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Learning a cross-scale
cross-view decoupled denoising
network by mining
Omni-channel information

Song Qian, Yan Xue and Youbao Chang*

Faculty of Information Engineering, Xinjiang Institute of Technology, Aksu, China

Stereo vision systems are increasingly utilized in various applications, however,
the presence of noise significantly hampers the quality of the captured images.
Traditional denoising methods often fail to address the complex noise patterns
in such scenarios, which can adversely affect feature encoding and subsequent
processing tasks. This paper introduces a novel stereo denoising approach
that leverages cross-view information to enhance the robustness of noise
reduction. A Cross-Channel and Spatial Context Information Mining Module
is employed to encode long-range spatial dependencies and to bolster inter-
channel feature interaction. This module utilizes large convolutional kernels,
channel attentionmechanisms, and a simple gating structure to enhance feature
representation. Our approach relies on an encoder-decoder architecture, which
facilitates cross-view and cross-scale feature interactions. The network is trained
with a composite loss function that includes both spatial and perceptual
domain constraints, ensuring a comprehensive optimization of the denoising
process. Extensive experiments conducted on our proposed NoisyST dataset
demonstrate the superior performance of our method in terms of noise
removal and detail preservation. Notably, the method outperforms existing
State-Of-The-Art techniques, as evidenced by its effectiveness in various
evaluation metrics.

KEYWORDS

stereo image processing, noise removal, cross-view feature interaction, attentive cross-
scale fusion, deeplearning

1 Introduction

In recent years, computer vision tasks have received extensive attention and ushered
in rapid development, such as image classification [1, 2], target detection [3], and instance
segmentation tasks [4, 5]. These advancements have been significantly propelled by the
advent of deep learning, which has revolutionized the way we process and understand visual
data. Techniques such as convolutional neural networks (CNNs) have become fundamental
in extracting features and making accurate predictions on complex visual tasks. Moreover,
the growth of large-scale datasets and the increased computational power have further
accelerated the progress in this field. As a result, we arewitnessing a transformative erawhere
computer vision systems not only replicate but also, in some cases, surpass human-level
performance in various tasks, opening up new possibilities for applications in autonomous
driving, medical imaging, and beyond. At the same time, with the wide application of
binocular cameras, stereo vision has also ushered in rapid progress. However, binocular
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cameras are very sensitive to noise [6], and there is a lack ofmeasures
to deal with it. The rapid evolution of deep learning has led to the
widespread application of convolutional neural networks (CNNs) in
a multitude of single image processing tasks. These include single
image deblurring [7], dehazing [8], deraining [9], and enhancement
of images under low-light conditions [3]. In parallel, an increasing
array of methods leveraging CNNs has been employed in the realm
of stereo image processing, further expanding the horizons of what
is achievable in the field.

Stereo vision technology has become a cornerstone in various
high-precision applications such as robotics, autonomous vehicles,
andaugmented reality, providing a richandnuancedunderstandingof
the three-dimensional world.The ability to perceive depth and spatial
relationships is paramount for these systems to operate effectively.
However, thepresenceofnoise in stereo imagery, oftenanunavoidable
byproduct of real-world imaging conditions, poses a significant
challenge to the accuracy and reliability of depth perception. Noise
in stereo images not only obscures fine details but also introduces
discrepancies between the paired images, which can lead to erroneous
depth calculations and subsequentmisinterpretations.The traditional
noise model is represented as y = c+ n. Here, y is the noisy image,
c is the noise-free image, and n is the noise. This model highlights
the need for a denoising strategy. The strategy should effectively
remove noisewhile preserving the image’s integrity.While the domain
of single image denoising has witnessed remarkable progress with
algorithms like DnCNN [10], IRCNN [11], and DRUNet [12], these
solutions do not fully translate to the stereo image context. The
dual nature of stereo imagery demands a denoising approach that
considers the interdependencies and shared information between the
two perspectives. Despite advancements in stereo image processing
for tasks such as super-resolution and enhancement in low-light
conditions, the specific challenge of stereo image denoising has
been relatively unaddressed. This paper aims to bridge this gap
by introducing an innovative denoising approach that incorporates
uncertainty quantification, gradient-based feature enhancement, and
a novel frequency interaction mechanism for feature integration.

