24
ResNet SGD 0.001 LambdaLR 16 24

(Equation 3) [35]. It is a general measure of the model’s correctness.
ip+in
tp+ fp+ fn+tn

The F, score is the harmonic mean of precision and recall

©)

Overallaccuracy =

(Equation 4) [35]. It provides a balance between precision and recall,
especially when there is an imbalance between positive and negative
samples. It is a useful metric for binary classification tasks.

2 x precision x recall

(4)

F, score = —
precision + recall
In the context of image processing speed, frames per second
(FPS) measures the number of frames (images) processed by the
neural network per second. It indicates the neural network’s real-
time processing capability, which is crucial for applications requiring
fast decision-making based on images or video streams.
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2.4 Weed detection

In this study, vegetables were identified to indirectly
detect weeds. Initially, image classification neural networks
were used to identify grid images containing vegetables.
The remaining grid images, which included either weeds or
soil, were processed using image processing techniques to
identify green pixels within the grid; those containing green
pixels were classified as weeds, while those without were
classified as soil. Specifically, during the training phase of the
classification neural network, images containing vegetables
were categorized as true positives, and all others as true
negatives. Images of green plants that did not include vegetables
were identified as containing weeds. The process for weed
detection is illustrated in Figure 2, which can be divided into
three stages:
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Deep Learning

Vegetable

Image 224%224
Acquisition Pixel
Background
FIGURE 2

Flow chart of weed detection in vegetables.

1) Grid division. The original images collected from the vegetable
fields were uniformly divided into 48 grid images in a 6-row
and 8-column layout, with each grid image having a resolution
of 224 x 224 pixels.

2) Vegetable identification. Image classification neural networks
were trained to identify all grid images containing vegetables.

3) Weed detection. Color features were used to identify soil
background images that do not contain green pixels, with the
remaining grid images being classified as weeds.

Weeds and vegetables have similar colors but differ significantly
from the soil background. After the neural networks identified
grid images containing vegetables, color segmentation technology
was used to distinguish images that contained only soil from
those that contained weeds, thereby achieving final weed detection.
Both vegetables and weeds appear green in images, while soil
appears yellow-brown. This study employed a color index proposed
by Jin etal. [7] to segment green plants, with conditional
modifications made to further improve image segmentation results.
As shown in Equation 5, in the RGB color space, the G (green)
component of vegetables and weeds is greater than the R (red) or B
(blue) components. By iterating over each pixel in the grid image,
it first checks if the G component is less than either the R or B
component. If so, the pixel value is set to 0 (background). Otherwise,
the pixel value is calculated according to the color index.

—19R+24G -2B > 862, otherwise

{o, if(G<RorG <B)
index = 5)
During the image processing, the segmented images may
contain several noise points due to the influence of background
color values. Area filtering was employed on the segmented images
to eliminate noise points and enhance the segmentation results.
By calculating and labeling the pixel connected regions, areas
below a certain area threshold were marked as noise and removed
from the image.
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3 Results
3.1 Performances of the neural networks

Table 2 presents the performances of various image classification
neural network architectures, including EfficientNet, GoogLeNet,
and ResNet, on detecting and classifying sub-images containing
vegetables in validation datasets. EfficientNet showcased remarkable
performance with a precision of 0.969 and recall of 0.982 for
bok choy recognition, achieving an overall accuracy and F, score
of 0.975. This suggested that EfficientNet not only accurately
identified bok choy but also minimized false positives, effectively
distinguishing bok choy from the background. GoogLeNet
demonstrated slightly lower metrics compared to EfficientNet, with
precision and recall for bok choy at 0.952 and 0.965, respectively,
and an overall accuracy and F; score of 0.958. Although GoogLeNet
was highly capable, it showed a marginal reduction in performance
metrics relative to EfficientNet. ResNet exhibited a high recall of
0.988 for background identification but a slightly lower recall of
0.950 for bok choy. Its precision for bok choy was the highest at 0.988,
with overall accuracy and F; score both at 0.969. This indicated
ResNet’s strong ability to correctly identify bok choy images, albeit
with a slight increase in false negatives compared to EfficientNet.

