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The accurate identification of mining tremors and earthquakes is important for
establishing a comprehensive mining tremor catalog that can aid in providing
regulatory oversight for mining activities. Moreover, using a catalog purely
consisting of earthquakes allows for more advanced seismological studies,
such as active fault delineation, strong earthquake prediction, and stress field
calculations, to be conducted. We focus on the spectral characteristics of
mining tremors and earthquakes. By identifying short-period surface waves
in the given data and utilizing an improved complete ensemble empirical
mode decomposition method with adaptive noise (CEEMDAN) in combination
with long short-term memory (LSTM) networks, we conduct a discriminative
analysis of seismic events in Liaoning, China, and Japan. After completing basic
preprocessing steps for both mining tremors and earthquakes, CEEMDAN is
used to decompose the data into different intrinsic mode functions (IMFs).
The variance contribution rates of the IMFs are extracted as features, which
distinctly identify the short-period surface wave components of mining tremors.
These features are subsequently input into an LSTM model for classification
training, resulting in an accurate classification model. The results demonstrate
that CEEMDAN-LSTM effectively addresses the noise and short-period surface
wave aliasing issues encountered within the modes, yielding significantly
enhanced classification accuracy. The classification success rate has been
significantly improved to 96.5%. Additionally, this study explores the advantages
and limitations of various classification features and models, providing effective
technical support and new perspectives for the automatic identification of
seismic events in the future. This research provides not only an understanding of
the characteristics of mining tremors and earthquakes but also a scientific basis
for earthquake early warning and disaster prevention. This study suggests that
future research can further optimize the model in terms of speed and apply the
model to classify more nonnatural seismic events.
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1 Introduction

Mining tremors refer to earthquakes caused by geological
structural changes resulting from mining activities such as blasting
and collapses in mines. Mining tremors typically occur in and
around mining areas, especially during large-scale underground
mining operations. On the one hand, using a pure earthquake
catalog can facilitate in-depth seismological research, such as active
fault delineation, strong earthquake prediction, and stress field
calculations. On the other hand, owing to the potential threat of
mining tremors to miner safety and the surrounding environment,
a comprehensive catalog of mining tremors and other nonnatural
seismic events also benefits regulatory activities in themining sector.
According to the current theories for identifying earthquakes and
mining tremors, earthquakes are primarily tectonic earthquakes that
occur when stress concentrations exceed the elastic limits of rocks,
causing rock fractures and displacements, with the initial P-wave
moving upward within a certain azimuth range and downward in
other azimuths. In contrast, the seismic sources of most mining
tremors mainly impose tension on external media, generating
expansive waves, which are characterized by downward vertical
initial P-waves [1]. There are many differences in geophysics
between natural earthquakes and mining tremors collapses. Natural
earthquakes are caused by crustal plate movements and other
factors. Their seismic wave spectra are wide, with well-developed
surface waves. The hypocenters are deep, and the seismic source
mechanisms are related to plate interactions.The seismic activity has
periodicity, and the changes in the geophysical field cover a wide
range. In contrast, mine-induced seismic collapses are triggered
by the failure and collapse of rock masses caused by mining
activities. Their seismic wave spectra are narrow with prominent
high frequencies, and the hypocenters are shallow. The seismic
source mechanisms are related to the changes in stress of the goaf
and rock masses. Their seismic activities are related to the mining
process, and the changes in the geophysical field are concentrated in
the local area of the mining area, with a relatively small range and
amplitude [1].

Sha et al. [2] classified earthquakes andmining tremors based on
time-domain features such as the direction of the initial P-wave, the
development trends of surface waves, and the P/S wave amplitude
ratio. Feng et al. [1] classified earthquakes based on the direction
of the initial P-wave and amplitude attenuation. Dong et al. [3]
effectively distinguishedmining explosions andmicroseismic events
by selecting the energy, seismic moment, ratio of the longitudinal
and transverse wave energies, corner frequency, and static stress
drop as stable discrimination indicators. Zheng et al. [4] conducted
a time‒frequency analysis on mining tremor waveforms via the
S-transform. These multiparameter combined analysis methods
provide different research approaches and techniques for classifying
earthquakes and mining tremors. However, these characteristic
parameters are artificially designed through specific methods,
and their definitions are relatively cumbersome, requiring various
postprocessing methods, making rapid differentiation through
computer programs impossible and indicating that signals cannot

Abbreviations: (CEEMDAN), complete ensemble empirical mode
decomposition with adaptive noise; (LSTM), long short-term memory.