Our method is designed with the unique characteristics of
stereo imagery in mind, focusing on the harmonization of noise
reduction and detail preservation across both images of a stereo
pair. We demonstrate the efficacy of our approach through
rigorous experimentation on a dataset that simulates real-world
noise conditions in stereo images. The results indicate that our
stereo image denoising technique not only achieves superior noise
reduction performance but also maintains the critical details
necessary for accurate depth estimation.Thiswork contributes to the
literature by offering a robust solution that enhances the resilience
of stereo vision systems to noisy conditions, thereby bolstering their
applicability in practical scenarios.

In this paper, we propose a robust stereo image enhancement
paradigm tailored to address the degradation induced by noise
attachment. Furthermore, this paper introduce a strategy aimed at
the efficient extraction of interactive interocular information. In
summary, the primary contributions of this paper can be categorized
into three main aspects:

• NoisyST Dataset for benchmarking deep learning methods in
Stereo Image Denoising task. To the best of our knowledge, we
are the first to propose a stereo image denoising dataset named

NoisyST which contains pairs of clear and noisy stereo images
for training and testing neural networks.

• Omni-channel Information Mining Block(OIMB). This paper
design a novel module named OIMB for intra-view intra-
scale information mining and feature fusion. OIMB can not
only realize long-distance modeling, but also effectively capture
the information of channel dimension for efficient feature
fusion. Firstly, this paper use a Channel-extended Information
Mining Module (CIMM) to mine the information flow of the
wide-area channel dimension. Secondly, unlike ViT, inspired
by NAFNet, this paper propose a mechanism using large
convolution kernels to capture long-range dependencies, Large-
kernel Long-range Dependency Capture (LLDC).

• Decoupled Infromation Fusion Module(DIFM). This paper
design a novel module named DIFM for cross-view cross-
scale information mining and feature fusion. DIFM decouples
the information fusion into two components, cross-view
interactions and cross-scale interactions which focus on view-
interaction feature fusion and scale-interaction information
minin, respectively.

• CCDDNet: Learning a Cross-Scale Cross-View Decoupled
Denoising Network by Mining Omni-channel Information. We
propose a network equiped with Omni-channel Information
Mining Blocks called CCDDNet. Experiments on NoisyST
datasets demonstrate that our proposed framework can
recover the details by removing noise in stereo images and
obtain SOTA performance.

2 Related work

We briefly review recent progress in single image noise removal
and stereo image restoration.

2.1 Single image noise removal

Zhang et al. [10] introduced a deep convolutional neural
network (DnCNN) for image denoising that excels in blindGaussian
denoising and extends effectively to tasks like super-resolution and
JPEG deblocking, demonstrating high efficiency and performance
through residual learning and batch normalization. The work of
Zhang et al. [12] presents a significant step forward in the field of
image restoration, showcasing the effectiveness of deep learning-
based denoising within a flexible Plug-and-Play approach. Zhang
et al. [11] have demonstrated the efficacy of integrating fast and
powerful CNN denoisers into model-based optimization methods
to solve inverse problems in image restoration, showcasing improved
performance and flexibility.Thakur andMaji [13] introduced a novel
blind denoising approach employing multi-scale pixel attention and
feature extraction in a dual-path neural network, demonstrating
superior performance with lightweight architecture.

2.2 Stereo image restoration

The iPASSR [14] method utilizes cross-view information and
symmetry cues within stereo image pairs, offering a novel and
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FIGURE 1
The overall framework of our proposed CCDDNet for Stereo Image Denoising. CVI and CSI means cross-view interaction and cross-scale interaction.

effective solution for the challenge of stereo image super-resolution.
In the domain of stereo image super-resolution, NAFSSR [15]
stands out for its winning performance at the NTIRE 2022
challenge, showcasing the potential of integrating NAFNet’s robust
feature extraction with cross-view feature fusion. Zheng et al.
[6] introduced DCI-Net, a novel approach for low-light stereo
image enhancement that leverages decoupled cross-scale cross-view
interaction, demonstrating superior performance in illumination
adjustment and detail recovery. Zhao et al. [16]introduced a
novel approach for low-light stereo image enhancement that
simultaneously addresses brightness adjustment and denoising by
leveraging a low-frequency information enhanced image space and
cross-channel spatial context mining.

