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Infrared and visible image sensors are wildly used and show strong
complementary properties, the fusion of infrared and visible images can adapt
to a wider range of applications. In order to improve the fusion of infrared and
visible images, a novel and effective fusion method is proposed based on multi-
scale transform and sparse low-rank representation in this paper. Visible and
infrared images are first decomposed to obtain their low-pass and high-pass
bands by Laplacian pyramid (LP). Second, low-pass bands are represented with
some sparse and low-rank coefficients. In order to improve the computational
efficiency and learn a universal dictionary, low-pass bands are separated into
several image patches using a sliding window prior to sparse and low rank
representation. The low-pass and high-pass bands are then fused by particular
fusion rules. The max-absolute rule is used to fuse the high-pass bands, and
max-L1 norm rule is utilized to fuse the low-pass bands. Finally, an inverse LP
is performed to acquire the fused image. We conduct experiments on three
datasets and use 13 metrics to thoroughly and impartially validate our method.
The results demonstrate that the proposed fusion framework can effectively
preserve the characteristics of source images, and exhibits superior stability
across various image pairs and metrics.

KEYWORDS

image fusion, multi-scale transform, sparse representation, low-rank representation,
infrared image, visible image

1 Introduction

Due to the use of new application scenarios and the increasing demand for image
sensors in fields such as transportation, security, and military, single image sensors are
becoming less effective. Because source images from multiple sensors contain more detailed
information and can meet more complex requirements, it is more effective to collect
information about a particular situation using various image sensors. Infrared and visible
image sensors are wildly used and show strong complementary properties. Visible image
sensors have high spatial resolution, rich details, and contrast between light and dark, but
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FIGURE 1
The schematic diagram of the proposed fusion method.
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FIGURE 2

Diagram of image decomposition.
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they are susceptible to adverse environments like low lighting and
fog. Infrared image sensors are less affected by environments but
have low resolution and poor texture. Therefore, the combination
of infrared and visible sensors can adapt to a wider range of
applications.

Visible and infrared image fusion has attracted considerable
attention. So far, fusion methods can be divided into conventional
methods and deep learning-based methods on whether deep
learning is utilized [1]. Conventional methods include spatial
domain-based methods and transform domain-based methods.
Spatial domain-based methods fuse images directly on pixels or
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image patches/blocks. However, these methods are susceptible to
noise and it is easy to introduce artifacts. Zhang [2] proposed
an effective infrared and visual image fusion algorithm through
infrared feature extraction and visual information preservation,
while Xiao [3] presented a spatial domain-based image fusion
method based on fourth order partial differential equations
and principal component analysis, Ma [4] proposed a novel
fusion algorithm based on gradient transfer and total variation
minimization; the gradient calculation is related to a specific matric.
Transform domain-based methods firstly transform source images
into another domain, and then fusion rules are used to fuse the
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Diagram of fused image reconstruction.
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TABLE 1 The 13 metrics and their meaning in the following experiments. “|"” means that smaller value denotes better results.

Category Metrics Meaning Category Metrics Meaning
CE| Cross entropy AG Average gradient
EN Entropy SD Standard deviation
Information theory-based MI Mutual information . EI Edge intensity
. Image feature-based metrics
metrics
QAPF Edge based similarity
. . measurement
PSNR Peak signal-to-noise ratio
Spatial frequency
RMSE| Root mean squared error Qe Chen-Blum metric
Structural similarity-based X .
i o Human visual perception v i
metrics SSIM Structural similarity index Q*'l Chen-Varshney metric
measure

source images. After the fusion is completed, the fused results
are transformed back to image form. Many good results have
been achieved with the transform domain-based method. Li [5]
proposed a latent low-rank representation image fusion method that
received very good results although it is time-intensive. Bavirisetti
[6] achieved image fusion based on saliency detection and two scale
image decomposition; they also studied anisotropic diffusion and
Karhunen - Loeve transform for image fusion [7]. Kumar [8] used a
cross-bilateral filter to extract the image details and achieved image
fusion based on weighted average. Zhou [9] and Li [10] both studied
the guided filter to achieve image fusion. Bavirisetti [11] used multi-
scale image decomposition, structure transferring property, visual
saliency detection, and weight map construction to fuse images.
Naidu [12] studied multi-resolution singular value decomposition
to fuse images. Qi [13] proposed a saliency-based decomposition
strategy for infrared and visible image fusion. Considering the
advantages in image information capture, some researchers have
studied many hybrid methods by combining domain transform and
some emerging image information processing algorithms. Zhou [14]
studied a hybrid image fusion method through a hybrid multi-scale
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decomposition with Gaussian and bilateral filters. Liu [15] studied
the effectiveness of image fusion by combing different transform
methods and sparse representation; the results demonstrated that
the combination of multi-scale transform (MST) and sparse
representation achieved better results. Ma [16] used a rolling
guidance filter and Gaussian filter to decompose source images, and
an improved visual saliency map was proposed to fuse images. In
order to eliminate the modal differences between infrared and visible
images, Chen [17] utilized feature-based decomposition and domain
normalization to improve the image fusion quality. Li [18] used
rolling guidance filtering and a gradient saliency map to address the
issue of brightness and detail information loss in infrared and visible
image fusion.