be automatically distinguished as earthquakes or mining tremors
[5]. Therefore, more scholars have adopted short-period surface
wave classification for earthquakes and mining tremors. Xuesong
et al. [6] proposed that short-period surface waves are distinct
features for distinguishing mining tremors from earthquakes. Bi
et al. [7] used the Hilbert–Huang transform (HHT) to extract the
maximum amplitude corresponding to themode component period
and the average cepstral value as effective features for distinguishing
earthquakes and mining explosions, and Jinlong et al. [8] used the
HHT in combinationwith ensemble empirical mode decomposition
(EEMD) to extract surface waves and classify mining tremors and
earthquakes in the Hegang region, reaching an accuracy rate of over
90%.However, themodemixing problem encountered when EEMD
is used for processing has not been effectively solved. When facing
seismic and mining tremor waveforms in different regions, the
frequency ranges of short-period surface waves and environmental
noise partially overlap, leading to difficulty in terms of effectively
separating surface waves during the decomposition process with
EEMD, resulting in poorer classification effectiveness.

With the advancement of computer technology, artificial
intelligence has been increasingly incorporated into earthquake
event identification research. Ming et al. [9] applied convolutional
neural networks (CNNs) to automatically classify and identify
the aftershock waveforms of the Wenchuan earthquake in the
Beijing-Tianjin-Hebei metropolitan region, achieving training
and detection accuracies exceeding 95%. Mousavi et al. [10]
implemented a precise method for extracting earthquake P-
wave and S-wave phases via the earthquake transformer (EQ
transformer). Zhu et al. [11] successively used support vector
machines (SVMs) and deep CNNs (DCNNs) to accurately estimate
earthquake magnitudes [12], Liu et al. [13] used a generative
adversarial network (GAN) to classify microseismic events and
noise, and Zhou et al. [14] used a CNN model (SW-CNN) to
process waveforms from 2 s before to 5 s after the corresponding
P-waves arrive to classify earthquakes, explosions, and mining
tremors. Chen et al. [15] combined the K-means algorithm and
a CNN to classify earthquake waveforms and demonstrated that
the K-CNN model could accurately classify earthquake waveforms
by analyzing synthetic microseismic data with different noise levels
and microseismic field data applications. Abdalzaher et al. [16]
developed a machine learning framework integrating XGBoost
and other classifiers to discriminate between tectonic earthquakes
and quarry blasts, achieving a classification accuracy of 97.21%
based on spatio-magnitude features. In a subsequent study [17],
the authors introduced the 2S1C1S model for real-time seismic
intensity estimation using single-component seismogram data
from the initial 2-s post-P-wave window, demonstrating 99.05%
accuracy. Their most recent work [18] employed an optimized
quadratic discriminant analysis (QDA) model to distinguish small-
magnitude earthquakes (M ≤ 3) from quarry blasts using eight
waveform-derived features, yielding 99.4% classification accuracy.
These methodologies demonstrate substantial improvements over
conventional discriminative approaches, with performance metrics
(R2, F1-score, MCC) indicating robust generalization capabilities
and practical utility for seismic hazard mitigation. Zhang et al. [19]
employed EEMD and a CNN to classify earthquake signals,
achieving classification results as high as 93.85%. The above studies
have proven that the use of artificial intelligence methods for
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earthquake identification and detection can yield significantly
improved efficiency.

In terms of microseismic event identification, Fan et al. [20]
used wavelet scattering decomposition to identify microseismic
signals in coal mines and noise. Chen et al. [21] proposed
an improved method for identifying microseismic mine events
through a combination of wavelet decomposition and an extreme
learning machine (ELM), successfully distinguishing microseismic
mine events from noise with a success rate of 91.1%. Qin et al.
[22]used modal decomposition and deep learning methods to
predict the evolution trends of microseismic events, demonstrating
good predictive and generalization performance. Gu et al. [23]
employed backpropagation (BP) networks to classify five types of
microseismic signals acquired from rockburst mines, achieving a
classification model accuracy rate of 88.3%. Li [24] proposed a
method for extracting features and classifying microseismic mine
signals on the basis of localmean decomposition (LMD) and pattern
recognition, attaining a classification accuracy rate of 93.0%. These
studies have validated the excellence of deep learning in terms
of identifying seismic events and noise, highlighting the notion
that starting the microseismic event identification process from
the frequency domain can be a more efficient strategy. However,
the current focus in microseismic event identification research
mainly involves classifying noise and mining tremors, with fewer
classification methods developed for distinguishing earthquakes
from mining tremors.