The performance metrics of various image classification
neural networks in the testing datasets exhibited a slight decline
compared to the validation datasets. However, they still maintained
(Table 3). EfhicientNet
demonstrated balanced performance with precision scores of
0.979 for the background and 0.955 for bok choy, and recall
scores of 0.953 for the background and 0.980 for bok choy. The
overall accuracy and F, scores never fell below 0.966, indicating

commendable recognition capabilities

consistent and reliable recognition capability across both classes.
GoogLeNet showed slightly lower precision and recall scores
compared to EfficientNet, with precision scores of 0.966 for
the background and 0.946 for bok choy, and recall scores of
0.945 for the background and 0.967 for bok choy. The overall
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TABLE 2 Evaluation matrix of image classification neural networks in validation datasets.

Neural networks Labels ’ Precision Recall Overall accuracy ‘ F, score

Background 0.981 0.968 0.975 0.974

EfficientNet
Bok choy 0.969 0.982 0.975 0.975
Background 0.965 0.952 0.958 0.958

GoogLeNet
Bok choy 0.952 0.965 0.958 0.958
Background 0.952 0.988 0.969 0.970

ResNet

Bok choy 0.988 0.950 0.969 0.969

TABLE 3 Evaluation matrix of image classification neural networks in testing datasets.

Neural networks Labels Precision Recall Overall accuracy F, score

Background 0.979 0.953 0.967 0.966

EfficientNet
Bok choy 0.955 0.980 0.967 0.967
Background 0.966 0.945 0.956 0.955

GoogLeNet
Bok choy 0.946 0.967 0.956 0.956
Background 0.952 0.982 0.966 0.967

ResNet

Bok choy 0.981 0.950 0.966 0.965

accuracy and F,; scores were approximately 0.956, suggesting a
slight decrease in model performance for distinguishing between
background and bok choy compared to EfficientNet. ResNet, in
this comparison, demonstrated a well-rounded performance with
an overall accuracy and F, score of 0.966. Notably, its precision
for bok choy, the highest among the three neural networks at
0.981, suggested an exceptional ability to accurately identify bok
choy with minimal false positives. Furthermore, its recall rate
for the background was 0.982, underscoring its effectiveness in
background classification, albeit with a slightly increased rate of
false negatives for bok choy. Generally, EfficientNet and ResNet both
exhibited exceptional capabilities in recognizing bok choy compared
to GoogLeNet.

Figure 3 presents the confusion matrices for the EfficientNet,
GoogLeNet, and ResNet models in the testing datasets. It was
observed that the GoogLeNet model incorrectly identified 33
background images as vegetable images, while mistaking 20
vegetable images for background images. The lower recognition
rate of the EfficientNet model was primarily due to 28 background
images being erroneously classified as vegetables. Compared to
vegetable recognition, the ResNet model was better at identifying
non-vegetables, with only 11 background images misidentified as
vegetables, and 30 vegetable images misclassified as background.

To further validate the performance of the models, we conducted
three-fold cross-validation experiments. As shown in Table 4, all
three neural networks, including EfficientNet, GoogLeNet, and
ResNet, demonstrated consistently high performance across the
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different datasets. EfficientNet achieved average overall accuracies
of 96.6%, 96.9%, and 95.6% on Datasets 1, 2, and 3, respectively,
with corresponding F; scores reflecting similar trends. GoogLeNet
attained accuracies ranging from 94.8% to 96.1%, while ResNet
consistently performed well with accuracies between 95.2% and
97.1%. The precision and recall values for each model remained
high across all datasets, indicating reliable classification capabilities.
These results confirm the robustness of our findings and further
support the effectiveness of the proposed method for weed detection
in vegetables.

3.2 Detection speeds of the neural
networks

Rapid detection capabilities are essential for neural networks to
enable real-time precision weeding. The average detection speed,
measured in terms of FPS and milliseconds, was calculated using
images from the testing dataset (1,200 images). This large-scale
testing approach ensures that the reported detection speeds are
representative and reliable. Table 5 shows the detection speeds of
the EfficientNet, GoogLeNet, and ResNet models for identifying
vegetables. Since the grid images were obtained by uniformly
dividing the original images taken by the camera into a 6-row and
8-column layout (each original image divided into 48 grid images),
the batch size for calculating detection speed can be set to 48. This
yielded the detection speed for the original images. According to
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FIGURE 3
Confusion matrices of the neural networks in testing datasets. (A) EfficientNet Model. (B) GoogLeNet Model. (C) ResNet Model.

TABLE 4 Cross-validation results of image classification neural networks.

