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Systematic trends in the
spin-orbit splitting toward
weak-binding

Jie Chen*

Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong, China

Spin–orbital (SO) splitting in atomic nuclei results from the coupling between
a nucleon’s spin and its orbital angular momentum, fundamentally influencing
nuclear structure, especially near the magic numbers. This paper reviews the
impact of various effects on SO-splitting, including tensor and weak-binding
effects in neutron-rich and weakly bound nuclei, focusing on both theoretical
interpretations and recent experimental results. The study summarizes new
experimental results on SO-splitting in isotopes such as 34Si, 32Si, and 132Sn,
showing a consistent smooth reduction in SO energy for weakly bound orbits,
attributed to extended radial wave functions rather than a reduced SO potential
strength. These findings reinforce the need for further experimental research
with advanced radioactive ion beam facilities to understand the intricate
behaviors of SO interactions in exotic nuclei.
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spin–orbital splitting, transfer reactions, shell model, density functional theory, weak
binding effect

1 Introduction

The study of atomic nuclei remains an important topic for understanding it as a complex
system governed by the strong nuclear force. One of the key concepts in nuclear structure
is the nuclear shell model [1, 2], which granted enormous success in understanding the
nuclear structure near stability. In the nuclear shell model, the nucleons group in quantized
energy levels or “shells” within the nucleus, which is analogous to electrons in an atomwhere
electrons fill up discrete energy levels. The concept of “magic numbers” was introduced to
denote specific numbers of nucleons that result in particularly stable atomic nuclei. Unstable
nuclei generally possess lower binding energies, rendering themmore susceptible to various
quantum effects not observed in stable nuclei. With advancements in radioactive beam
facilities worldwide, numerous new phenomena have been discovered, including halo nuclei
[3], cluster structures [4], and the migration of magic numbers [5].

Spin–orbital (SO) splitting refers to the energy difference between nuclear states that
arises due to the coupling of a nucleon’s spin with its orbital angular momentum. It was
first proposed to interpret the fine structure in atomic spectra, and the concept was later
adapted to nuclear physics by Goeppert-Mayer and Haxel et al. [1, 2] to explain similar
splittings observed in nuclear energy levels. This phenomenon is a direct consequence of
the SO interaction, which was manually added to the shell model to explain the “magic
numbers.” Magic numbers 2, 8, and 20 are formed by the harmonic oscillator levels, while
all the magic numbers above 20 are dominantly driven by the SO splittings. For example,
the lowering of the j = ℓ+ 1/2 orbitals with large ℓ ( f7/2, g9/2, and h11/2) caused by strong
SO splittings results in the shell closure at 28, 50, 82, etc. Any changes in SO potential
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may impact the shell gaps, binding energies, and lifetime of
the nuclei, which possibly influence the neutron capture rate
determining the heavy element synthesis [6]. In heavy elements,
different theoretical descriptions of the SO potential can also
affect predictions of the dripline and the location of the island
of stability. Some theoretical predictions suggest that the SO
interaction contributes to the stability of superheavy elements by
creating energy gaps at higher nucleon numbers, leading to islands
of stability in the superheavy region.

Although there is not yet a quantitative understanding of the
microscopic origins of the SO term in the nuclear Hamiltonian, it
appears to be influenced by the meson-theoretical three-body force
[7], the tensor force [8], and the two-body SO term from the meson
exchange. Fujita and Miyazawa first proposed that the three-body
nucleon force with an intermediate Δ excitation results in an SO-
splitting [7]. Second, Terasawa showed that the tensor-force also
contributes to the SO-splitting [9]. Later, in the proposed relativistic
mean field (RMF) theory [10], nucleons are treated as relativistic
particles that interact through the exchange of mesons, and the SO
interaction term arises due to the coupling between the nucleon’s
spin and its motion in the central potential field created by the
mesons. When the non-relativistic expansion is performed, the SO
coupling term appears as

Vso =
1

2M2R
dVeff

dR
(ℓ ⋅ s) , (1)

where M is the mass of the nucleon (proton or neutron), Veff is
an effective potential that includes contributions from the scalar
and vector meson fields, ℓ is the orbital angular momentum, s is
the intrinsic spin of the nucleon, and R is the radial distance from
the center of the nucleus. The derivative of the effective potential
indicates how steeply this potential changes with distance. The
resulting SO-splitting scales approximately with node number and
angular momentum of the orbitals as 24.5/n(ℓ+ 1/2)A−0.597 [11],
where A refers to the mass number and n refers to the quantum
number of the harmonic oscillator. However, it has been observed
in many cases that the SO-splitting may deviate from this trend due
to different effects, which will be discussed below.