Therefore, this study selectsmany records ofmining tremors and
seismic events to explore a more efficient short-period surface wave
classification method and integrates it with artificial intelligence,
proposing the complete ensemble empirical mode decomposition
with adaptive noise-long short-term memory (CEEMDAN-LSTM)
method. First, on the basis of the developmental characteristics of
short-period surface waves, an improved version of the CEEMDAN
method [25] is used to decompose the input data to obtain a series
of intrinsic mode functions (IMFs), and the variance contribution
rate of each IMF is extracted. By inputting the variance contribution
rates into an LSTM network [26] for training, a corresponding
classification model is obtained. Additionally, compared with
directly inputting waveform data into traditional neural networks
after analyzing the features extracted by CEEMDAN, this model
is validated to have superior classification capabilities. Compared
with traditional EEMD, the CEEMDAN-LSTM model solves the
modal aliasing problem facedwhenutilizing low-frequency data and
can accurately classify earthquakes and mining tremors, providing
strong technical support for seismological research and practical
applications.

2 Data

The observational data used in this study are obtained from
stations in Liaoning Province, and some seismic data are obtained
from Japan. The employed mining tremor data are all selected
from Liaoning Province between 2013 and 2023, totaling 14,577
records with amagnitude range of 2-4, different epicentral distances,
and source depths ranging from 4 to 50 km. The earthquake data
were acquired from Liaoning Province between 2020 and 2023 and

include 13,548 records. Additionally, data acquired from the K-
NET of Japan between 2022 and 2023 are selected after performing
screening, totaling 5,329 records with a magnitude range of 3-8,
epicentral distances from 0 to 200 km, and source depths ranging
from 4 to 120 km. The data from Liaoning are velocity records with
a sampling frequency of 100 Hz, whereas the data from Japan are
acceleration records with the same sampling frequency.

Before conducting data processing, the following steps are
implemented for preprocessing [1]: baseline correction [2]; 0.3-Hz
Butterworth high-pass filtering [3]; converting acceleration records
into velocity records via integration [4]; extracting P-wave arrival
times via the STA/LTA method [27] and selecting data from 1 s
before to 100 s after a P-wave arrives as analysis samples; and [5]
normalizing all the data to the same scale. Figure 1 illustrates the
technical roadmap of this paper.

After the above processing steps, this study selects a total of 262
mining tremors, comprising 7,012 records, and 508 earthquakes,
forming 8,610 records, including 3,281 from Liaoning and 5,329
from Japan. The earthquake epicenter distribution is shown in
Figure 2. Figure 3 shows the station map, where the ratio of the
training set to the test set is 8:2. These data are selected to ensure
independence, with data concerning the same earthquake event
obtained from different stations not simultaneously included in
the test and training sets. Initially, earthquake event classification
is performed on the test and training sets, followed by reading
data from each station into the dataset. Figures 4a–c illustrates
the epicentral distance distribution. In theory, the main goal of
this study is to identify the components of short-period surface
waves in waveform data, as their degree of attenuation during
propagation is smaller than that of high-frequency waves.Therefore,
the impact of attenuation on the ability to distinguish earthquakes
from mining tremors is relatively minor. Figures 4d,e displays
the magnitude distribution of the data. In contrast, the source
mechanism of earthquakes is relatively complex, consisting of
several small fractures that form the source, each with a certain
process, and occur at greater depths.

3 Materials and methods

The research approach of this article is as follows. First,
CEEMDAN is used to decompose the signals of earthquakes and
mining tremors, the variance contribution rates of the decomposed
IMFs are calculated, and then the features of each IMF are input into
LSTM for learning and obtaining classification results.

3.1 Complete ensemble empirical mode
decomposition with adaptive noise

For analyzing the spectral characteristics of a signal, the
traditional fast Fourier transform (FFT) method is widely used.
However, during the process of transferring a signal from the
time domain to the frequency domain, temporal information is
lost, making it impossible to accurately determine the appearance
and disappearance moments of frequencies. To address this
limitation, time‒frequency analysis techniques, which can effectively
track the spectrum changes over time, have been developed.
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FIGURE 1
Figure shows the overall architecture flowchart of this paper, where blue represents mine earthquakes and green represents natural earthquakes.

FIGURE 2
(a) Map of earthquake epicenters in Liaoning. (b) Map of mining tremor epicenters in Liaoning. (c) Map of earthquake epicenters monitored by the
K-NET of Japan.

Common time‒frequency analysis methods include the short-
time Fourier transform (STFT), the Gabor transform, and the
Wigner‒Ville distribution, among others. Although these methods
can theoretically handle nonlinear and nonstationary signals,

limitations remain in practical applications. In contrast with
the aforementioned traditional methods, the HHT completely
eliminates the dependencies on linearity and stationarity, making it
especially suitable for analyzing nonlinear and nonstationary signals
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FIGURE 3
Schematic representation of the locations of seismic stations. Yellow indicates the training set, and blue indicates the validation set. (a) Locations of
seismic stations in Liaoning. (b) Locations of mining tremor stations in Liaoning. (c) Locations of seismic stations in the K-NET of Japan.