3 Proposed framework

In this section, this paper introduce the proposed CCDDNet in
detail. We first illustrate the overall architecture of CCDDNet.Then,
we describe the individual components of the designed modules,
including the Omni-channel Information Mining Block (OIMB)
and the Decoupled Information FusionModule (DIFM). Finally, the
used loss functions are discussed.

3.1 Overall structure

The overall structure of our proposed CCDDNet is shown in
Figure 1. The proposed model, CCDDNet, is adept at processing
a duo of stereo images laden with noise. It adeptly enhances the
luminance of each view and subsequently delivers a pair of refined,

FIGURE 2
The detailed structure of our proposed cross-scale interaction in
DIFM. Only the process of left view is shown for simplicity.

noise-free stereo images. The methodology unfolds in a three-
tiered approach: initial feature extraction from the shallow layers,
profound feature extraction from the deeper layers, and ultimately,
the reconstruction of the stereo images. Specifically, the model
employs a pair of convolutional layers at the onset and terminus
of the pipeline. The initial layer is tasked with the extraction of
superficial features, whereas the final layer is responsible for the
reconstruction of the enhanced, normal-illuminated stereo images.
Mathematically, the process for a given set of noisy stereo images can
be encapsulated by the following Equation 1:

IclearL , I
clear
R = FSR(FDF(FSF(I

noise
L , I

clear
R ))) (1)
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FIGURE 3
The detailed structure of our proposed cross-view interaction in DIFM.
Only the process of single scale is shown for simplicity. CVI integrates
the information of two perspectives, thus further realizing the
complementarity of stereo dimensions and improving the effect of
stereo image denoising.

where IclearL , I
clear
R , I

noise
L and IclearR represent the noise-free left-view

image, noise-free right-view image, noisy left-view image, noisy
right-view image, FSR( ), FDF( ) and FSF( ) denote the transformations
of image reconstruction, deep feature extraction and shallow feature
extraction, respectively.

3.2 Omni-channel Information Mining
Block (OIMB)

In reviewing previous methods for single image denoising and
stereo image enhancement, the neural network backbones employed
oftenmaintain the channel countwithin blocks unchanged, followed
by the use of residual connections to align inputs with outputs.
Such an approach can inadvertently overlook the additional useful
auxiliary information encapsulated within the neural network
channels. To address this issue, this paper propose a framework
called the Channel-wise Information Extraction Module (CIEM),
which amplifies the channel count within the network to capture
valuable information. Furthermore, Vision Transformers (ViTs)
are frequently utilized to capture long-range dependencies and
have been demonstrated to effectively enhance accuracy. However,
the computational cost associated with ViTs is prohibitively high.
Currently, the success of ViTs may be attributed more to the
overall architecture rather than self-attention mechanisms [17].
Inspired by this, this paper introduce a Large-kernel Long-range
DependencyCapturemodule (LLDC) designed to seize information
on long-range dependencies using large kernel convolutional layer,
a technique that has been proven effective [18].

3.2.1 Channel-wise Information Extraction
Module

The channel dimension within convolutional neural networks
(CNNs) contains a wealth of crucial information that is often
underutilized. In the context of stereo image processing, many
neural networksmaintain a constant channel count in the backbone,

which is not conducive to extracting the hidden information in
the channel dimension. To address this issue, this paper propose
a channel dimension information extraction mechanism. This
mechanism employs an exceptionally large channel dimension to
expand the original channel eight times and combines attention
weights to fully mine the hidden information in the channel
dimension of the convolutional neural network. Specifically, the
input features first pass through a layer normalization layer to
stabilize the distribution, followed by a channel attention layer to
empower the features with attention.Then, a 1× 1 convolution layer
is applied to expand the channel eight times. Next, to enhance
the network’s ability to extract features and explore the spatial
dimension of the feature map, we introduce a gating mechanism
that serves as an activation function, reducing the channel count
and computational load. Finally, a 1× 1 convolution is also used
to adjust the channel count back to the original, allowing for the
addition of residual connections. This process can be expressed by
the following Equation 2:

flr = Conv4c→c(Gate(Convc→8c(CA(LN(f))))) + f (2)

where Conva→b, Gate, CA and LN denote the Conv layer which
change the channel from a to b, a simple gate module, channel
attention and layer normalizaton, respectively. f and f lr denote the
input and output feature maps, respectively.