As artificial intelligence continues to develop quickly, many deep
learning methods are being examined for their use in visible and
infrared image fusion. Liu [19] used convolution neural networks
and Gaussian pyramid decomposition to compute a wight map—the
wight map was used to fuse the Laplacian pyramid decomposed
source images. Li [20] used a deep learning network to extract multi-
layer features of detailed parts of source images and fused images
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FIGURE 4

Metrics of all 21 image pairs. The data of the first 9 methods are from the workbench in reference [22]. The best result and our result are bolded, and
there is one bolded result if our result is the best. (a) AG (b) CE (c) EI (d) EN (e) Ml (f) PSNR (g) Q**F (h) Q%8 (i) QY (j) RMSE (k) SD (1) SF (m) SSIM.

by l1-norm and weighted-average strategy. Li [21] also studied
the performance of ResNet and zero-phase component analysis.
Zhang [1] comprehensively reviewed the current deep learning-
based image fusion algorithms and established a benchmark. He
also compared learning methods and non-learning methods and
concluded that the performances of deep learning-based image
fusion algorithms do not show superiority over non-learning
algorithms [22]. Wei [23] proposed an attention-based dual-branch
feature decomposition fusion network.

As discussed above, sparse representation has achieved good
results in visible and infrared image fusion. Recent studies
demonstrate that combining sparse and low-rank constraints can
enhance the information capture of images [24,25], because low-
rank constraints can recover some structural information of source
images. In this paper, we aim at establishing a new visible
and infrared image fusion method using sparse and low-rank
representation. Considering the good performance of Laplacian
pyramid (LP), source images are firstly transformed into another
domain to obtain their low-pass and high-pass bands. Secondly, low-
pass bands are represented as some sparse and low-rank coefficients.
Then, specific fusion rules are adopted to fuse the low-pass and
high-pass bands. Finally, an inverse LP is conducted to obtain the
fused image.

The contributions of this paper include 1) combining sparse
constraint and low-rank constraint to establish a sparse low-rank
representation model to improve the performance of extracting
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the complex structural features; 2) precisely designing a solution
strategy for the sparse low-rank representation model, which is
essential for image fusion with high qualities; and 3) establishing a
new infrared and visible image fusion method based on Laplacian
pyramid and sparse low-rank representation, the experimental
results of which proved the advantages in fusion quality and
improved runtime performance compared to methods with similar
fusion quality.

The rest of this paper is organized as follows. Section 2 first
presents the sparse low-rank representation model. Our fusion
method is presented in Section 3. In Section 4, the experimental
results are listed and analyzed. Section 5 summarizes the conclusions
of this paper.

2 Sparse low-rank representation
model

2.1 Basic theory of sparse representation

Given a signal vector V, sparse representation of V can be
formulated as

mgl llallysubject to |V —Dal, <e, (1)
a,

where a is the sparse coefficient of source image V, D is an unknown
dictionary matrix to be learnt, |||, and |-|, are L0 norm and L2
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norm correspondingly, and & > 0 is the error tolerance and is related
to noise. The dictionary D can be efficiently solved by K-SVD, any
source images can be sparsely represented with D.

As the LO norm is nonconvex and Equation 1 is a NP-hard
problem, some research proved that the results of L1 norm are equal
with L0 norm if the sparsity of optimized a is near its true value [26].
Hence, the L1 norm is used rather than the L0 norm to establish the
spare representation model in this paper.

2.2 Sparse low-rank representation

In actual practice, the noise item ¢ in Equation 1 is hard to
know in advance, so we change Equation 1 with L1 norm as the
following form:

min |all; + A|El,, subject to V=Da+E, (2)
| ,

where E is the noise item and is expected to be kept as small
as possible, A is a trade-off parameter, and ||, is L21 norm and
measures the level of noise. Some research has shown that low-rank
constraints can further capture the complex structural information
[27]. If the rank is not too large, the rank can be measured
with nuclear norm [28]. We aim to combine sparse and low-rank
constraints to enhance the performance of infrared and visible image
fusion, so Equation 2 is changed as

min |all, +«llall, + AlEll,, subject to V=Da+E,
1 3

©)

where |||+ is the nuclear norm and measures the rank of a matrix
and « is the balance parameter. The problem of Equation 3 is an
optimization problem with constraint; we introduce the alternating
direction method of multipliers (ADMM) [29] to solve Equation 3.
We first introduce two auxiliary variables, a,,a,, and Equation 3 can
be converted into

min |||, +alla,ll, + MEll,, subject to V=Da+E,a=aja=a, (4)
1 .

Optimization of Equation 4 is equal to minimize the following
augmented Lagrange multiplier (ALM) function L

L=lal, +alla,l, +AlEl,

+(Y,V-Da-E)+(Yya-a))+(Y;,a-a,) (5)

I
+5(IIV—Du—EII§+ la—ayll}+lla-a,l3),

where y represents positive penalty parameters,Y, Y,, and Y,
are Lagrange multipliers, and || denotes the Frobenius norm.
There are four variables a,a,,a,,E, and three Lagrange multipliers
Y, Y,, and Y; in Equation 5. ADMM iteratively optimizes each
variable while the others are fixed. Equation 5 is divided into five
subproblems to separately optimize each variable.