FIGURE 4
(a) Distribution of the epicentral distances for mining tremors in Liaoning. (b) Distribution of the epicentral distances for earthquakes in Liaoning. (c)
Distribution of the epicentral distances for earthquakes in Japan. (d) Magnitude distribution of the hypocenters for mining tremors in Liaoning. (e)
Magnitude distribution of the hypocenters for earthquakes in Liaoning. (f) Magnitude distribution of the hypocenters for earthquakes in Japan.
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such as seismic waves. EEMD is an improved version of empirical
mode decomposition (EMD) and is used to decompose nonlinear
and nonstationary signals. EEMD enables the decomposition of a
signal based on the given data themselves rather than predefined
base functions. However, it still faces challenges such as mode
mixing and incomplete mode decomposition. To address this issue,
EEMD introduces a strategy of adding white noise at different
time scales to compensate for potential frequency band losses.
Nonetheless, in practical applications, especially when addressing
signals with similar frequencies, mode mixing is still common.

To further improve upon EEMD, CEEMDAN was proposed.
It is an advanced signal processing technique that is aimed at
decomposing complex signals into simpler components known as
IMFs. CEEMDAN inherits the basic principles of EMD and its
EEMDvariant and has been improved to overcome themodemixing
problem, providing a more robust decomposition method.Through
this method, each step in the signal decomposition process becomes
more precise, effectively reducing the degree of mode mixing and
enhancing the reliability of the conducted analysis. The principle of
this approach is as follows.

Given an original signal x(t),Nwhite noise sequences, {wi(t)}
N
i=1

are added to generate N new signal sequences, as in Equation 1:

xi(t) = x(t) +wi(t), i = 1,2, ...,N (1)

For each noisy signal xi(t), the following steps are performed to
extract the corresponding IMFs. First, all local maxima and minima
are found, the local maxima are used to interpolate and form the
upper envelope eon(t), and the local minima are used to interpolate
and form the lower envelope elow(t). The means of the upper and
lower envelopes are calculated to obtainm(t), as in Equation 2:

m(t) =
elow(t) + eon(t)

2
(2)

The mean envelope is subtracted from the signal to extract a
detail d(t), as in Equation 3:

d(t) = x(t) −m(t) (3)

If d(t) satisfies the conditions of an IMF, it is taken as an IMF;
otherwise, d(t) is used to replace x(t), and the sifting process is
repeated. After each IMF is extracted, the added noise level is
adaptively adjusted based on the characteristics of the residual signal
(the signal remaining after the IMFs are removed). This process is
repeated on the residual signal using the adjusted noise levels to
extract subsequent IMFs. For each IMF, the ensemble average is
calculated from all iterations; i.e., the corresponding IMFs obtained
from all noise-added versions of the original signal are averaged.
This step can eliminate the added noise, leaving a more accurate
representation of the intrinsic oscillatory mode. This process is
repeated until the residual signal becomes a monotonic function,
and no more IMFs can be extracted. The final set of IMFs and
the residual represent the complete decomposition result of the
original signal. Variance is defined as the mean of the squares minus
the square of the mean, reflecting the proportion of signal energy
contained in each mode. The variance contribution rate of each
mode αk [28] is given by Equation 4:

αk =
x2k − (xk)

2

∑N
k=1
(x2k − (xk)

2)
(4)

In this equation, k is the k-th mode, N is the total number of
modes, and xk is the amplitude of the seismicwave for the k-thmode.

3.2 Construction of the LSTM model

3.2.1 Overview of the LSTM model
Long short-term memory (LSTM), a specialized architecture

of artificial neural networks (ANNs), addresses the limitations of
traditional recurrent neural networks (RNNs) in handling long-
range temporal dependencies by incorporating a memory cell
regulated by three adaptive gates (input, forgetting, output). This
innovation mitigates gradient vanishing/exploding issues inherent
in standard RNNs, enabling precise control over information
retention and forgetting [26]. Compared to feedforward neural
networks (FNNs), LSTM’s temporal memory mechanism and
dynamic gating allow adaptive sequential processing critical for
seismic signal analysis [29]. Recent studies demonstrate its efficacy
in early earthquake warning systems, underground mining tremor
classification, and real-time anomaly detection in sensor networks
[30], highlighting its stability optimization and context-aware
capabilities in geophysical applications. In a classic LSTMmodel, the
update equations at step t are as follows (Equations 5–10):

it = σ(Wixt +Uiht−1 + bi) (5)

ft = σ(W fxt +U fht−1 + b f) (6)

ot = σ(Woxt +Uoht−1 + bo) (7)

̃ct = tanh(Wcxt +Ucht−1) (8)

ct = ft ⊙ ct−1 + it ⊙ ̃ct (9)

ht = ot ⊙ tanh(ct) (10)