3.2.2 Large-kernel long-range Dependency
Capture module

Divergent from the Channel Information Extraction Module
(CIEM) introduced in the initial phase of the OIMB, which
focuses on channel dimension information, the Large-kernel Long-
range Dependency Capture (LLDC) stage primarily delves into
the extraction of spatial dimension information. Echoing the
foundational premise of the visual Transformer, our objective in the
LLDC stage is to seize long-distance dependencies within the data.
Concurrently, to mitigate computational overhead, this paper opt
for a large convolution kernel to fulfill this objective efficiently. In
the LLDC stage, we employ a large kernel size to cover a broader
spatial context and capture the intricate patterns that span across
wider regions of the image. This approach allows us to tap into
the rich, long-range spatial correlations that are often crucial for
understanding the global structure of scenes within visual tasks.
By doing so, we enhance the model’s ability to recognize coherent
objects and shapes, which is particularly beneficial for tasks like
image segmentation and object detection where holistic scene
understanding is required.Moreover, the use of a single, large kernel
also helps to reduce the number of parameters and computations
compared to a stack of smaller convolutions, thus striking a balance
between the model’s complexity and its performance. This strategic
design choice ensures that our model remains lightweight and
efficient, making it suitable for real-time applications and devices
with limited computational resources. As depicted in Figure 1, the
LLDCprocess is succinctly encapsulated in the followingEquation 3:

flr = Conv0.5c→c(Gate(DWConvk(LN(f)))) + f (3)

where DWConvk means the employed large-kernel convolution
layer with kernel size k.
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FIGURE 4
Visual results of SOTA methods on Flickr1024 dataset.

FIGURE 5
Visual results of SOTA methods on Kitti2012 dataset.

3.3 Decoupled Information Fusion Module
(DIFM)

Stereo image processing is different from monocular image
processing.One of its key points is to explore the correlation between
the two views in order to better extract features, which is particularly
evident in the task of stereo image denoising. Therefore, since
most monocular image denoising methods only consider one view
[10, 11], they are not effective in enhancing stereoscopic images.
Although some existing algorithms for stereo image processing
have mastered the information interaction between cross-views [14,
15], they lack the understanding of the importance of cross-scale

information interaction. However, the importance of cross-scale
information interaction is important in stereo image processing [6].
In order to solve the above problems, this paper propose a
Decoupled Information Fusion Module (DIFM), which decouples
cross-scale information and cross-view information, and studies
the importance of the two to promote further feature fusion and
interaction.

3.3.1 Cross-scale interaction
The integration of cross-scale information is crucial for

enhancing the performance of Stereo image denoising tasks.
Despite its significance, many existing Stereo image processing
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FIGURE 6
Visual results of SOTA methods on Kitti2015 dataset.

TABLE 1 Comparative results on synthetic stereo noisy images and the noise level is 15.

Method Venue Flickr1024 Kitti2012 Kitti2015 Middlebury

Left Right Left Right Left Right Left Right

DnCNN TIP’17 25.47/0.916 21.70/0.810 22.29/0.906 19.15/0.803 19.03/0.890 16.63/0.790 19.22/0.892 16.78/0.793

DRUNet TPAMI’21 30.51/0.940 30.55/0.940 30.61/0.942 30.67/0.942 30.63/0.943 30.74/0.943 30.65/0.943 30.77/0.944

IRCNN CVPR’17 30.52/0.939 30.54/0.939 30.61/0.940 30.65/0.941 30.64/0.941 30.72/0.942 30.66/0.941 30.74/0.943

NGDCNet Electronics’23 27.46/0.912 26.90/0.907 27.91/0.917 27.40/0.914 28.40/0.922 27.99/0.919 28.55/0.924 28.16/0.921