From Equation 1, we can see that the SO interaction can
be influenced by the mass of the nuclei and depends on the
orbital angular momentum of the nucleon. Higher orbital angular
momentum states experience a more substantial SO-splitting.
Therefore, the SO splittings generate all the magic numbers above
20 for orbitals with higher ℓ values, as stated above. The orientation
of the orbital angular momentum and the intrinsic spin lead to
splittings of different states with j = ℓ± s.The dependence on the 1/R
term in the formula indicates that this interaction has a significant
impact at smaller radii. Given its proportionality to the derivative of
the potential with respect to distance, it is natural to expect the SO
interaction to be a surface term. This is because the density in the
central region of nuclei is remarkably consistent across most stable
nuclei, despite the wide variety in nuclear sizes. However, there are
some theoretical predictions that suggest depletion in central density
in some exotic nuclei, which leads to a sudden change in the SO
potential of these nuclei.

This article aims to provide a succinct summary of the recent
research on SO-splitting in nuclei, with a focus on the weak-binding
effect on it. We will examine the current experimental status of

SO-splitting with a focus on the Si isotopes and discuss possible
underlying mechanisms. By delving into these specific studies, we
will analyze the evolution of SO-splitting in these nuclei and its
implications.

2 SO interaction evolution as a
function of proton and neutron
numbers

There are many factors that contribute to the SO interactions,
including, but not limited to the tensor force, the three-body force.
Moreover, as experimental studies extend to nuclei away from
stability, the finite binding energy may also impact the SO splittings.
Reference [12] provides a comprehensive historical overview on the
impact of the three-body force on the SO-splitting, so we will focus
on the other two aspects.

2.1 Effect of tensor force on SO splittings

Thetensor force is a crucial component of the nuclear interaction
that plays a significant role in determining the energy levels of
nuclei, especially for nucleons in high-angular-momentum states
and in nuclei far from the stability (23). In the nuclei far from
stability or with high isospin asymmetry, the neutrons and protons
can occupy different orbitals. Since the tensor component of the
nuclear force arises primarily from the exchange of pions (π-mesons)
between nucleons, the exchange process contributes dominantly to
themonopole part of the tensor force, which ismuch stronger for the
proton–neutron (T = 0) interaction, and is approximately twice as
strong as the (T = 1) interaction.The tensor force causes the effective
interactions between the proton orbital with j> = ℓ+ 1/2 (or j< =
ℓ− 1/2) and neutron orbitals j′< (or j

′
>) to bemore attractive, whereas

j> and j′> (or j
′
< and j′<) repel each other. This effect accumulates as

the proton–neutron asymmetry increases, and the shell evolution
occurs consequently.

It is, therefore, natural to expect that the neutron SO splittings
evolve with the change in the proton number. As the proton fills
the j> orbitals, the SO-splitting decreases, and vice versa, which is
supported by experimental data. For example, in the Ca isotopes,
it was shown that the proton 0d3/2 is attracted (lowered in energy),
while 0d5/2 is repelled (raised in energy) due to the neutron filling of
the 0 f7/2 orbit [13]. Similarly, in the Sb isotopes, as more neutrons
occupy 0h11/2, the protons 0h11/2 and 0g7/2 move apart [14]. This
trend is also consistent with a decrease in the nuclear SO interaction.

2.2 SO splittings in weakly bound nuclei

Since the SO interaction is majorly a surface term, it could be
modified in neutron-rich nuclei away from stability, where neutrons
may have a diffuse surface density distribution due to weak binding.
Hamamoto et al. [15] predicted the SO splittings of weakly bound
orbits in light, neutron-rich nuclei to decrease due to the extended
radial wavefunctions of neutron orbits, with no reduction in the SO
potential strength.
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FIGURE 1
(A) Term RΨ(R) plotted as a function of the radius R under different binding energies Sn −E. (B) Radial neutron wave functions of the 1p3/2 (red solid line)
and 0 f7/2 orbital (blue solid line). The vertical solid black line shows the estimated matter radius of the nucleus 34Si R0 = 4.05 fm. (C) Excitation energies
and corresponding spectroscopic factors of the low-lying states in 37Ar, 35S, and 33Si measured in the (d,p) reaction, with transitions to the 0 f7/2
(green), 1p3/2 (red), and 1p1/2 (blue) orbitals. The weighted average of the corresponding orbitals is labeled with the slashed bars, if different from the
dominant states.