Neural networks Cross-validation

Average precision

Average recall Average overall Average F, score

dataset accuracy
Dataset 1 0.9665 0.9655 0.9660 0.9655
EfficientNet Dataset 2 0.9700 0.9690 0.9690 0.9695
Dataset 3 0.9565 0.9560 0.9560 0.9560
Dataset 1 0.9595 0.9575 0.9580 0.9580
GooglLeNet Dataset 2 0.9625 0.9605 0.9610 0.9610
Dataset 3 0.9485 0.9480 0.9480 0.9480
Dataset 1 0.9680 0.9665 0.9670 0.9665
ResNet Dataset 2 0.9710 0.9710 0.9710 0.9705
Dataset 3 0.9535 0.9525 0.9520 0.9525

TABLE 5 Detection speeds of the neural networks.

Neural networks Batch size Image calculations Recognition speed Frame per second
EfficientNet 48 1,200 19.44 30.35
GoogLeNet 48 1,200 12.38 77.96

ResNet 48 1,200 12.76 80.31

Table 5, the detection speeds of the ResNet and GoogLeNet models
were similar, taking 12.76 milliseconds and 12.38 milliseconds,
respectively, to recognize an original image. The EfficientNet model
had the slowest recognition speed, at 19.44 milliseconds. Generally, a
frame rate higher than 30 fps is considered to have the capability for
real-time image processing [36]. Therefore, in this study, all neural
networks possessed the ability for real-time vegetable recognition.
Considering both recognition accuracy and speed, the ResNet
model was the optimal choice for identifying vegetables, with a
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recognition frame rate of 78.34 fps, meeting the requirements for
real-time recognition applications.

3.3 Green plant segmentation

After recognizing all grids containing vegetables, the remaining
grids were analyzed further. These grids were either occupied by
weeds or consisted solely of soil. To differentiate between these two,
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FIGURE 4
Weed detection flow and results.

additional image processing techniques were employed, focusing
on color characteristics to identify green pixels within the grid
images. Grids containing green pixels were classified as containing
weeds, while those lacking green pixels were identified as soil grids.
This color-based segmentation method effectively distinguished
between vegetable pixels and weed pixels, as demonstrated by
the results (Figure 4). In grids displaying only a soil background,
where the segmented image revealed an absence of plant pixels,
such areas could be directly excluded from weeding operations.
Conversely, grids that featured plant targets were classified as
containing weeds, indicating the presence of weed infestations.

In natural settings, the similar colors of weeds and vegetables
often lead to misidentification, and their intertwined growth further
complicates the task of precisely localizing each plant. To address
this challenge, our study introduced an innovative approach that
involved cropping the original image into multiple grid images, each
corresponding to the operational range of the weeding mechanism.
This approach simplified the weed detection process, as depicted in
Figure 4, by focusing on identifying the presence of weeds within
these grid images. Each grid was assessed individually and classified
into one of four scenarios: grids containing only vegetables, only
weeds, a mix of both, or solely soil. Image classification neural
networks were employed to identify and exclude grids that contained
vegetables, as shown in the first and second rows of Figure 4.
The remaining grids, which contained either weeds or soil,
were then differentiated using color segmentation techniques. As
demonstrated in the third row, the color index successfully isolated
areas with green pixels - indicative of weed presence - while grids
that displayed only soil showed no segmentation. Thus, grids in the
first three columns were identified as containing weeds.
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Precision mapping of weeds using custom software integrated
with image classification neural networks developed in this study is
illustrated in Figure 5. As previously mentioned, each original image
was divided into 40 grid images, with 8 grid images highlighted
in red to indicate the presence of weeds. The remaining 32 cells
contained either vegetables or soil and were identified as areas not
requiring weeding. This proposed method of weed mapping enables
targeted weeding by guiding the weeding executor to the specific
grid images that contain weeds.

4 Discussion

Compared to object detection neural networks, image
classification neural networks generally offer higher accuracy and
faster recognition speeds. However, image classification neural
networks are limited to categorizing images and are unable to locate
or identify the position of targets within the image. In the context
of weed detection, while object detection networks are capable of
pinpointing the exact location of weeds and delineating them with
bounding boxes, integrating this detection method directly into
a weeding execution system presents challenges. This complexity
arises because weeds vary significantly in size, leading to bounding
boxes of inconsistent dimensions. In contrast, the operational range
of a weeding unit within a weeding mechanism is typically fixed,
necessitating additional steps to align the detected location and size
of the weed with the weeding executor’s functional range.