(I) Update a:
2

+
F

2 2

Y
a—a1+—2

u

Y,

a=arg min a-a,+—
@ U

Yl
V-Da-E+—
u

F
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Equation 6 is a convex optimization problem, and the solution
can be calculated by taking the first partial derivatives to variable
a and setting them to zero. Let G, = V—-E + %,Gz =a, - %,G3 =

a, - %, it is clear that the close form solution of Equation 6 is

a= (DTD+21)71(DTGl +G2+G3). (7)
(I1) Update a;:
in a,l £ — ’ (8)
a, = ar. min a + a—a, +
1 = arg o i+ 3 1 w

The solution of a, can be efficiently calculated with a soft-
shrinkage operator [30]. Let G, = a + L | the solution of Equation 8
can be obtained with the soft-shrinkage operator and has the
following form:

a, :sign(G4)®max<|G4|— l,0>, 9)
t
where sign(-) is sign function and © is Hadamard product.
(ITII) Update a,:
. 4 Y,
a,=arg min afa,|, +=|a-a,+— (10)
“ 2 Hllp
The problem in Equation10 can be solved by the
singular value thresholding scheme [31]. Let G;=a+ %, the

singular value decomposition of Gs is Gs=USV'. Then, the
solution of Equation 10 has the following form according to the
singular value thresholding scheme:

u2=U'sign(S)Omax<|S|—E,O)VT. (11)
(IV) Update E:
. U Y, |?
E=arg min A|E|,,+=[[V-Da-E+— (12)
E 2 pollp

This sub-problem of Equation 12 can be efficiently solved by
the half-quadratic optimization strategy [32]. Let Go = V —Da + 4,
this sub-problem of Equation 12 can be efficiently solved by t/fle
half-quadratic optimization strategy as

. A
1660k~ ¢ ) 1G], > A
—— G (51), |G (1 > =
IGsGDl, —° RN

. A
0 16l < 2

E(,i) = L.,k (13)

where E(:,i), G4(:,1) denote the i-th column of E and G,

(V) Update Lagrange multipliers Y, Y,, and Y 3:

frontiersin.org


https://doi.org/10.3389/fphy.2025.1514476
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Zou et al.

10.3389/fphy.2025.1514476

FIGURE 5

The visible and infrared image fusion result on the manCar image pair. The results of the first 9 methods are from the workbench in reference [22]. (a)
Visible (b) Infrared (c) CNN (d) DLF (e) GFCE (f) MSD (g) LatLRR (h) MST_SR (i) NSCT_SR (j) ResNet (k) RP_SR (1) Our.

Y, =Y, +u(V-Da-E)
Y,=Y,+ula-a,) , (14)

Y;=Y;+u(a—a,)

where 4 increases dynamically from small values by y = py, and p is
a positive value.

The sparse low-rank coefficient a in Equation 5 can be solved
by iteratively calculating the above five subproblems and obtaining
their solutions as shown in Equations 7, 9, 11, 13, 14.

3 Fusion method based on sparse
low-rank representation

In this section, we introduce the proposed infrared and visible
image fusion method in detail. The proposed method consists
of two steps: image decomposition and feature fusion. LP is
used to decompose images into low-pass and high-pass parts.
Low-pass parts are a smooth version of source images; they are
fused based on sparse low-rank representation. High-pass parts
contain more details and the fusion is based on the max-absolute
rule. The schematic diagram of the proposed fusion method
is shown in Figure 1.

Frontiers in Physics

3.1 Image decomposition

MST is a popular transformation method and can transform
the source images into a multi-scale domain. The source images
are firstly transformed into a multi-scale domain by LP to obtain
different information. Figure 2 shows the diagram of LP. In the
first layer of decomposition, source image I is first convolved twice
and down sampled once to obtain an interlayer result M}. The
interlayer result Mcll is used to compute the second interlayer result
Mi and the first high-pass band H;. The second interlayer result Mi
for the next decomposition level is obtained by two convolutions
and a down sampling. Meanwhile, after the interlayer result M:l
goes through an up sampling and two convolutions, a high-pass
interlayer result HP; is obtained. The first high-pass band H,
can be calculated by subtracting the high-pass interlayer result
HP, from source image I. In following i-th layer decomposition,
similar conductions to those in the first layer are performed on the
interlayer result Mfi(i =1,2,..,n) from the previous decomposition.
The single difference is that, in the subtraction, the high-pass
interlayer result HP; is subtracted from the interlayer result
Mfi'l from the previous level subtracts to calculate the i-th
high-pass band H;. After n layers of decompositions, one low-
pass band L and n high-pass bands H;, H,, ..., H,
obtained; the number of high-pass bands is equal to the layers
of decomposition.

can be
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3.2 Fusion strategy

After the decomposition is completed and the low-pass bands
and high-pass bands are obtained, the fusion step is conducted.
Different fusion strategies are used to deal with low-pass bands and
high-pass bands.