In this equation, it is obtained through a linear transformation
of the input xt and the previous hidden layer output ht−1, followed
by an activation function σ. The result of the input gate it is a vector
where each element is a real number between 0 and 1, which is used
to control the amount of information flowing through the gate for
each dimension. The matrices Wi and Ui, and the vector bi are the
parameters of the input gate, which are learned during training.The
forgetting gate fc and the output gate oc are computed similarly, each
with its own parameters W, U and b. Unlike traditional RNNs, in
LSTM, the transition from the state of the previous memory cell ct−1
to the current state ct is not solely determined by the state calculated
from the activation function but also jointly controlled by the input
gate and the forgetting gate.

In a trained network, LSTM has the ability to handle sequential
data through its gating mechanism, thus achieving long-term
memory functionality. Specifically, when the input sequence lacks
critical information, the forgetting gate value of the LSTM model
approaches 1, and the input gate value approaches 0, allowing past
memories to be retained. Conversely, when important information
appears in the input sequence, the input gate value increases
to nearly one to store this information in the internal memory
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FIGURE 5
Structural diagram of an LSTM unit.

cell. Furthermore, when the important information in the input
sequence indicates that the prior memory is no longer relevant, the
input gate value increases to nearly 1, whereas the forgetting gate
value decreases to nearly 0. This mechanism clears old memories
and stores new key information. Figure 5 shows the structure of
an LSTM unit.

3.2.2 Model architecture
In this study, we design a neural network architecture consisting

of multiple layers specifically for handling binary classification
problems. The input layer of the network receives sequential data
with 11 time steps. This is followed by two LSTM layers, each
containing 32 LSTM units, which can capture the long-term
dependencies in time series. To reduce overfitting, three dropout
layers are incorporated into the network, with dropout rates of 40%
for the first two layers and an increased dropout rate of 40% for the
final layer before the output layer. Additionally, the network includes
a fully connected layer with 32 neurons, utilizing the rectified
linear unit (ReLU) activation function to enhance the nonlinear
expression capabilities of the model and applying L2 regularization
to further mitigate the risk of overfitting. The final output
layer is a fully connected layer that uses the sigmoid activation
function to output probabilities for the two classes. The model
was trained using the Adam optimizer and binary cross-entropy
loss—specifically designed for binary classification tasks where
outputs are probabilities between 0 and 1. A training-validation
split of 8:2 was applied to ensure robust generalization to unseen
data. The initial learning rate was set to 0.05—a value commonly
adopted in deep learning practice [31]—and dynamically adjusted
using a step scheduler that reduces the learning rate by a factor
of 10 every 10 epochs. This strategy was implemented to balance
rapid convergence during early training and parameter refinement
in later stages, as supported by studies on optimization stability [32].

Using TensorFlow distributed training, LSTMmodel parameters are
stored in fragments and multi-node parallel processing is used to
reduce scaling effect when processing large-scale data This network
architecture not only adapts to complex binary classification tasks
but also effectively balances the learning ability and generalizability
of the model.

4 Results

4.1 Decomposition results produced by
CEEMDAN for earthquakes and mining
tremors

In this study, both mining tremors and earthquake signals
are decomposed into 11 IMFs, with these components arranged
in frequency order from high to low across different time scales.
Specifically, IMF1 represents the component with the highest
frequency and the shortest wavelength. As the decomposition
process progresses, the frequency decreases, and the wavelength
increases for each subsequent IMF component until the final
residual component is reached. For mining tremors, short-period
surface wave components can typically be identified in the
fourth or fifth IMF component, whereas these components are
absent from the IMFs of earthquakes, highlighting a significant
distinction between mining tremors and earthquakes. By selecting
two typical records of mining tremors and earthquakes, the
variance contribution rates of different IMF components are
calculated after using CEEMDAN for decomposition purposes and
presented as histograms. Figures 6a,b visually display the prominent
IMF components and their growth trends for mining tremors
and earthquakes, respectively. Additionally, Figure 6c, d show the
average variance contribution rates of all mining tremor and
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earthquake records processed by CEEMDAN, respectively. The
analysis results indicate that the energy is primarily concentrated
in the initial IMFs for both mining tremors and earthquakes.
However, for mining tremors, a significant variance contribution
rate increase occurs around the fourth IMF component due
to the presence of short-period surface waves, indicating a
higher amplitude and suggesting that surface waves encompass
a major portion of the signal energy. Figures 7, 8 illustrate the
decomposed results obtained for mining tremor and earthquake
signals, with part (a) representing the components of each IMF
for which the presence and separation of surface waves can be
observed, while part (b) displays the Fourier spectral analysis
corresponding to each component, highlighting the dominant
frequency distribution of each IMF component. The waveform
characteristics ofmining tremors and earthquakes exhibit noticeable
differences in their time‒frequency features. The frequency values
of mining tremors are typically concentrated in the low-frequency
range, indicating a shallow seismic source with developed surface
waves and high energy in the low-frequency band. In contrast,
the frequency values of earthquakes are distributed more widely in
the time‒frequency plot, with longer durations and slower decay
processes. This distinction reflects the complexity of the seismic
source mechanism for earthquakes, which comprises multiple small
ruptures, each with a certain duration process, originating from
deeper sources where seismic waves propagate through dense,
hard rock formations, resulting in lower energy losses and higher-
frequency components, leading to longer-lasting waveforms in
the records.