NIFBGDNet PR’23 31.41/0.950 31.44/0.951 31.46/0.951 31.52/0.952 31.46/0.951 31.57/0.952 31.48/0.952 31.60/0.953

DVENet TMM’22 31.46/0.952 31.47/0.952 31.49/0.952 31.53/0.953 31.46/0.952 31.56/0.953 31.50/0.953 31.60/0.953

NAFSSR CVPRW’22 31.59/0.951 31.58/0.951 31.63/0.952 31.63/0.952 31.61/0.952 31.68/0.952 31.64/0.952 31.71/0.953

iPASSR CVPWW’21 31.40/0.949 31.40/0.949 31.45/0.950 31.47/0.950 31.45/0.950 31.53/0.951 31.49/0.951 31.57/0.951

LFENet Arxiv’24 29.99/0.922 29.99/0.922 30.22/0.927 30.25/0.927 30.30/0.930 30.40/0.931 30.36/0.931 30.47/0.932

DCINet MM’23 30.70/0.948 30.44/0.946 30.78/0.949 30.57/0.947 30.77/0.949 30.64/0.948 30.80/0.950 30.67/0.949

Ours — 31.72/0.955 31.71/0.954 31.75/0.955 31.76/0.955 31.73/0.955 31.80/0.955 31.76/0.956 31.84/0.956

techniques overlook this aspect. To address this oversight, this
paper have developed a solution that adeptly and efficiently
merges cross-scale data, thereby enhancing the quality of feature
fusion. The architecture of this cross-scale interaction is depicted
in Figure 2. As the left view features f l1csi, f

l2
csi, f

l3
csi of the input

stereo image are presented initially, the process begins with the
alignment of features across different scales, followed by their
seamless integration. Subsequently, a 1× 1 convolution is applied
to condense the channel dimensions and facilitate inter-channel
communication. To optimize the utilization of each channel’s

distinctive attributes, this paper incorporate a channel attention
mechanism prior to the convolutional operation. Concluding the
sequence, anOIMB is introduced to foster deeper feature interaction
and extraction.Themethodology aforementioned is encapsulated in
the following Equation 4:

fl1csi, f
l2
csi, f

l3
csi =OIMB(Gate(Conv1×1(FC(f1, f2, f3)))) (4)

where FC( ) denotes the feature concatenation operation in
the Cross-view interaction, f l1csi, f

l2
csi, f

l3
csi denote the output

feature maps.
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TABLE 2 Comparative results on synthetic stereo noisy images and the noise level is 25.

Method Venue Flickr1024 Kitti2012 Kitti2015 Middlebury

Left Right Left Right Left Right Left Right

DnCNN TIP’17 27.06/0.896 20.95/0.711 26.70/0.897 20.76/0.713 25.57/0.894 20.08/0.711 25.69/0.895 20.13/0.713

DRUNet TPAMI’21 28.78/0.911 28.52/0.906 28.88/0.913 28.61/0.909 28.91/0.914 28.69/0.911 28.95/0.915 28.72/0.913

IRCNN CVPR’17 28.01/0.898 28.05/0.899 28.15/0.901 28.17/0.902 28.20/0.903 28.27/0.904 28.30/0.906 28.26/0.905

NGDCNet Electronics’23 27.18/0.900 26.98/0.896 27.57/0.905 27.40/0.902 27.81/0.908 27.72/0.906 27.90/0.909 27.81/0.907

NIFBGDNet PR’23 28.82/0.914 28.83/0.931 28.83/0.914 28.92/0.916 28.96/0.917 29.02/0.917 28.98/0.918 29.06/0.918

DVENet TMM’22 29.07/0.921 29.08/0.921 29.16/0.922 29.18/0.923 29.18/0.923 29.25/0.924 29.21/0.924 29.29/0.925

NAFSSR CVPRW’22 28.89/0.915 28.88/0.915 28.98/0.917 28.98/0.917 29.01/0.918 29.06/0.918 29.04/0.919 29.09/0.919

iPASSR CVPWW’21 28.83/0.913 28.83/0.913 28.83/0.915 28.94/0.916 28.96/0.917 29.03/0.917 29.00/0.918 29.06/0.918

LFENet Arxiv’24 27.31/0.902 27.35/0.902 27.54/0.906 27.58/0.906 27.65/0.908 27.75/0.909 27.65/0.909 27.77/0.910