3.2.1 Fusion strategy of low-pass bands

The low-pass bands of infrared and visible image are
represented by L, and Lg; they are fused based on sparse low-rank
representation. The sparse low-rank coefficients of L, and Ly are
firstly computed according to Equation 6. In order to improve the
computing efficiency, the low-pass bands are divided into several
image patches of size v/nx +/n by a sliding window. The sliding
window slides from the top left to the bottom right and the step
size of the sliding window is set as s pixels. In order to avoid block
effect and keep enough overlap between different patches, the step
size is less than the patch size. However, the step size cannot be too
small or the overlapping region will be smoothed. Suppose there
are k patches for L, and Lg, each patch is represented as P' (i =
1, 2, ..., k). In the following procedure, every patch is rearranged
in column vector form, and the column vector of P! is marked as
V' e R

In order to further improve the computing efficiency, the column
vector VI (i=1, 2, ..., k) is not directionally input into our sparse
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low-rank representation model. Firstly, the column vector V' is zero-
averaged as follows

V=vi-V.1, (15)
where V' is zero-averaged patch, V' is the mean value of Vi, and
1eR™! is an all-one vector. Then, V' is used to solve the sparse low-
rank coeflicient. According to Equation 5, the optimization model
can be expressed as

muin ||a"1||1 +<x||a;||* +AMEll,, subject to Vi:Dai+E,ai=ai,a:a;,
(16)

It is worth noting that dictionary D is learnt based on V', and
V' only contains the structural information. Therefore, the learnt
D by Equation 1 is a universal dictionary and it can be used for any
specific transform domain or parameter setting. Besides, because D
is trained with the image patches V' rather than whole images, D can
keep a small size, which is important to deduce the requirements of
computers and improve the solving efficiency.

Let V', and Vi, be the i-th patch of L, and Ly in column vector
form, the sparse low-rank coefficients a;,u; of L, and Ly can be
obtained by Equations 15 and 16. Then the max-L1 norm rule is used
to fuse afq and ag, and the fused sparse low-rank coeflicient a} can

frontiersin.org


https://doi.org/10.3389/fphy.2025.1514476
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Zou et al.

10.3389/fphy.2025.1514476

(1)
FIGURE 7

(hNSCT_SR (i) ResNet (j) RP_SR (k) MST_SR (1) Our.

®)

The visible and infrared image fusion result on the 29-th image pair. (a) Visible (b) Infrared (c) CNN (d) DLF (e) GFCE (f) Hybrid_MSD (g) LatLRR

be obtained by
) a, |a,] >|a
a}={ 4 leid, > B"l,i:l,...,k, (17)
1
a, else
and the fused patch V7, can be obtained by
Vi=Da.+ V- Li=1,..k (18)

where V} is an average. If ||af4||1 > "ai3 |1, V; takes as the average
of V', otherwise V}; is the average of Vi After all k patches are
fused with Equations 17, 18, each patch in the column vector form
is converted to two-dimensional form. All the two-dimensional

patches are spliced to obtain the fused low-pass bands L.

3.2.2 Fusion strategy of high-pass bands

The high-pass bands are directly fused based with the max-
absolute rule. There are n high-pass bands and every high-pass band
pair is fused separately. The absolute value of high-pass band H;
(i=1,2,..,n) is first computed. Then, the absolute value goes
through 2-D order-statistic filtering. The filtering results of visible
and infrared high-pass bands are compared directly. The bigger is
reserved and the smaller is discarded. The fused high-pass band Hi,
can be obtained by adding the comparation results. The detailed
information can be seen in [33].
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3.3 Reconstruction of fused image

After Ly and Hp are obtained, a reverse LP is conducted to
reconstruct the fused image I. The diagram of reconstruction
is shown in Figure 3. The reconstruction is the reverse operation
of decomposition, there are also n layers of reconstruction. The
low-pass band L firstly goes through an upsampling and two
convolutions, and we can obtain an interlayer result MZ!. The
interlayer result M} is added to the n-th fused high-pass band H2,
and the sum result is transferred into the second layer. In every
following reconstruction layer, a similar operation is conducted. The
only difference is that the high-pass band of each layer is used in the
additional operation. In the n-th layer of reconstruction, the fused
image I can be reconstructed by adding the interlayer result M and
the first fused high-pass band Hy..

4 Experiments and evaluation

In this section, we verify and analyze our method through
extensive experiments. All the experiments were performed on a
desktop with Windows 10 operating system, 11th Gen Intel(R)
Core (TM) i7-11700F @ 2.50 GHz CPU, and 16 GB RAM. In our
method, the level of decomposition is 4, both of g, and A is le-5.
It is noteworthy that the convolution kernel is the same across all
the convolution layers, because the impact of convolution kernels
is much weaker than the number of decomposition layers [15]. The
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FIGURE 8

Metrics of 20 randomly selected image pairs. The best result and our result are bolded, and there is one bolded result if our result is the best. (a) AG (b)
CE (c) EI (d) EN (e) MI (f) PSNR (g) Q*®F (h) QB (i) Q%Y (j) RMSE (k) SD (1) SF (m) SSIM.

convolution kernel in the following experiments is a Gauss filter [1
4641]/16.