4.2 Comparison between the EEMD and
CEEMDAN methods

Compared with the other methods, CEEMDAN has the
following advantages. First, it is more effective at reducing the
degree of mode mixing, providing clearer and more accurate
mode decomposition results. Second, by adaptively adjusting
the level of noise added, CEEMDAN not only reduces its
computational complexity but also improves its decomposition
efficiency. Moreover, CEEMDAN better controls the impact of
noise during the decomposition process, effectively reducing the
false modes introduced by noise. Finally, the adaptive noise
addition strategy of CEEMDAN provides greater flexibility and
adaptability for handling different types of signals. Figures 9, 10
show that EEMD performs poorly in terms of data mode separation
when the white noise level is low, typically only decomposing 1-
2 IMFs and struggling to accurately identify surface waves. In
contrast, even at low noise levels, CEEMDAN can clearly identify
surface waves in the fifth IMF. When the white noise level is
too high, the EEMD method is affected by the introduction of
too many false modes due to noise, which impacts its ability to
effectively calculate variance contribution rates. Additionally, owing
to the inconsistent surface wave frequencies contained in seismic
waveforms derived from different regions, the ability of EEMD
to separate modes when handling data acquired from different
regions varies, resulting in ineffective surface wave identification
capabilities. In comparison, CEEMDAN, through its improved noise
management scheme and adaptive algorithm, exhibits superior

mode separation capabilities when handling a large amount of data
obtained from different regions, demonstrating greater generality
and adaptability.

4.3 LSTM results analysis

LSTM evaluates the input data via the following metrics:
accuracy, which is the proportion of correctly predicted samples
out of the total number of samples; the number of true positives
(TP), which is the number of positive cases correctly predicted as
positive; the number of true negatives (TN), which is the number of
negative cases correctly predicted as negative; the number of false
positives (FP), which is the number of negative cases incorrectly
predicted as positive; and the number of false negatives (FN),
which is the number of positive cases incorrectly predicted as
negative, as Equation 11.

Accuracy = TP+TN
TP+TN+ FP+ FN

(11)

Loss: This is the difference between the values predicted by
a model and the true values, which is usually represented as a
numerical value. For this study, the binary cross-entropy loss is used.
N is the number of samples. yi is the true label of sample i. ̂yi is the
predicted probability of sample i, as Equation 12.

Loss = − 1
N

N

∑
i=1
[yi log( ̂yi) + (1− yi) log(1− ̂yi)] (12)

Precision: This is the proportion of correctly predicted positive
samples out of all samples predicted as positive by the model. It is a
metric that measures the accuracy of a model in terms of predicting
positive cases, as Equation 13.

Precision = TP
TP+ FP

(13)

Recall: This is the proportion of correctly predicted positive
samples out of all actual positive samples. It measures the ability of
a model to capture positive cases, as Equation 14.

Recall = TP
TP+ FN

(14)

F1 Score: This is the harmonic mean of precision and recall,
which is used to measure the balance between the precision
and recall of a model. A higher F1 score indicates better model
performance, as Equation 15.

F1 = 2× Precision×Recall
Precision+Recall

(15)

After calculating the variance contribution rates of the IMFs
decomposed by CEEMDAN, they are input into a three-layer LSTM
model. The analysis results are shown in Table 1.

During training, the following parameters are selected. The
batch size is 12, representing the number of data instances contained
in each training batch; the number of epochs is 300, indicating
the number of complete passes made by the training data through
the neural network; and early stopping is implemented to halt the
training process when the performance attained on the validation
set does not improve in consecutive epochs or begins to decline.
The accuracy function and loss function results are shown in
Figures 11, 12. (A) shows the ROC curve, and (B) shows the
confusion matrix.
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FIGURE 6
(a) Histogram of the variance contribution rates for mining tremors. (b) Histogram of the variance contribution rates for earthquakes. (c) Histogram of
the average variance contribution rates for mining tremors. (d) Histogram of the average variance contribution rates for earthquakes.