DCINet MM’23 28.62/0.918 28.55/0.917 28.74/0.919 28.67/0.919 28.77/0.920 28.77/0.902 28.80/0.921 28.80/0.921

Ours — 29.28/0.925 29.27/0.924 29.34/0.926 29.34/0.926 29.35/0.927 29.41/0.927 29.39/0.928 29.45/0.928

TABLE 3 Comparative results on synthetic stereo noisy images and the noise level is 50.

Method Venue Flickr1024 Kitti2012 Kitti2015 Middlebury

Left Right Left Right Left Right Left Right

DnCNN TIP’17 23.39/0.743 15.67/0.496 23.47/0.749 15.68/0.501 23.53/0.754 15.68/0.504 23.54/0.756 15.69/0.506

DRUNet TPAMI’21 25.01/0.812 25.03/0.812 25.16/0.818 25.18/0.818 25.24/0.822 25.31/0.823 25.26/0.825 25.33/0.826

IRCNN CVPR’17 24.84/0.801 24.83/0.798 24.99/0.808 24.97/0.805 25.06/0.814 25.07/0.811 25.08/0.816 25.18/0.813

NGDCNet Electronics’23 24.91/0.826 24.66/0.823 25.17/0.832 24.93/0.830 25.33/0.838 25.15/0.836 25.38/0.840 25.21/0.838

NIFBGDNet PR’23 25.54/0.828 25.64/0.832 25.67/0.833 25.77/0.837 25.74/0.837 25.88/0.842 25.76/0.840 25.91/0.844

DVENet TMM’22 25.86/0.842 25.88/0.843 26.00/0.846 26.00/0.848 26.06/0.850 26.11/0.852 26.09/0.852 26.15/0.854

NAFSSR CVPRW’22 25.38/0.825 25.39/0.825 25.51/0.830 25.51/0.830 25.58/0.834 25.62/0.834 25.61/0.836 25.65/0.836

iPASSR CVPWW’21 25.62/0.827 25.62/0.828 25.75/0.832 25.75/0.833 25.81/0.836 25.85/0.838 25.84/0.838 25.89/0.840

LFENet Arxiv’24 25.37/0.833 25.38/0.832 25.56/0.838 25.56/0.838 25.53/0.840 25.57/0.841 25.57/0.843 25.63/0.843

DCINet MM’23 25.56/0.841 25.55/0.840 25.78/0.845 25.68/0.844 25.76/0.848 25.79/0.848 25.78/0.850 25.82/0.850

Ours — 26.05/0.853 26.07/0.853 26.16/0.856 26.16/0.856 26.20/0.859 26.25/0.859 26.22/0.861 26.28/0.861

3.3.2 Cross-scale interaction
Incorporating the aforementioned cross-scale information

fusion, this paper address the prevalent issue of insufficient cross-
scale integration in most stereo-view interaction methodologies
by proposing a multi-scale stereo-view fusion approach. This
innovative multi-scale stereo-view fusion approach systematically
integrates information across different scales to enhance the
interaction between stereo views. By leveraging a pyramid structure,

we enable the model to capture both local details and global
context effectively. At each scale, the stereo views are first processed
independently to extract features, and then fused using our cross-
scale information fusion strategy. This fusion operation allows the
model to leverage the complementary strengths of both views, such
as depth cues and texture information, which are critical for tasks
like depth estimation and scene understanding in stereo images.The
multi-scale nature of our approach also ensures robustness against
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TABLE 4 Ablation studies on the effects of designed backbones, losses, and modules of our proposed method. The noise level is 15.