4.1 Experimental setups

4.1.1 Source images

In order to verify the effectiveness and analyze the characteristics
of our method, three open access visible and infrared image datasets
are adopted in the following experiments, namely, VIFB [22], TNO
[34], LLVIP [35]. In VIFB, there are 21 pairs of visible and infrared
images. In TNO, there are 37 image pairs; the resolution of images is
640 x 480. In LLVIP, there are 50 image pairs for validation and the
images are mainly taken in dark environments.

4.1.2 Objective evaluation metrics

The metrics of image fusion can be divided into four types:
information theory-based, image feature-based, image structural
similarity-based, and human perception-based [22]. To evaluate
and compare performance comprehensively and objectively, 13
evaluation metrics are used in the following experiments. The
13 metrics and their meaning are listed in Table 1. Considering
that there are two source images and a single fused image, the
13 metrics can be categorized into three types based on their
calculation methods: metrics independent of the source images,
metrics computed separately on the fused and source images and
then averaged, and metrics computed separately on the fused and
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source images and then summed. All the calculation methods
are based on [15]. Metrics, including AG, EI, EN, SE and SD,
belong to the first category. The second type of metrics includes
PSNR, QAB/ E QCB N QCV, and RMSE, and the rest of the metrics are
categorized into the third type.

4.2 Experiment results on VIFB dataset

The proposed method is first tested on the VIFB dataset and
compared with 20 kinds of methods, namely, anisotropic diffusion-
based image fusion (ADF) [7], cross bilateral filter fusion method
(CBF) [8], convolutional neural network (CNN) [19], Deep learning
framework (DLF) [20], fourth order partial differential equations
(FPDE) [3], guided filter context enhancement (GFCE) [9], guided
filtering-based fusion method (GFF) [10], Gradient Transfer Fusion
(GTF) [4], guided filter-based hybrid multi-scale decomposition [9],
hybrid multi-scale decomposition [14], infrared feature extraction
and visual information preservation (IFEVIP) [2], latent low-
rank representation (LatLRR) [5], multi-scale guided filtered-based
fusion (MGF) [11], MST and sparse representation (MST_SR)
[15], multi-resolution singular value decomposition (MSVD) [12],
nonsubsampled contourlet transform and sparse representation
(NSCT_SR) [15], ResNet [21], Two-scale image fusion (TIF) [6],
visual saliency map and weighted least square (VSMWLS) [16],
and ratio of low-pass pyramid and sparse representation (RP_SR)
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FIGURE 9
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The visible and infrared image fusion results on the third image pair. (a) Visible (b) Infrared (c) CNN (d) DLF (e) GFCE (f) Hybrid_MSD (g) LatLRR (h)

NSCT_SR (i) ResNet (j) RP_SR (k) MST_SR (1) Our.

TABLE 5 The runtime of different methods in three datasets (seconds per image pair). Red is the best result.

VIFB 36.019 10.94 2.151 269.823

TNO 38.866 4.106 0.71 3.148 97.474
LLVIP 168.878 58.231 10.422 39.383 1,252.133
Average 81.254 24.426 4.428 17.064 539.81

[15]. The results of the 20 methods are from the workbench in
reference [22].

We can see that our method obtains four best results and two
second-best results. The four best results include three categories
of metrics: information theory-based metrics, image feature-based
metrics, and human visual perception. It is worth pointing out
that the other metrics among the three categories also keep a
relatively good level. From the information theory viewpoint, our
method avoids losing information both in LP and image fusion.
LP is a reversible transform, so there is no information to be lost.
Sparse low-rank coefficients with maximum L1 norm contain most
of the information, so we can believe that our method can keep
as much information as possible. However, the performance in

Frontiers in Physics

14

2,119.319 2.058 11.952 3.993

1,205.000 3.064 5.31 5.33 17.932
11,108.11 9.763 79.72 99.611 79.781
4812.810 4.962 32.327 36.311 36.738

structural similarity-based metrics does not really stand out. This is
an inherent drawback of sparse representation. All the information
of fused low-pass is from the fixed dictionary. The dictionary is
learnt from a specific image dataset. It is inevitable to lose some
structural information. A larger dictionary helps to improve the
performance, but a bigger size induces more computational costs.
Besides, as previously mentioned, the overlap between different
patches is smoothed and some structural information is also
lost in this stage. It is helpful if the step size of the sliding
window remains relatively big. As a contrast, LatLRR also receives
a good result, but its performance in structural similarity-based
metrices is not satisfactory. DLE, MSVD, and RestNet can achieve
good results in structural similarity-based metrices, however the
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FIGURE 10
Analysis of parameter sensitivity. (a) AG (b) CE| (c) EI (d) EN (e) MI (f) PSNR (g) Q*®F (h) QB (i) QY| (j) RMSE| (k) SF (1) SSIM (m) SD.