By approximating SO potential to a δ function at the nuclear
surface, a simple evaluation of the SO-splitting was established in
Reference [16],

ΔSO ∝ Vso (ℓ ⋅ s)r20RΨ2 (R) , (2)

where Vso is the SO potential strength, Ψ(R) is the radial
wavefunction, r0 is the scaling parameter for the radius of nuclei
(usually taken as 1.2 fm), and R is the radial distance from the center
of nuclei. Figure 1A plots the radial 1p3/2 wavefunctions multiplied
by the radius under different binding energies, showing that the SO-
splitting decreases as the corresponding orbitals become less bound.

3 SO interaction evolution near the
proposed “bubble” nucleus

3.1 SO splittings in N = 21 isotones

Due to the saturation and short-range nature of the nuclear
force, it is natural to expect that the density in the center of

nuclei is constant. However, there have been many theoretical
studies supporting the existence of central depletion in 34Si [17,
18]. 34Si is a candidate for a so-called “bubble” nuclei, providing a
valuable test case for the SO potential in the center of nuclei. The
prediction of central depletion in 34Si arises from its doubly magic
characteristic (N = 20 and Z = 14), which results in an extremely low
proton occupancy number in the 1s1/2 orbital. This occupancy was
determined to be between 0.17 and 0.24 in the proton knockout
reaction [19]. As a large fraction of the radial part of the 1s1/2
orbital peaks in the center of the nucleus, the lack of 1s1/2 naturally
induces a central density depletion. Despite no direct proof of such
central depletion, experimental developments in electron scattering
measurements, ideally suited for such studies, of radioactive isotopes
are being made [20].

Since the SO-splitting is proportional to the derivative of the
density distribution (see Equation 1), it is expected to change due to
the presence of density depletion. The one-neutron adding reaction
is useful for determining the angular momentum transfer ℓ and
spectroscopic factors through comparison to the reaction models,
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and the population strength indicates the single-particle strength
in each state. Therefore, the SO splittings can be mapped out
with the addition and removal of single-particle strengths and the
corresponding binding energies [21],

Ej =∑G+j E
+
j +∑G−j E

−
j , (3)

with G+j +G
−
j = 1.0. For the case in which the single-particle

removal strengths were not measured, the energy centroid can be
used to determine the single-particle energies

Ej =∑G+j E
+
j , (4)

with G+j = 1.
A significant reduction in SO-splitting is predicted for 34Si

compared to other N = 20 isotones due to central density depletion.
This prediction seems to be supported by the nearly 50% reduction
in the SO-splitting in 34Si compared to 36S, as determined using
the dominant single-particle component [19, 22] (see Figure 2A).
However, this assertion was questioned because only dominant
single-particle strength was considered, instead of including the
fragmented components of the ℓ = 1 single-particle strength as in
Equation 3, which may result in overestimation of SO splittings.
After taking them into account, a smooth reduction from 41Ca
via 39Ar and 37S to 35Si was shown (see Figure 2A), which was
explained by the finite binding energies of the neutron states [23]. So
far, the interpretation remains highly debated. There is an ongoing
investigation into whether the observed changes in the 1p SO-
splitting are driven by the weak-binding effect or by the weakening
of the two-body SO potential in this region [6, 24]. This motivated
the recent measurement of the N = 19 isotones.

3.2 SO splittings in N = 19 isotones

In order to enhance our understanding of the microscopic
origins of the SO interaction, studying the SO interaction near the S
and Si isotopes is crucial. The evolution from Si to S is particularly
important since only the 1s1/2 proton orbital is filled between these
two nuclei. Consequently, the resulting proton–neutron interaction
involves no tensor component because it vanishes for ℓ = 0; only the
SO part of the nuclear force plays a role.

For 32S to 30Si (N = 16), the proton 1s1/2 occupancy changes
from 1.35 to 0.65 (not 2.0 to 0.0) based on the proton knockout
reaction data [25], making 30Si not an ideal candidate to study
the proton central depletion. However, for 32Si, the neighboring
even–even isotope of 34Si, both density functional theory and shell
model calculation predict a very small proton 1s1/2 occupancy
(∼0.3) compared to 34S, where 1s1/2 is almost fully occupied.
Furthermore, density functional theory calculations of 32Si predict a
depletion similar to that of 34Si in the proton density distribution,
as well as a sudden reduction in SO-splitting in 32Si compared
to 34S (see Figures 2C, D). It provides another testing ground for
investigating if there is a sudden reduction in SO-splitting due to
proton depletion. It should also be noted that one major difference
in 32Si is that its neutrons are more deeply bound than 34Si, so it
should be less influenced by the weak binding effect.

