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Bifurcation, chaotic behavior,
and traveling wave solutions of
the space–time fractional
Zakharov–Kuznetsov–Benjamin–
Bona–Mahony equation
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The space–time fractional Zakharov–Kuznetsov–Benjamin–Bona–Mahony
(ZKBBM) equation is a significant nonlinear model used to illustrate numerous
physical phenomena, such as water wave mechanics, fluid flow, marine and
coastal science, and control systems. In this article, the dynamical behavior
of the space–time fractional ZKBBM equation is analyzed, and its traveling
wave solutions are investigated based on the theory of the cubic polynomial
complete discriminant system. First, the equation is transformed into a nonlinear
ordinary differential equation through a complex wave transformation. Then,
the dynamical behavior analysis of the equation is using the bifurcation theory
from planar dynamical systems. Subsequently, by utilizing the polynomial
complete discriminant system and root formulas, several new exact traveling
wave solutions of the equation are obtained. Finally, the plots of some solutions
are shown using MATLAB software in order to demonstrate their structure.
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1 Introduction

A nonlinear fractional partial differential equation (NLFPDE) was first proposed
by Zabusky and Kruskal in 1965 [1]. Fractional calculus is a natural extension of
traditional integral calculus and plays a key role in describing some non-local and non-
Markov processes. By studying and applying the solutions of NLFPDEs, we can better
predict the behavior in complex systems [2] and provide more in-depth analysis and
solutions for phenomena such as electromagnetic field propagation in nonlinear media
[3], the growth and diffusion of biological tissues [4], seismic wave propagation [5], and
groundwater flow [6]. Many literature studies have used various strategies to study the
explicit solutions of nonlinear evolution equations, and an abundance of remarkable results
has been obtained.

These approaches, like the Jacobi elliptic function [7, 8], the sine–cosine method
[9, 10], the (G′,G)-expansion approach [11, 12], the two variable (G′/G,1/G)-expansion
method [13, 14], the eϕ(η)-expansion method [15], the F-expansion method [16], the
Riccati–Bernoulli sub-ODE [17], the modified extended tanh-function method [18], the
improved tanh method [19], directed extendedRiccatimethod [20, 21], the analysismethod
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FIGURE 1
Phase portraits of Equation 2.4. (a) λ1 = −2.1 and λ2 = 0.6. (b) λ1 = −2 and λ2=0.6. (c) λ1 = 2.1 and λ2 = 0.6. (d) Phase portrait with λ1 = 1.9 and λ2 = −0.6.
(e) Phase portrait with λ1 = 0 and λ2 = 2.1. (f) Phase portrait with λ1 = 0 and λ2=−1.6.

of planar dynamical system [22, 23], Riemann–Hilbert approach
[24–26], and the finite difference methods [27], have been
thoroughly investigated for the solutions of NLFPDEs.

Among the most well-known model equations, the ZKBBM
equation is a vital type of NLFPDEs, which describes the
phenomenon of gravitational water waves occurring when long
waves propagate bidirectionally in a nonlinear dispersive system
[28]. Many scholars studied the solution of this equation and its
fractional form. To date, many types of traveling wave solutions
of the ZKBBM evolution equation have been obtained utilizing
the new (G′/G)-expansion method [29], the exp(−ϕ(η))-function
method [30–32], the differential transformation method (DTM)
[33], the generalized exponential rational function method [34],
the extended tanh-function approach [35], and the Lie symmetry
method [36].

Stability is a critical factor in the design and control of a
nonlinear system. By analyzing the equilibrium points and phase
trajectories of the space–time fractional ZKBBM equation and
observing its chaotic behavior, one can establish an important basis
for the practical application of the system. Therefore, this paper
investigates the dynamics of the space–time fractional ZKBBM
equation according to the plane dynamics theory [37]. Furthermore,
different forms of traveling wave solutions describe the same
complex physical phenomenon in different ways and provide
important initial and boundary conditions for numerical simulation.
This allows for a more in-depth and comprehensive understanding
of the properties of the equation and the structure of its solutions.
In addition to the methods mentioned above, this paper uses the
method of polynomial complete discriminant system proposed by
Liu C [38] to derive a new traveling wave solution of the equation.