Method Left Right Mean

PSNR SSIM PSNR SSIM PSNR SSIM

W/o CIEM 28.59 0.916 28.60 0.915 28.60 0.915

W/o LLDC 28.80 0.918 28.81 0.917 28.81 0.918

W/o CVI 28.45 0.915 28.47 0.915 28.46 0.915

W/o CSI 28.50 0.912 28.51 0.912 28.50 0.912

W/o DIFM 28.32 0.912 28.32 0.911 28.32 0.912

W/o Lchar 27.43 0.888 27.39 0.889 27.41 0.889

W/o Lperp 28.69 0.917 28.71 0.917 28.70 0.917

Ours 29.28 0.925 29.27 0.924 29.27 0.925

various levels of noise and occlusions, which are common challenges
in real-world stereo vision applications. The intricate structure of
this method is illustrated in Figure 3. The input is a stereo feature
map. Our Cross-View Interaction (CVI) mechanism computes
an interaction weight matrix, which is then utilized to refine the
synthesis of features across different views. This sophisticated
process is succinctly articulated by the subsequent Equation 5:

Wm = fl(fr)T (5)

where f l and (f r)T denote the input stereo featuremaps,Wm denotes
the weight of the fusion matrix.

3.4 Loss function

The total loss function L used in this paper contains two losses,
i.e., perceptual loss [19] andCharbonnier loss [20].TheCharbonnier
loss can be formulated as:

Lchar = √‖Iout − I‖2 + ϵ
2

where I and Iout are the ground truth and output of the whole
network. ϵ is set to 0.001. The perceptual loss compares the VGG-19
[21] feature distances between I and Iout using an L1 loss as:

Lperp = ‖∅(Iout) − ∅(I)‖1

where ∅( ) denotes the feature extraction operation from VGG-
19 network [21]. Therefore, the total loss in this paper is:

L = Lchar + αLperp

where α is a hyper parameter.

3.5 Experiment settings

This paper propose the first binocular image denoising dataset
NoisyST for training neural networks. Following the previous

works [6, 14], this paper also select data from the existing stereo
image dataset to synthesize. Specifically, for the training dataset,
we utilize 800 stereo image pairs from Flickr1024 [22] dataset
and 60 stereo image pairs from Middlebury [23] dataset; for the
testing set, this paper select 112 stereo image pairs from Flickr1024
[22], 20 stereo image pairs from KITTI2012 [24], 5 stereo image
pairs from Middlebury [23] and 20 stereo image pairs from
KITTI2015 dataset [25]. For the synthesis of noisy images, this
paper use the method of randomly adding noise during the training
process. For the evaluation method, this paper use the widely used
PSNR and SSIM. The higher the two indicators are, the better the
image quality is.

All experiments are conducted by using Pytorh with NVIDIA
RTX3080GPUs. Following [6], we crop images into 128× 128 pixels.
This paper employAdamWoptimizerwith amini-batch 4, the initial
learning rate is 2× 10−4 and this paper use CosineAnnealingLR
for weight decay. We train our CCDDNet for 400 epochs.
For comparing SOTA methods, this paper utilize DnCNN [10],
IRCNN [11], DRUNet [12], NGDCNet [26], NIFBGDNet [13],
iPASSR [14], DVENet [27], NAFSSR [15], SNR [28], DCINet [6]
and LFENet [16].

4 Experimental results and analysis

Firstly, we introduce the experimental setting in this paper.
Then, we show the experimental results and analysis of our
proposed method.

4.1 Visual results

To enhance clarity and visual appeal, this paper present the
denoised stereo images alongside their noisy counterparts in
Figures 4, 6, showcasing various components of ourNoisySTdataset,
including ZeroDCE [29], iPASSR [14], NAFSSR [15], DVENet [27],
DCINet [6], LFENet [16].

Frontiers in Physics 08 frontiersin.org

https://doi.org/10.3389/fphy.2025.1498335
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Qian et al. 10.3389/fphy.2025.1498335

Figure 4 illustrates the superior noise reduction capabilities of
our method on the Flickr2014 stereo image dataset, resulting in the
highest quality image restoration. Figures 5, 6 further demonstrate
the effectiveness of our method in the context of autonomous
driving, highlighting the impact of denoising on the KITTI2012
and KITTI2015 datasets. It is evident that our approach not only
recovers the clearest stereo images but also detects the most
noise, significantly enhancing autonomous driving perception and
subsequent processes.