The single-particle energies of shell-model orbitals in N = 19
isotones (33Si, 35S, and 37Ar) can be mapped out with the addition

and removal of single-particle strengths using Equations 3, 4. The
neutron addition data of the N = 19 isotone 37Ar and 35S can be
found in Refs. [26–29]. With these data, the weighted average
values of the 0 f7/2 and 1p1/2,3/2 orbitals were obtained and are
plotted in Figure 1C. It was found that the location of the weighted
average is clearly different from the dominant strength, showing
that considering the fragmented strength is important. The single-
particle removal strength of these orbitals was also consideredwhere
one-neutron removal data exist for 37Ar and 35S. Only the 1p3/2 and
0 f7/2 single-particle energies of 37Ar have been shifted downward by
approximately 100 and 250 keV, respectively. The p f-shell orbitals of
35S have been shifted less than 50 keV. However, no such previous
addition or removal data exist for 33Si.

In order to quantitatively determine the SO-splitting, a
measurement of 32Si(d,p)33Si cross-sections was carried out
at the ReA6 beamline in FRIB using the newly constructed
solenoid spectrometer SOLARIS in the silicon array mode [30].
The solenoid spectrometer is capable of measuring the transfer
reactions, in particular the one-neutron adding (d,p) reactions
with high resolution. The experimental spectroscopic factors and
the single-particle energies of the 1p3/2,1/2 and 0 f7/2 orbitals are
plotted in Figure 1C and comparedwith its S andArN = 19 isotones.

In the relativistic mean field (RMF) calculation with the DD-
ME2 interaction [31], 32Si was predicted to exhibit a depletion in
central density, similar to 34Si, due to low 1s1/2 proton occupancy.
This calculation predicts a sudden reduction of the neutron 1p-
shell SO-splitting in33Si compared to 35S, similar to the N = 21
isotones. However, as observed from the present measurement, the
SO-splitting in 33Si is similar to that of 35S, in contradiction to the
RMF calculation (see Figure 2B). The mismatch of this calculation
might be attributed to the fact that the proton–neutron quadrupole
correlations are not taken into account in the RMF calculation.
Therefore, this study does not support the existence of a sudden
reduction in SO-splitting associated with a proton bubble.

3.3 Systematic description of the SO
splittings with the weak binding effect

To explore this weak binding effect on SO splittings, the
calculation was carried out with a Woods–Saxon (WS) potential.
Figure 4 of Reference [30] shows the binding energy of 1p1/2 and
1p3/2 orbitals from existing experimental data, together with the WS
calculation, using the radius and diffuseness parameters r0 = 1.2 fm,
a0 = 0.7 fm, rso = 1.3 fm, aso = 0.65 fm, and SO strengthVso = 6MeV.
The depth of the potential was chosen to reproduce the binding
energies of these two orbitals with a χ2 minimization method. The
SO strength is not varied in the calculation.

It can be seen immediately that the SO-splitting and single-
particle energies of the 1p orbitals have been reproduced by the
calculation without changing the SO potential strength. The good
agreementwith the calculationwithWS formalism indicates that the
evolution of the p-shell single-particle energies was described by the
behavior of the wavefunctions resulted from the geometric effect (a
large radius or diffuseness) of the low-ℓ orbitals as they become less
bound. This was achieved without inducing a weakening of the SO
potential strength or other additional effects.
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FIGURE 2
(A) Evolution of the 1p3/2 − 1p1/2 or 3/2−-1/2− SO-splitting, for the N = 21 isotones. Black open circles (with estimated error bars) correspond to the
centroid of the single-particle strength derived in [23], in which Woods–Saxon calculations were made (orange band). Red filled triangles are obtained
using the energy difference between the 3/2− and 1/2− states having the dominating spectroscopic factor value, when populated by the (d,p) reaction.
Blue squares correspond to covariant energy density functional calculations with the DDME2 parametrization of the 3/2− and 1/2− states shifted
upward by 340 keV. Some symbols have been slightly shifted to the left or right to be better distinguished. This figure is adopted from Reference [24].
(B) Evolution of the 1p3/2 − 1p1/2 or 3/2−1/2− SO-splitting, for the N = 19 isotones. Red squares (with estimated error bars) correspond to the centroid of
the single-particle strength derived in [30]. Black squares correspond to covariant energy density functional calculations, shifted downward by 450 keV.
This figure is adopted from Reference [30]. Proton density of 34Si and 36S calculated with the DD–ME2 interaction using the covariant energy density
functional method. (D) Same as (C), but for 32Si and 34S. This figure is adopted from Reference.