4.4 Comparisons conducted under
different data and different models

4.4.1 Comparison among the variance
contribution rate inputs of different models

To compare the efficiency of LSTM in terms of classifying
earthquakes andmining tremors via variance contribution rates, this
study selects aCNN,ViT 2Dmodel and an SVMas baselinemethods.
The variance contribution rates obtained from the CEEMDAN
decomposition process are input into the CNN and SVM for
comparison purposes. The ViT-2D (Vision Transformer) model is
mainly composed of three parts: patch + position + cls embedding
layer, Transformer encoder layer and MLP classification layer, full
connection layer [-1,16,128], discard layer and Transformer layer [-
1,16,128]. 17,128], identity mapping layer [-1, 128], normalization
layer [-1, 128], full connection layer [-1,2]. A CNN is a deep
learning algorithm that consists of convolutional layers, pooling
layers, fully connected layers, etc., effectively extracting features
from data; CNNs are widely used in image recognition and video
analysis tasks. An SVM is a supervised learning model used for
data classification and regression analysis. It distinguishes different
data points by finding an optimal hyperplane. An SVM uses kernel
techniques to handle linearly inseparable data and can maintain
high accuracy in situations with small samples. The CNN utilizes
a two-layer network + a fully connected layer, with 16, 32, and 64

neurons, a convolution kernel size of (2.1), a rate dropout set to 0.5,
and an ReLU activation function. The SVM penalty parameter C
is set to 0.5, and the employed kernel function is the polynomial
kernel. As shown in Table 2 (validation set), LSTM has a significant
advantage in terms of handling these data.

After 500 experiments, the 95% confidence interval of the
model is (0.9583, 0.9717). Assuming the null hypothesis H0: the
true accuracy rate of this study π = 0.9 (here, 0.9 is referred to
the literature of Shen Jie [30]), and the alternative hypothesis H1:
the true accuracy rate of this study π ≠ 0.9. For a two-sided test,
when the significance level α = 0.05, the critical value z = 1.96. Since
the calculated z = 6.84 > 1.96, we reject the null hypothesis H0 and
conclude that there is a significant difference between the accuracy
rate of this study and the assumed benchmark accuracy rate of
0.9. That is to say, the accuracy rate of this study is statistically
significantly higher than 0.9.

4.4.2 Comparison among LSTM and CNN models
with different parameter inputs

To verify the superior identification capability of CEEMDAN,
different data for identifyingmining tremors are input into LSTM for
identification purposes, including [1] waveform data from 1 s before
and 3 s after the arrival time of a P-wave [2]; waveform data from 1 s
before and 14 s after the arrival time of the P-wave [3]; the variance
contribution rates of the IMFs decomposed via EEMD; and [4] the
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FIGURE 7
(a) Various IMF components of mining tremors and (b) their corresponding Fourier spectra.

dominant frequency. The model selection process is similar to that
described above, with accuracy serving as the comparison indicator.
The results, as shown in Table 3, indicate that the success rate

achieved via CEEMDAN with LSTM is the highest. The accuracy
rate of this studywas 96.5%, whichwas higher than the accuracy rate
of 91% for classification of natural earthquake and mine earthquake
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FIGURE 8
(a) Various IMF components of earthquakes and (b) their corresponding Fourier spectra.

based on ViT 2D model by Shen Jie [33]. Figure 13 shows the
classification accuracy of different models with different inputs.
From this, it can be clearly seen that ViT-2D can achieve an effect of
91.2%on the data from−1–3 s.However, this is based on the premise

ofmore complete preprocessing of the data and the removal of noise.
This step requires a large amount of manual intervention to remove
the unavailable data. On the other hand, for the data screened
by CEEMDAN features, since it acts on the short-period surface
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FIGURE 9
Mining tremors. (a) CEEMDAN decomposition diagram. (b) EEMD decomposition results produced with the noise level controlled at 0.01. (c) EEMD
results produced with the noise level controlled at 0.5.

FIGURE 10
Earthquakes. (a) CEEMDAN decomposition diagram. (b) EEMD results produced with the noise level controlled at 0.01. (c) EEMD results produced with
the noise level controlled at 0.5.

TABLE 1 Results obtained on the training and validation sets with LSTM.

Metrics Training set Validation set

Accuracy 96.1% 96.5%

Loss 13.1% 11.0%

Precision 96.1% 98.2%

Recall 97.1% 99.3%

F1 Score 97.1% N/A

waves for identifying mining tremors, after actual measurement,
only simple preprocessing such as baseline calibration and filtering
of the original data is needed to complete the identification ofmining
tremors, and it can also actively remove the unavailable data. In
this regard, LSTM has more advantages. The reason is that LSTM
has better advantages in exploring the general temporal sequence

problems (that is, there is a causal relationship in the development
of the sequence), and the variance contribution rates of IMFs are
sequences with distinct causal relationships between the preceding
and the following. The CEEMDAN-LSTM method has a better
prospect for real-time monitoring and classification.