This method has been widely used in solving a variety of NLFPDEs
[39, 40], enabling the discovery of multiple types of solutions.

In this article, we adopt the following α−order conformable
derivative of the function f proposed by Khalil et al [41]:

Dα
t ( f) (t) = limϵ→0

f (t+ ϵt1−α) − f (t)
ϵ

, (1.1)

For all t > 0,α ∈ (0,1). If f is α-differentiable for an interval
(0,a),a > 0 and lim

t→0+
Dα
t ( f)(t) exists, then Dα

t ( f)(0) = lim
t→0+

Dα
t ( f)(t). It

has been verified that the fractional-order definition (1.1) satisfies
the following properties [41]:

• Dα
t (t

k) = ktk−α;
• Dα

t (a f1 + b f2) = aD
α
t ( f1) + bD

α
t ( f2);

• Dα
t (

f1
f2
) = f2D

α
t ( f1)− f1D

α
t ( f2)

f22
;

• Dα
t ( f1 f2) = f2D

α
t ( f1) + f1D

α
t ( f2);

• If f is a constant, then Dα
t ( f) ≡ 0;

• If f becomes differentiable, then Dα
t ( f) = (t

1−α) df(t)
dt

.

The space–time fractional ZKBBM equation ([28] and [35]) is
given as follows:

Dα
tΘ+D

β
xΘ− 2aΘD

β
xΘ− bDα

t (D
β
xD

β
xΘ) = 0, (1.2)

where t > 0, a,b ≠ 0, and α,β are the fractional order derivatives
and 0 < α,β ≤ 1. The objective of this article is to analyze the
dynamics of Equation 1.2 and apply the polynomial complete
discriminant system method to construct some new exact traveling
wave solutions of Equation 1.2.

The remainder of this work is structured as follows: Section 2
discusses the dynamical behavior and presents the wave equation
of Equation 1.2. Section 3 provides several new traveling wave
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FIGURE 2
Chaotic behavior of Equation 2.8 at λ1 = −2.1,λ2 = 0.6,A = 0.5,ϖ = 1. (a) Times series about (θ). (b) Times series about y. (c) 2D phase portrait. (d) 3D
trajectory.

solutions of Equation 1.2 by utilizing the theory of cubic polynomial
complete discriminant system and root formulas. In addition,
some plots of the new solutions are showed using MATLAB
software. Section 4 concludes the paper.

2 Dynamic analysis of Equation 1.2

In this section, we transform Equation 1.2 into a nonlinear
ordinary differential equation using a complex traveling wave.Then,
the dynamical behavior of Equation 1.2 is studied, which is exhibited
through some phase portraits.

Implementing the following nonlinear complex wave
transformation on Equation 1.2, we obtain

ζ =
ptα

α
+
qxβ

β
, Θ (x, t) = Θ (ζ) , (2.1)

where p,q are both arbitrary constants and q is the
velocity of the traveling wave. Substituting Equation 2.1 into
Equation 1.2, we obtain

(p+ q)Θ′ − 2aqΘΘ′ − bpq2Θ‴ = 0, (2.2)

where Θ′ denotes the derivative of Θ with respect to ζ.
Integrating Equation 2.2 with regard to ζ once and considering 0
as the integrating constant, we obtain

(p+ q)Θ− aqΘ2 − bpq2Θ″ = 0. (2.3)

If q = 0 or p = 0, then Θ = 0. Assuming that p,q ≠ 0, we
denote Θ′ = y. Therefore, Equation 2.3 can be transformed into the
following planar dynamical system:

{{{
{{{
{

dΘ
dζ
= y,

dy
dζ
= λ2Θ2 + λ1Θ

, (2.4)

using the following Hamiltonian function

H (Θ,y) = 1
2
y2 − 1

3
λ2Θ3 − 1

2
λ1Θ2 = λ0, (2.5)

where λ2 = −
a
bpq
,λ1 =

p+q
bpq2

and λ0 are arbitrary constants. It is
known that λ2 ≠ 0 due to a ≠ 0.