other metrics cannot be maintained as outstanding. The results of  Although our method does not obtain the best result, the variance
the proposed method also demonstrate favorable performance in ~ among different image pairs is smaller than the methods with the
terms of standard deviations (STD). Specifically, smaller standard  best results.
deviations are observed for the AG, CE, and EN metrics, slightly Additionally, Figure 5 shows the fused image on the man Car
poorer performance is seen for the MI and Q°® metrics, and the  image pair. Our method preserves as much information as possible:
remaining metrics exhibit performances close to the average level. the majority of details from the visible and infrared image can
Furthermore, we draw the metrics of all 21 image pairs as  be found in the fused image. In contrast, there are some notable
shown in Figure 4. Only nine methods with better results in discontinuities in NSCT_SR, which results in the introduction of
Table 2 are compared. Firstly, it is easy to notice that the results  certain new features and the loss of some crucial information. While
vary significantly from image pair to image pair. Our method = DLE MSD, and ResNet save more information about visible image,
shows better performance in Q°® and QY than other methods, CNN, LatLRR, and GFCE store more information about the infrared
as Figures 4h,i show. In CE, MI, and Q*PF, the performance of  image. The results of RP_SR and MST_SR are comparatively close
our method is very near the best result of NSCT-SR. In EN, the to our method. It is possible to include some artificial features
performance of our method is very near the best result of GFCE.  because the dictionary of sparse representation is fixed. Both colors
In PSNR, RMSE, and SSIM, the performance of our method is very of the car’s rear door and the roof adjacent to it have altered, as
near the best result of DLE In AG, EI, and SF, the performance of our ~ we can see in Figure 5k. There are some pink zones on the ground
method is average and LatLRR shows the best results. The resultsare  in Figures 5h,k, they are not present in the source image pair. In
consistent with Table 2. However, we can find that our method shows ~ contrast, our method effectively suppresses the artificial features, as
better stability among different image pairs, as Figures 4d,e,g show.  Figure 51 shows. This demonstrates once more the advantages of our

Frontiers in Physics 15 frontiersin.org


https://doi.org/10.3389/fphy.2025.1514476
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Zou et al. 10.3389/fphy.2025.1514476
595 13 615 74 \ 3.0
© 590 o 12 — 610 - -
< sss \ O s \\ Cha ’\\ el /\/\
5.80 e 09] —— 600 72 2.0
2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 17 2 3 4 5 6 7 2 3 4 5 6 7
Level Level Level Level Level
(a) (b) (0 (@ (e)
& sso 0.68 — 0.65 1000 m 013
s — %ass Q. 0.60 \—-\ B 800 z
& 516 2 600 2 012
@ 0.64 0.55 —_— ——
o 57.4 400
2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 17 2 3 4 5 6 7
Level Level Level Level Level
® (8) (h) @ ()
58 18.9 1.40 —
’ /\\ 138 =
8 56 {1 18.8 / Z 6 /
: ”
2 3 4 5 6 7 T2 3 4 5 6 7 2 3 4 5 6 17
Level Level Level
k) ) (m)
FIGURE 11

Influence of decomposition levels. (@) AG (b) CE| (c) El (d) EN (e) Ml (f) PSNR (g) Q**'F (h) Q%P (i) Q%Y (j) RMSE] (k) SD (1) SF (m) SSIM.

<

140

20
100

10
50
0

-10
-50

-20
-100

(a) (b)

FIGURE 12

coefficients of the infrared image (d) SLR coefficients of the visible image.

Coefficient visualization of the visible and infrared images. (a) SR coefficients of the visible image (b) SLR coefficients of the visible image (c) SR

- Moo 30
= 7 - - 20
: : 50

S 10
S o

2 = = N 0
- g 10
- . -100 20
B -150 30

(d)

method in terms of maintaining image information and suppressing
artificial features. Figures 5¢,d,j show that the overall images are
smooth and the fused images are close to the source image pairs, but
some details are not well preserved. The white zone beside the car
is unobtrusive in Figures 5d,j, it is also hard to observe the trees in
front of the farthest house. This indicates that DLF and RestNet lose
more details while they capture more structural information; this is
consistent with the metric results.

4.3 Experiment results on TNO dataset

We carried out another experiment on the TNO dataset to
further examine the performance of our method; only nine methods
that performed well on the VIFB dataset are compared in this
experiment. The results of metrics are listed in Table 3. Our method
receives three best, 2 seconds, one-third, and outperforms the
others. It is easy to find that the advantages remain in information
theory-based metrics, image feature-based metrics, and human
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visual perception, which is consistent with the results on the VIFB
dataset. The performance of Q% declines compared with the results
on the VIFB dataset. But our method continues to perform better in
Q°B; both Q°® and Q<Y belong to human visual perception metrics,
so we can still believe that our method has good ability to capture the
major features in the human visual system. RMSE and SSIM are not
prominent, this phenomenon can also be observed in other superior
methods, including CNN, GFCE, LatLRR, RP_SR, and MST_SR.
DLF and ResNet still obtain the best results in RMSE and SSIM.
According to the STDs, smaller values are observed for the CE, EN,
PSNR, RMSE, SSIM, and SD metrics, slightly poorer performance is
seen for the MI and QCB metrics, and the remaining metrics exhibit
performances close to the average level.