4.2 Quantitative results

For our proposed CCDDNet, this paper evaluate its
performance on our proposed NoisyST dataset at three different
noise levels. Tables 1–3 shows the numerical results of left view
and right view of denoising images at different noise levels, e.g.,
15, 25 and 50. Tables 1–3 clearly demonstrates that our proposed
method excels in recovering images with superior visual quality and
detecting noise more effectively than other methods. It is evident
that methods dedicated to single image denoising, such as DnCNN
[10], DRUNet [12], IRCNN [11], NGDCNet [26], NIFBGDNet
[13], are limited by their lack of robust mechanisms for information
interaction, which hinders their ability to effectively integrate the
left and right perspectives in stereo images. Moreover, stereo image
processing methods, including DVENet [27], NAFSSR [15], and
iPASSR [14], are found to be deficient in cross-view multi-scale
information interaction. The cross-view interaction techniques
they employ are also suboptimal. Lastly, methods that utilize cross-
view and cross-scale information interaction, such as LFENet [16]
and DCINet [6], require refinement of their information interaction
techniques. Concurrently, the foundational backbone networks they
employ are lacking in their capacity to model channel dimension
information and capture long-range dependencies.

4.3 Ablation studies

This paper show the ablation studies to demonstrate the
rationality of independent components of our proposed CCDDNet,
including designed modules, losses and backbones. The ablation
experiments are performed on the Flickr1024 part of our proposed
NoisyST dataset. The numerical results are shown in Table 4.

4.3.1 Effectiveness of OIMB
To demonstrate the effectiveness of our proposed OIMB, this

paper use two modules as shown in Table 4. Specifically, W/o CIEM
and W/o LLDC denote removing CIEM and LLDC from OIMB
respectively. From Table 4, it clearly illustrates that the capabilities
of CIEM and LLDC to independently extract channel dimension
information and capture long-distance dependencies, respectively,
are crucial for optimal performance. It is evident that the removal
of either component leads to a significant decline in performance,
underscoring the indispensable nature of both mechanisms in
maintaining the module’s effectiveness.

4.3.2 Effectiveness of DIFM
This paper subsequently confirm the contribution of DIFM by

dropping CVI, CSI and DIFM in our proposed CCDDNet, which

are denoted as W/o CVI, W/o CSI and W/o DIFM in Table 4. It
can be seen from the table that the removal of CVI and CSI alone
will cause a serious reduction in performance. Further, when the
entire DIFM is removed, it will cause the most serious reduction in
performance, which indicates the rationality of using DIFM and the
excellent performance of DIFM.

4.3.3 Effectiveness of losses
Weproceed to confirm the role of the loss functions in this paper.

As shown in Table 4, W/o Lchar and W/o Lperp means removing
Lchar and Lperp while training the model. The table reveals that
the omission of a loss function invariably leads to diminished
performance. This finding affirms the logic of utilizing a composite
loss function strategy, which integrates multiple components to
optimize the model’s performance.

5 Conclusion

This paper explore a new vision task, stereo image denoising,
and we propose a new benchmark called NoisyST dataset which
can be used for training and testing neural networks. In general,
this paper propose a novel model for stereo image denoising,
called CCDDNet. Specifically, addressing the deficiency in effective
cross-view information interaction and cross-scale information
fusion within stereo vision image processing tasks, this paper
delve into the development of robust solutions tailored for stereo
image denoising, thereby enhancing the overall performance of
stereo image denoising techniques. Further, aiming at the lack
of feature extraction ability of channel dimension and the ability
of long-distance dependence capture in stereo image denoising,
this paper propose a backbone network module called OIMB,
including channel dimension information mining module CIEM
and long-distance dependence capture module LLDC. These two
modules are responsible for mining channel dimension information
and capturing long-distance dependencies in the network learning
process. The comparative experiments conducted on our NoisyST
dataset demonstrate not only its suitability as a benchmark for
training neural networks but also the exceptional performance of
our proposedCCDDNet.Ourmethod stands out in restoring images
with the highest visual quality and achieving the most outstanding
results. Additionally, the ablation study of CCDDNet’s components
further validates the soundness of our approach. In the future, we
are committed to exploring even more efficient methods for stereo
image denoising.
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