Let G(Θ) = λ2Θ2 + λ1Θ. The equation G(Θ) = 0 has two roots,
i.e., Θ1 = 0 and Θ2 = −

λ1
λ2
. We denote

M = [
0 1

2λ2Θ+ λ1 0
]. (2.6)

The Jacobian determinant of Equation 2.4 is

J (Θ) = |M| = −2λ2Θ− λ1. (2.7)

Next, the two equilibrium points of Equation 2.4 are discussed
based on the bifurcation theory of planar dynamical systems [37].
The correlative conclusions are provided as follows:

(I) If λ1 < 0, then J(Θ1) = − λ1 > 0, J(Θ2) = λ1 < 0, andTrace(M) =
0. So, there will be a center point at (Θ1,0) and a saddle point
at (Θ2,0), as shown in Figures 1a,b.
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FIGURE 3
Figures of the solutions Θ1 with a = 2, b = −5, p = 3, q = 4, α = 0.5, η1 = 10, η0 = 20, ζ0 = 20. (a) β = 1. (b) β = 0.5. (c) β = 0.3. (d) Change in θ1 with x when
t = 2.6174.

(II) If λ1 > 0, then J(Θ1) = − λ1 < 0, J(Θ2) = λ1 > 0, andTrace(M) =
0.Therefore, a saddle point will be at (Θ1,0) and a center point
will be at (Θ2,0), as shown in Figures 1c,d.

(III) If λ1 = 0, then J(Θ1) = J(Θ2) = 0. Thereby, (Θ1,0) and (Θ2,0)
both are degraded points, as shown in Figures 1e,f.

Multiple attractors and bifurcation phenomena often occur in
some nonlinear dynamical systems. Small perturbations can cause
the system to shift from one attractor to another, causing the orbit
of the system state to become irregular and chaotic. Therefore, we
will explore whether Equation 2.4 has chaotic behavior in the case
of small external perturbations. In order to simulate the chaotic
phenomena in the system, a bounded periodic function can be
added to Equation 2.4 as an uncertain perturbation factor. The new
equations under the perturbation are described as

{{{
{{{
{

dΘ
dζ
= y,

dy
dζ
= λ2Θ2 + λ1Θ+A sin ϖζ.

(2.8)

It can be found that when periodic perturbations are added,
some systems become divergent, even though they were previously
bounded, such as when λ1 = 1.1 and λ2 = − 0.6. Some the phase
portraits of Equation 2.8 with bounded phenomenon under the
reasonable parameters are shown in Figures 2a–d.

3 Traveling wave solutions of
Equation 1.2

In this section, some new exact traveling wave solutions of
Equation 1.2 are studied based on the theory of the polynomial
complete discriminant system [38] and root formula for a cubic
polynomial equation. Finally, we demonstrate the solution structure
using some two- or three-dimensional pictures.

3.1 Solving procedure

Equation 2.3 is integrated with regard to ζ once again to obtain

(Θ′)2 = η3Θ
3 + η2Θ

2 + η1Θ+ η0, (3.1)

where η3 = −
2a
3bpq
,η2 =

p+q
bpq2

and η1 and η0 are arbitrary constants.

Let ω = (η3)
1
3Θ, m2 = η2(η3)

− 2
3 , m1 = η1(η3)

− 1
3 , and m0 = η0. Then,

Equation 3.1 can be transformed as

(ω′)2 = ω3 +m2ω
2 +m1ω+m0. (3.2)

We can obtain the integral form of Equation 3.2 as follows

±(η3)
1
3 (ζ− ζ0) = ∫

1

√ω3 +m2ω2 +m1ω+m0

dω, (3.3)
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FIGURE 4
Figures of the solutions Θ2 with a = 5, b = −5, p = 3, q = 4, α = 0.5, η1 = 10, η0 = 11, ζ0 = 25. (a) β = 1. (b) β = 0.5. (c) β = 0.3. (d) Change in θ2 with x when
t = 3.4673.

FIGURE 5
Figures of the solutions Θ3 with a = 6, b = −5, p = 3, q = 3, α = 0.8, η1 = 7, η0 = 1, ζ0 = −8. (a) β = 1. (b) β = 0.5. (c) β = 0.3. (d) Change in θ3 with x when
t = 2.4121.
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where ζ0 is the integration constant. Let F(ω) = ω3 +m2ω
2 +

m1ω+m0. We can obtain the complete discrimination system of
F(ω) as follows:

{{{{
{{{{
{

Δ = −27(
2m3

2

27
+m0 −

m1m0

3
)
2

− 4(m1 −
m2

2

3
)
3

H1 =m1 −
m2

2

3

. (3.4)

According to the complete discrimination system
(3.4), the solution of Equation 1.2 has the following four
situations.