In this study, image classification neural networks were utilized
to distinguish between vegetables and weeds by recognizing grid
images that contain vegetables, thus indirectly determining the
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FIGURE 5
Weed detection and precision weed mapping.

positions of weeds. Each original image was divided into grid
images, and once the dimensions of these grids were established,
their precise locations within the original image could be calculated.
Therefore, identifying all grids that contain weeds effectively locates
the weed areas in the original image. In other words, this approach
translates the task of identifying weed positions in the original
image into locating grid images known to contain weeds. This
enables the weeding machinery to directly navigate to the grids
occupied by weeds for targeted weeding operations. For practical
deployment, the size of the grid images can be adjusted based on
the operational range of the weeding machinery actuators, ensuring
that the machinery’s working range corresponds to the physical size
of one grid area.

It is worth noting that when vegetables or weeds occupy only a
very small part of an image (as shown in Figure 5, the grid images
in the third row, columns one, two, and five), the model faced
challenges in accurately classifying them. While this situation may
lower the recognition rate for vegetables, it does not significantly
impact the weeding process. If vegetables were incorrectly identified
as weeds, the error was likely to cause minimal damage due to the
small size of the target area. Conversely, if weeds were misclassified
as vegetables, this may result in overlooking the weedy part of that

Frontiers in Physics

area. However, the main clusters of weeds in nearby grids were likely
to be correctly identified. Additionally, by adjusting the area filtering
threshold during image processing, images where vegetables and
weeds cover a smaller area can be excluded. Such images are treated
as grid areas not requiring weeding operations, ensuring a more
focused approach to weeding.

In this research, convolutional neural network models were
employed for vegetable identification, classifying grid images
into two distinct categories: vegetables and everything else as
background. This simplification means the model is trained to
discern the presence of vegetables, treating all other elements,
including a range of weeds and background objects, as irrelevant
to the classification task. Despite the potential variability in the
appearance of weeds and background materials, the singular
focus on a specific type of vegetable allows the model to hone
in on accurately identifying vegetable presence. By shifting the
identification emphasis from weeds to vegetables, we not only
streamline the task of recognition but also significantly enhance the
neural network model’s robustness and reliability in distinguishing
vegetables.

It should be noted that with the design of this research, grid
images containing both vegetables and weeds will be classified as
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vegetable images. This approach focuses on recognizing the presence
of vegetables, treating all other elements, including weeds and soil, as
background. While our experimental dataset consisted solely of bok
choy, the proposed method can indeed be extended to fields with
multiple vegetable species. By grouping all vegetable types under a
single vegetable class label during training, the model can recognize
any cultivated vegetable plant regardless of its specific type. However,
a limitation of this method is the inability to precisely distinguish
between grids that contain both vegetables and weeds. In organic
farming, where herbicides are typically not used and mechanical
weeding is preferred, applying mechanical weeding to such mixed
areas could potentially damage the crops. To mitigate this risk and
enhance the method’s applicability, separation of vegetables and
weeds into different grids can be achieved through strategies such as
capturing images from different angles or taking additional images
at varied positions. Additionally, employing smaller grid sizes
allows for more precise identification. Despite this limitation, the
contributions of this study highlight its practical and scientific value.
The proposed framework offers an effective and simplified solution
for weed detection, characterized by low complexity, enhanced
robustness, and superior generalization capabilities, making it a
promising approach for efficient weed management across diverse
agricultural settings.

5 Conclusion

This study integrated deep convolutional neural networks with
image processing techniques to indirectly distinguish weeds from
vegetables by focusing on vegetable recognition. The experimental
findings demonstrated that this approach not only simplified the
process of weed recognition but also minimized the expenses
associated with developing training sets for neural network models.
Consequently, this strategy offers a viable solution for identifying
vegetables and weeds, characterized by its low complexity,
enhanced robustness, and superior generalization capabilities.
The EfficientNet, GoogLeNet, and ResNet models all achieved
overall accuracies exceeding 0.956 when classifying vegetables in
the testing dataset, demonstrating outstanding performance in
identification. Notably, the ResNet model stood out due to its
superior computational efficiency, with an inference time of only
12.76 milliseconds per image and a corresponding frame rate of
80.31 frames per second, making it suitable for real-time weed
detection. The proposed method for detecting weeds in vegetables
can be integrated into a machine vision subsystem to facilitate
precise weed control within a smart sensing system.
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