5 Conclusion and discussion

5.1 Conclusion

This study selected recorded data from different mining tremors
and earthquakes that occurred in the Liaoning region and applied
the CEEMDAN-LSTM method to classify these events, achieving
a high success rate. The following conclusions were drawn from
the research.

Previous studies have provided numerous criteria for
distinguishing between mining tremors and earthquakes, including
the initial directions of P-waves and the dominant frequency.
Utilizing only the initial direction of a P-wave as a discriminant
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FIGURE 11
(a) Represents the training accuracy function; (b) Rep-resents the training loss function; (c) Represents the Matthews Correlation Coefficient.

FIGURE 12
(a) shows the ROC curve, and (b) shows the confusion matrix.

TABLE 2 Comparative results of the four tested models.

Metrics SVM CNN LSTM ViT-2D

Accuracy 91.3% 93.2% 96.5% 94.2%

Precision 94.7% 95.1% 98.1% 96.7%

Recall 93.1% 95.2% 99.1% 97.1%

Loss 19.7% 17.5% 10.9% 15.1%

indicator makes it difficult to eliminate noise interference in data
with high noise levels; similarly, the dominant frequency overlaps
with the frequencies of noise when processing data derived from
various regions, making it difficult to address the noise interference
issue. The method of identifying short-period surface waves
through CEEMDAN not only resolves the issue of ambiguous
identification criteria but also overcomes the difficulties caused
by overlapping noise and surface wave frequencies, significantly
improving the success rate achieved when classifying earthquakes
and mining tremors.

Mining tremor records are relatively rare, and previous studies
have focused mostly on analyzing single events. When addressing
a large amount of general, extensive data, the frequency range of
surface waves induced by mining tremors significantly fluctuates and
overlapswith the frequencyrangeofnoise.WhentheEEMDmethod is
used, effectively separatingmining tremor surface waves fromnoise is
difficult. In comparison, the CEEMDANmethod canmore effectively
remove noise and accurately identify surface wave frequencies.

5.2 Discussion and future work

This study demonstrates the efficacy of the CEEMDAN-
LSTM model in discriminating mining tremors from tectonic
earthquakes. To advance this framework, several avenues merit
further investigation. First, enhancing computational efficiency of
CEEMDAN decomposition requires integrating advanced spline
interpolation techniques and parallelized GPU acceleration via
CUDA/OpenCL frameworks, as validated in XGBoost-based
seismic classification [16]. This optimization would expedite the
extraction of intrinsic mode functions (IMFs), reducing latency
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TABLE 3 Comparison among the results produced with different inputs.

Input Three-layer CNN LSTM SVM ViT-2D

1 Second Before and 3 Seconds After a P-Wave 56.7% 58.1% — 91.2%

1 Second Before and 14 Seconds After a P-Wave 69.1% 61.7% — 85.1%

Variance Contribution Rate of EEMD 74.3% 76.7% 73.1% 79.3%

Excellence Frequency 78.15% 78.1% 84.3% 85.1%

Variance Contribution Rate of CEEMDAN 93.2% 96.5% 91.3% 94.2%

FIGURE 13
shows the classification accuracy of different models with different inputs.

in real-time applications. Second, expanding the dataset scope
to include multi-source seismic records would improve model
generalization, aligning with recent efforts in hybrid data fusion
for earthquake early warning [17].

For feature engineering, integrating machine learning
algorithms—such as support vector machines (SVM) or random
forest (RF)—to exploit CEEMDAN-derived frequency components
can enhance discriminative power. Specifically, combining
traditional variance contribution rates with time-frequency metrics
(Teager energy operator, wavelet packet entropy) and domain-
specific indices (P/S amplitude ratios) would enable multi-scale
analysis, as demonstrated in hybrid models for microseismic
event classification [23]. Additionally, applying adaptive noise
reduction techniques (Wiener filtering, wavelet thresholding)
during CEEMDAN decomposition could mitigate artifacts from
low signal-to-noise ratio (SNR) datasets, improving the fidelity of
reconstructed waveforms.

To address scalability challenges, distributed GPU computing
frameworks should be adopted to parallelize LSTM training,
enabling linear scaling with dataset size. This approach mirrors
successful implementations in large-scale seismic intensity
estimation [18]. Furthermore, exploring lightweight LSTM variants
(e.g., bidirectional LSTMwith attentionmechanisms) could balance
temporal modeling capabilities and computational efficiency, as
previously shown in rockburst-prone mine monitoring [23].
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