Case 1. Δ = 0,H1 < 0. There is −27( 2m
3
2

27
+m0 −

m1m0
3
)
2
=

4(m1 −
m2

2
3
)
3
< 0. Then, F(ω) has two real roots and a

single real root. Using the cubic derivation formula,
we obtain

F (ω) = (ω− υ)2 (ω− μ) ,

where υ = − m2m1−9m0
2(m2

2−3m1)
,μ = −m2 +

m2m1−9m0
m2

2−3m1
. Then, the solutions of

Equation 3.2 are

Θ1 (ζ) = (η3)
− 1

3 {(m2 −
3(m2m1 − 9m0)
2(m2

2 − 3m1)
)

⋅ tanh2[

[

1
2
(m2 −

3(m2m1 − 9m0)
2(m2

2 − 3m1)
)

1
2

(η3)
1
3 (ζ− ζ0)]

]
−m2 +

m2m1 − 9m0

m2
2 − 3m1

}
}
}
, (3.5)

Θ2 (ζ) = (η3)
− 1

3 {(m2 −
3(m2m1 − 9m0)
2(m2

2 − 3m1)
)

⋅ coth2[

[

1
2
(m2 −

3(m2m1 − 9m0)
2(m2

2 − 3m1)
)

1
2

(η3)
1
3 (ζ− ζ0)]

]
−m2 +

m2m1 − 9m0

m2
2 − 3m1

}
}
}
, (3.6)

Θ3 (ζ) = (η3)
− 1

3 {(−m2 +
3(m2m1 − 9m0)
2(m2

2 − 3m1)
)

⋅ tan2[

[

1
2
(−m2 +

3(m2m1 − 9m0)
2(m2

2 − 3m1)
)

1
2

(η3)
1
3 (ζ− ζ0)]

]
−m2 +

m2m1 − 9m0

m2
2 − 3m1

}
}
}
.

(3.7)

We substitute ζ = ptα

α
+ qxβ

β
, m2 = η2(η3)

− 2
3 , m1 = η1(η3)

− 1
3 , η3 = −

2a
3bpq

, and η2 =
p+q
bpq2

into Equations 3.5–3.7. Then, the traveling wave
solutions of Equation 1.2 are obtained as follows

Θ1 (x, t) = −(
3bpq
2a
)

1
3 {{
{{
{

R1 tanh2
[[

[

R
1
2
1

2
(− 2a

3bpq
)

1
3
(
ptα

α
+
qxβ

β
− ζ0)
]]

]

+R2

}}
}}
}

,

(3.8)

Θ2 (x, t) = −(
3bpq
2a
)

1
3 {{
{{
{

R1 coth2
[[

[

R
1
2
1

2
( 2a
3bpq
)

1
3
(
ptα

α
+
qxβ

β
− ζ0)
]]

]

+R2

}}
}}
}

, (3.9)

Θ3 (x, t) = −(
3bpq
2a
)

1
3 {
{
{
−R1 tanh2[

[

(−R1)
1
2

2
(− 2a

3bpq
)

1
3
(
ptα

α
+
qxβ

β
− ζ0)]

]
+R2
}
}
}
,

(3.10)

where R1 =
p+q
bpq2
( 3bpq

2a
)

2
3 −

9( η1(p+q)
2aq
−3η0)

( 3bpq
2a
)
1
3 (p+q)

2−3η1
abpq3

,R2 = −
p+q
bpq2
( 3bpq

2a
)

2
3 +

3( η1(p+q)
2aq
−3η0)

( 3bpq
2a
)
1
3 (p+q)

2−3η1
2abpq3

.