Furthermore, Figure 6 displays the metrics of 20 image pairs
that were selected at random from the TNO dataset. The metrics
of several image pairs also varied significantly from one another.
Overall, our method performs better in CE, EN, QCB, and SD, as
Figures 6b,d,h,k show. Even though our method’s average CE in
Table 3 is not the best, it outperforms NSCT_SR in more image
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pairs, which proves the stability of our method. Additionally, our
method’s performance is extremely close to the best ones in PSNR,
QMBE, QCY, RMSE, and SSIM, as Figures 6f,g,i,j,m show, while our
method’s performance is mediocre in AG, EI, and SE.

Figure 7 displays the fused images of different methods on the
29-th image pair. There are still some discontinuities in NSCT_
SR, as Figure 7b shows. In GFCE and RP_SR, there are several
unexpected new features about the window, as Figures 7e,j show.
DLF and RestNet contain more information than the infrared
image and the bright message in the sky is lost, as Figures 7d,i
show. DLF and RP_SR lose some details about the letter box, as
Figures 7d,i show. MSD and LatLRR save more information about
the cloud and the visible and infrared features are very clear. Our
method only contains a little of the cloud features of the visible
image, but the dark and bright feature of the sky is retained more,
as Figure 71 shows.

4.4 Experiment results on the LLVIP dataset

In order to further investigate the performance of our method,
we conducted another experiment on the LLVIP dataset; the same
methods that were used on TNO dataset are compared in this
experiment. The image pairs from the LLVIP dataset are captured
in a very dark environment. Table 3 lists the results of the metrics,
our method receives one best and 3 seconds. Although there are
fewer top three metric results, it is worth noting that the metric
results of our method are very close to the better ones. Overall,
LatLRR obtains the better scores. DLF and ResNet still share
good results with RMSE and SSIM while the other metric results
are not outstanding. According to the STDs, smaller values are
observed for the Q*"F, RMSE, and SF metrics, slightly poorer
performance is seen for the EN, PSNR and SD metrics, while
the remaining metrics exhibit performances close to the average
level. The assessment scores for the fusion results of all methods
exhibit significant fluctuations across different image data sets, due
mainly to various degrees of statistical complexities amongst the
data sets. However, it is observed that the performance of the
proposed algorithm exhibits relatively smaller fluctuations across
most evaluation metrics, as indicated by the smaller standard
deviations in Tables 2-4, indicative of the better stability in
our proposed method.

Additionally, Figure 8 shows the metrics of 20 image pairs
selected at random from the LLVIP dataset. Our method yields

the best outcome in QAP/F

, as Figure 8g shows. As shown in
Figures 8b,e,i,m, our method’s performance is nearly as good as the
best in CE, ML, Q*, Q%Y, and SSIM. In AG, EI, EN, PSNR, RMSE,
SD, and SF, our method performs mediocrely. LatLRR performs
better overall in AG, EI, SD, and SF but exhibits subpar results
in PSNR, RMSE, and QAB/ F as Figures 8f,g,j show. Our approach
presents better balanced results in all metrics than LatLRR, despite
a slight performance drop when compared to the VIFB and TNO
datasets. DLF also shows better performance in PSNR, RMSE,
and SSIM, but its performance is not exceptional in CE, EI, EN,
Q®B, and SD.

Figure 9 shows the selected fusion results on the 3-th image
pair, which was taken in a very dim setting. It is easy to observe
in Figure 9e¢ that GFCE lost the dark information. The wall
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and pedestrians still have some noticeable discontinuities in
NSCT_SR, and RP_SR also exhibits this problem. Due to the
loss of some information from the visible source image, the
words on the wall are not discernible in DLF and ResNet.
The fusion performance is close in Figures 9¢,fgk,l, CNN
and LatLRR achieve superior results in motorbike light out
of the five results. Our approach and MST_SR preserve more
dark information while losing the visible source image’s bright
light information.

4.5 Discussion

4.5.1 Runtime comparison

Table 5 lists the runtime of various algorithms on three datasets.
It is evident that there are substantial differences in runtime across
the various methods. ResNet performs better than other methods
on VIFB and LLVIP datasets, while GFCE has a lower runtime cost
on TNO dataset. NSCT_SR takes the longest on all three datasets,
while LatLRR also needs to take a lengthy time to fuse a single
image pair. Additionally, we can see that a particular method’s
runtime varies greatly depending on the dataset; this is particularly
true for LatLRR and NSCT_SR. The size of source image pairs
from LLVIP are larger than those from the other two datasets. It
theoretically takes more time on the LLVIP dataset. On the other
hand, even though the size of the source image pairs from TNO
are larger than that from VIFB, some algorithms, including DLE
GFCE, MSD, LatLRR, NSCT_SR, and RP_SR, have shorter runtimes
on the TNO dataset. This is because different datasets have varying
levels of complexity. When complexity is higher, feature extraction
needs more time. Overall, GFCE and ResNet share computational
efficiency. Our method’s runtime is comparable to that of DLE, MSD,
RP_SR, and MST_SR. However, it can be observed that methods
with notable advantages in runtime, such as ResNet and GFCE,
perform far worse than the proposed method in image fusion.
Conversely, methods that achieve comparable image fusion results
to the proposed method, such as LatLRR and NSCT-SR, have a
significantly higher time cost. As for MST-SR, although its time
cost is slightly better than the proposed method on the VIFB
and TNO datasets, its average time cost advantage is only 0.427 s,
and its image fusion results across all datasets are far inferior to
the proposed method. In conclusion, the proposed method, while
maintaining an advantage in image fusion quality, also generally
achieves improved runtime performance compared to methods with
similar fusion quality.