From Equation 2, it is seen that the SO-splitting depends on
the term RΨ(R) if the strength of the SO potential Vso remains
unchanged. In Figure 1A, this term is plotted as a function of R.
The radius of the nucleus R0 was taken as 1.25 fm×A1/3 = 4.05
fm. It is clearly seen that the term RΨ(R) reduces as the binding
energies approach to 0, diminishing to more than 60% of its original
value. This indicates that the reduction observed in the 1p-orbital
SO-splitting can be fully accounted for by the evolution of the
wavefunctions toward weak binding.

32Si should have a similar 1s1/2 occupancy as 34Si, according
to the latest safe Coulomb excitation measurement [32], as also
supported by the theories. It is noted that there is yet no
experimental measurement informing on the proton occupancy.
Related measurements to determine its proton occupancy in

the 1s1/2 orbital are being planned with the Active-Target Time
Projection Chamber (AT-TPC) [33] coupled with the HELIOS
solenoid. Using the proton addition or removal reaction, the proton
occupancy of 32Si in the s1/2 orbital will be determined.

3.4 SO splittings of orbitals with ℓ = 1 and
ℓ = 3

The discussion above mostly focuses on the SO-splitting of the
1p-shell orbitals. One may wonder if the weak binding or central
depletion effectmay be revealed in the SO-splitting of the 0 f orbitals.
The radial wavefunction of the 0 f orbital is compared with that
of the 1p orbital in Figure 1B. In addition, Equation 1 shows that
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the changes in the wavefunction at the smaller radius would have
a larger impact on the SO potential. Therefore, some may expect
that there would be a sudden reduction in the SO-splitting in case
of a central depletion. However, the 0 f orbital wavefunction seems
to have very little sensitivity to the change in the potentials in the
very center of nuclei (R < 2 fm), where the depletion was presented.
Consequently, the central depletion should have very little impact
on the SO-splitting of the 0 f orbitals.

On the other hand, the weak binding effect may still impact
the SO-splitting of the 0 f orbitals, although much less than the
1p orbital. According to a calculation with the WS potential, the
change in the SO-splitting from binding energy is approximately
50% less compared to that of 1p orbitals. However, this effect will
still be clearly seen based on the usual uncertainties of approximately
100–200 keV for determining the single-particle energies from the
transfer reactions. Future experiments to measure the 0 f orbital SO
splittings in Si and S under weak binding would be important to
further study whether the weak binding effect or the central density
depletion plays a major role.

4 SO interactions in heavy nuclei

In heavy nuclei, the SO interaction is even stronger due to the
higher angular momentum and larger node number. For examples,
in the nucleus of 132Sn, the SO splittings of the 1 f, 2p, and 1d orbits
were investigated, which shows a reduction in the SO-splitting of
weakly bound 1p orbits compared to well-bound 1d orbits [34].
Similarly to the N = 19 and N = 21 cases discussed before, the
reduction can be explained by the extended radial wavefunctions
of the weakly bound orbits rather than a weakened SO interaction
strength. The work also highlights the importance of understanding
the SO interaction for calculations related to neutron-capture cross-
sections in the r-process. Although the weak binding effect was
shown to be dominant in this case, the effect of tensor force on
the single-particle energies of the odd-mass Sb isotopes can also
convincingly describe the data [8, 14]. More experimental studies
are still needed in the future for a systematic study to understand
the microscopic origins of the SO-splitting in heavy nuclei, which
will be important for the predictions for the stability of superheavy
elements. For example, the SO splittings near the 2s1/2 orbital would
be interesting since there is no tensor component evolved.

5 Summary

SO-splitting plays a critical role in the nuclear shell model and
the stability of nuclei, particularly those with magic numbers. An
overview of the recent research on SO-splittings in atomic nuclei
was presented.Themicroscopic origins of the SO term in the nuclear
Hamiltonian and the possible contribution of the tensor forces and
the weak-binding effect were examined. The concept of central
density depletion in “bubble” nuclei like 34Si and its impact on
SO-splitting is investigated, using experimental data and theoretical
calculations, which shows a smooth reduction in SO-splitting and
the need for considering the fragmented single-particle strengths.
Overall, the importance of the weak binding effect is highlighted
in explaining the existing experimental data. The present review

also emphasizes the need for advanced experimental studies to
further unravel the driven mechanism of the SO interactions for the
understanding of nuclear structure, the synthesis of heavy elements,
and the prediction of stability in superheavy regions.
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