Case 2. Δ = 0,H1 = 0. There is −27( 2m
3
2

27
+m0 −

m1m0
3
)
2
=

4(m1 −
m2

2
3
)
3
and m1 =

m2
2
3
. Therefore, F(ω) has three same real

roots. Due to the cubic derivation formula, there is F(ω) = (ω− ϱ)3,
where ϱ = − m2

3
. Then, the solutions of Equation 3.2 are

Θ4 (ζ) = 4(η3)
− 2

3 (ζ− ζ0)
−2 −

m2

3
. (3.11)

We substitute ζ = ptα

α
+ qxβ

β
, m2 = η2(η3)

− 2
3 , and η3 = −

2a
3bpq

into
Equation 3.11. Then, the traveling wave solution of Equation 1.2 is
obtained as follows:

Θ4 (x, t) = 4(
3bpq
2a
)

2
3
(
ptα

α
+
qxβ

β
− ζ0)
−2

−
p+ q

(12a2 bpq4)
1
3

. (3.12)

Case 3. Δ > 0,H1 < 0. There is −27( 2m
3
2

27
+m0 −

m1m0
3
)
2
−

4(m1 −
m2

2
3
)
3
> 0 andm1 −

m2
2
3
< 0.Then, F(ω) has three real different

roots. Because of the cubic derivation formula, we obtain

F (ω) = (ω− υ) (ω− μ) (ω− ϱ) ,

where

υ =
−m2 − 2(m2

2 − 3m1)
1
2 cos θ

3

3
,

μ =
−m2 + (m2

2 − 3m1)
1
2 (cos θ

3
− 3

1
2 sin θ

3
)

3
,

ϱ =
−m2 + (m2

2 − 3m1)
1
2 (cos θ

3
+ 3

1
2 sin θ

3
)

3
,

θ = arccos
2(m2

2 − 3m1) − 3m2m1 + 27m0

2(m2
2 − 3m1)

2
3

.

Furthermore, υ < μ < ϱ as θ ∈ (0,π).
If υ < ω < ϱ, then the solution of Equation 3.2 is

Θ5 (ζ) = (η3)
− 1

3 [υ+ (μ− υ) sn2(1
2
(ϱ− υ)

1
2 (η3)

1
3 (ζ− ζ0) ,m)],

(3.13)

where m = (
cos ( π

6
+ θ

3
)

cos ( π
6
− θ

3
)
)

1
2

and sn is the Jacobi elliptic sine

function. Replacing these variables ζ, m2, m1, η3, and η2 by
their specific expressions for Equation 3.13, the traveling wave
solutions of Equation 1.2 can be obtained as follows:

Θ5 (x, t) = −(
3bpq
2a
)

1
3 [

[

−p− q

(12a2bpq4)
1
3

− 2
3
R1 cos

θ
3
+

3√3R1

3
cos(π+ 2θ

6
)

× sn2(−
a

1
3 cos

1
2 ( π−2θ

6
)

(12bpq)
1
3

(
ptα

α
+
qxβ

β
− ζ0),m)]

]
. (3.14)

If ω > ϱ, then the solution of Equation 3.2 is

Θ6 (ζ) = (η3)
− 1

3
[[

[

ϱ− μsn2 ( 1
2
(ϱ− υ)

1
2 (η3)

1
3 (ζ− ζ0) ,m)

cn2 ( 1
2
(ϱ− υ)

1
2 (η3)

1
3 (ζ− ζ0) ,m)

]]

]

, (3.15)

where cn is the Jacobi elliptic cosine function. Substituting the
specific expression of these variables ζ, m2, m1, η3, and η2 into
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Equation 3.15, the traveling wave solutions of Equation 1.2 can be
given as follows

Θ6 (x, t) = −(
3bpq
2a
)

1
3

[[[[[[[[

[

ϱ− μsn2(
−a

1
3 cos

1
2 ( π−2θ6 )

(12bpq)
1
3
( pt

α

α
+ qxβ

β
− ζ0),m)

cn2(
−a

1
3 cos

1
2 ( π−2θ6 )

(12bpq)
1
3
( pt

α

α
+ qxβ

β
− ζ0),m)

]]]]]]]]

]

, (3.16)

where

ϱ =
−p− q

(12a2 bpq4)
1
3

+ 1
3
R1 cos(

π− 2θ
6
),

μ = (
−p− q

(12a2bpq4)
1
3

+ 1
3
R1 cos(

π+ 2θ
6
)),

θ = arccos
2R1 +

243
1
3 η1(p+q)
2aq
+ 27m0

2R
2
3
1

.