Although LatLRR can obtain good fusion performance,
the runtime cost is significantly expensive. NSCT_SR’s fusion
performance is not exceptional and its runtime is lengthy.
The aforementioned results lead us to the conclusion that
there needs to be a compromise between fusion performance
and runtime.

4.5.2 Analysis of parameter sensitivity

In order to analyze the parameter sensitivity of our method,
both & and A in Equation 4 are set among a discrete set {le”’,
1e™%, 1e7°, 1e7, 1e73, 1e72, 17}, 1, 10, 100}, and the results of 13
metrics are shown in Figure 10. The smaller the value, the better
the result for three metrics: CE, Q°Y, and RMSE. When « and A
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are in the range of le”’ to 10, the three metrics remain small and
stable. Meanwhile, other metrics hold a high level. This illustrates
that our method has good robustness, and it is easy to find a
parameter pair that results in good performance. In addition, there
are several noteworthy results. Firstly, the metrics, including AG,
EL, EN, MI, QCB, SE SD, CE, and QCV, improve when « is set to
100. However, PSNR is lower. Therefore, a cannot exceed 10 for
overall performance, as Figure 10f shows. Second, RMSE does not
change with the variation of parameters and always maintains a
modest value; this proves that our sparse low-rank representation
can be well implemented, and the error of image reconstruction
is very close to zero. Third, SSIM improves when A surpasses
10, but other metrics worsen. Therefore, A cannot exceed 10 for
overall performance.

In order to analyze the influence of decomposition levels, we
set it in the discrete set {2, 3, 4, 5, 6, 7} and the results of different
metrics are shown in Figure 11. When the decomposition levels
increase, there are generally three types of change trends: increasing,
decreasing, and first increasing then decreasing. Metrics, including
CE, PSNR and QAP"¥, show the increasing trend and maintain good
results when the decomposition level is 4. As for AG, EL EN, QCV,
and RMSE, they decrease as the decomposition level is increasing.
AG, EI, and EN receive the best results when the level is 2, while
the value of QY and RMSE are near the best result when the level
exceeds 3. The rest of the metrics, including MI, Q°®, SD, SE and
SSIM, show the trend of first increasing then decreasing. They obtain
the best results when the decomposition level is 4. In conclusion,
when the decomposition level is 4, metrics such as CE, MI, PSNR,
QAPE, QCB, QCV, RMSE, SD, SE and SSIM, can obtain the best
results or keep very near the best results while the other metrics still
maintain relatively good results. Therefore, the decomposition level
is reccommended to be 4.

4.5.3 Effectiveness analysis of low-rank
constraint

To further analyze the effectiveness of low-rank constraints in
extracting image information, Figure 12 presents the visualization
results of sparse coeflicients and sparse low-rank coeflicients. First,
it can be observed that the number of nonzero elements in the
sparse coeflicients is relatively small, with larger magnitude values.
This indicates that, in the sparse representation of infrared and
visible images, greater weight is assigned to key features, while
some detailed features tend to be overlooked. In contrast, due
to the presence of the low-rank constraint, the sparse low-rank
coefficients contain more nonzero elements, with values an order
of magnitude lower than those of the sparse coeflicients. This
suggests that the sparse low-rank representation can extract more
image features compared to the sparse representation. Furthermore,
since low-pass band fusion is performed based on the maximum
L1-norm fusion rule, when an image contains numerous features,
the fusion is influenced not only by a few key features but
also by other features that play a decisive role. Therefore, in
summary, compared to MST-SR, the proposed infrared and visible
image fusion method based on sparse low-rank representation can
retain key features while extracting more detailed features, thereby
preserving as much information from the original images as possible
in the fused image. This also explains why the proposed method
performs well in both information theory-based metrics and image
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feature-based metrics, further validating that the introduced low-
rank constraint effectively enhances the quality of infrared and
visible image fusion.

5 Conclusion

In this paper, we combine sparse and low-rank constraints to
present a novel visible and infrared image fusion method. Source
images are firstly transformed into another domain to calculate
their low-pass and high-pass bands by LP. Second, low-pass bands
are represented with some sparse and low-rank coeflicients. Then,
specific fusion rules are adopted to fuse the low-pass and high-
pass bands. Low-pass parts are a smooth version of source images;
they are fused based on sparse low-rank representation. High-pass
parts contain more details and the fusion is conducted based on
the max-absolute rule. Finally, an inverse LP is conducted to obtain
the fused image. Our method is validated on three public datasets.
The results show that our method performs better in the three
kinds of metrics: information theory-based, image feature-based,
and human perception-based metrics. This means that low-rank
constraints can effectively improve the performance of capturing
details. Furthermore, our method obtains average performance in
runtime cost and achieves relatively better balance between fusion
performance and runtime cost. Our method also shows good
parameter robustness; a good result can be obtained in a wide range
of parameters.
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