Case 4. Δ < 0,H1 < 0. There is −27( 2m
3
2

27
+m0 −

m1m0
3
)
2
−

4(m1 −
m2

2
3
)
3
< 0. Then, F(ω) has only one real root. By applying

the cubic derivation formula, we obtain

F (ω) = (ω− υ) (ω2 + μω+ ϱ) ,

where

υ = − 1
3
(m2 +Y) , μ =

1
3
(−2m2 +Y) , ϱ =

1
9
m2

2 +
1
36
(√3− 4m2)Y

2,

Y = 3√m3
2 − 9m2m1 +

27
2
m0 +

3
2
(−3m2

2m
2
1 − 54m2m1m0 + 81m2

0 + 12m
3
2m0 + 12m

3
1)

1
2

 + 3√m3
2 − 9m2m1 +

27
2
m0 −

3
2
(−3m2

2m
2
1 − 54m2m1m0 + 81m

2
0 + 12m

3
2m0 + 12m

3
1)

1
2 .

If ω > υ, then the solution of Equation 3.2 is given as

Θ7 (ζ) = (η3)
− 13

⋅
[[[[[

[

υ+
2√υ2 + υμ+ ϱ

1+ cn((υ2 + υμ+ ϱ)
1
4 (η3)
− 13 (ζ− ζ0) ,

1
2 (1−

α+ 12 β

υ2+υμ+ϱ
))

−√υ2 + υμ+ ϱ
]]]]]

]

.

(3.17)

Substituting the specific expression of the following variables
ζ, m2, m1, η3, and η2 into Equation 3.17, the traveling wave
solutions of Equation 1.2 can be obtained as follows

Θ7 (x, t) = −(
3bpq
2a
)
1
3

⋅
[[[[[

[

−p− q

(36a2bpq4)
1
3
− 1
3
R3 +

2√R4

1+ cn((R4)
1
4 − ( 3bpq2a )

1
3 ( pt

α

α +
qxβ

β − ζ0),n)

−√R4
]]]]]

]

,

(3.18)

where

R3 = 3√
9(p+ q)3

4a2bpq4
+
9 3√9η1 (p+ q)

2aq
+
27m0

2
+ 3
2
W

+ 3√
9(p+ q)3

4a2bpq4
+
9 3√9η1 (p+ q)

2aq
+
27m0

2
− 3
2
W,

R4 =
4

1
3 (p+ q)2

(9a4b2p6q2)
1
3

+
R3 (p+ q)

(48a2bpq4)
1
3

−
(p+ q)R2

3

(324a2bpq4)
1
3

+
√3
36

R2
3,

W = (−
27η1(p+ q)

2

4a2q2
+
162m0η1 (p+ q)

2aq
+
27m0(p+ q)3

a2bpq4

−
18η31bpq

2a
+ 81m2

0)

1
2

,

n = 1
2
+
(p+ q)

8(6a2bpq4)
1
3R4

+
R3

12R4
.

3.2 Graphical description

To visualize the structure of these new solutions, the solutions
Θ1,Θ2 and Θ3 are described in the form of two- or three-
dimensional pictures (see Figures 3–5). According to the derivation
conditions, the appropriate parameters are taken to produce the
graphs of the solutions. In each travelingwave solution, there are two
fractional derivative parameters, α and β. We fix α = 0.5 and observe
the effect of β on the shapes of the solutions. As observed from these
comparison graphs, the smaller the value of β, the more curved the
shape of the solutions.

4 Conclusion

This paper analyzes the dynamical behavior of the space–time
fractional ZKBBM equation and presents seven types of new
exact traveling wave solutions by utilizing the theory of the
cubic polynomial complete discriminant system and root formulas.
These new solutions, including rational, trigonometric, hyperbolic,
and Jacobi elliptic function solutions, can be directly applied to
simulation, prediction, and control in practical scenarios. Finally,
the phase portraits and some of the solutions are plotted using
MATLAB software. From these figures, we can clearly and intuitively
understand the properties of the equation and the shapes of its
solutions under different conditions.
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