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Inverse freeform design in
non-imaging optics: Hamilton’s
theory of geometrical optics,
optimal transport, and
least-squares solvers
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L. Kusch1, P. A. Braam1 and W. L. IJzerman1,2

1Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven,
Netherlands, 2Signify Research, Eindhoven, Netherlands

We present a systematic derivation of three mathematical models of increasing
complexity for optical design, based on Hamilton’s characteristic functions and
conservation of luminous flux, and briefly explain the connection with the
mathematical theory of optimal transport. We outline several iterative least-
squares solvers for our models and demonstrate their performance for a few
challenging problems.
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1 Introduction

Nowadays, traditional incandescent light bulbs have largely been replaced by LED
lamps, mainly because LEDs are highly energy efficient and last for long duration. However,
to create a desired light output with LEDs, optical systems are required. Therefore, in the
illumination optics industry, a lot of research is carried out on the design of optical systems
for a myriad of applications.

The industry standard in optical design is (quasi-)Monte Carlo ray tracing. These are
forward methods, which compute the target light distribution for a given source, typically
LED, and a given optical system, tracing a large collection of rays from the source to target.
Convergence of ray tracing is slow and requires millions or, maybe, even billions of rays
to accurately compute the target distribution; see ([1], Chapter3). Moreover, to realize the
desired target distribution, these methods have to be embedded in an iterative procedure,
adjusting system parameters. More specifically to update these parameters, sophisticated
design methods combine an iterative gradient-based optimization method, to minimize
a suitably chosen merit function, with differentiable ray tracing to compute the required
gradient. These methods are efficient and broadly applicable; see e.g., [31, 32]

A promising alternative are inverse methods. These methods compute the
shape/location of the optical surface(s) in one go, given a source distribution and a desired
target distribution. The surfaces are referred to as freeform since they have no imposed
symmetries. Mathematical models for inverse methods are based on the principles of
geometrical optics and conservation of luminous flux. Our models contain the following: a
geometrical equation describing the shape/location of the optical surface(s), an (implicit)
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relation between the location of an optical surface and the optical
map, which expresses target coordinates as a function of source
coordinates, a matrix equation for the optical map, a conservation
law of luminous flux, and a constraint on the luminous flux. The
geometrical equation can be derived evaluating one of Hamilton’s
characteristic functions and has multiple solutions. The optical map
satisfies the luminous flux balance, which is a Jacobian equation,
and a matrix equation, which has to be supplemented with the
unconventional transport boundary condition. Our models are
restricted to zero-étendue sources; more specifically, we consider
only planar sources emitting a parallel beamof light or point sources.

In mathematics, the abstract theory of optimal transport is
the correct framework to formulate optical design problems. The
subject of optimal transport theory is to compute a transport plan
(mapping) that transforms a givendensity function into another one,
minimizing the transportation cost and subject to a(n) (integral)
conservation law; see [2]. One of the governing equations is precisely
the geometrical equation, containing a so-called cost function in the
right hand side. The transportation cost is then a cost functional
(an integral of the cost function). The analogy with optical design
is obvious, the two density functions correspond to the source and
target distributions, the transport plan to the optical map, the cost
functional can be associated with the optical path length, and the
conservation law applies to the luminous flux.

Based on the analogy with optimal transport theory, we can
distinguish three mathematical models of increasing complexity.
First, in the simplest model, the geometrical equation contains a
quadratic cost function, and the Jacobian equation reduces to the
standard Monge–Ampère (MA) equation, which is a second-order,
non-linear, elliptic partial differential equation (PDE) [3], defining
the location of an optical surface. In the nextmodel, the cost function
is no longer quadratic and the Jacobian equation corresponds to
a generalized Monge–Ampère (GMA) equation. Finally, the most
complicated model does not allow a description in terms of a
cost function anymore; instead, a so-called generating function is
required. The Jacobian equation now corresponds to a generated
Jacobian (GJ) equation.

The procedure to derive ourmathematicalmodels consists of the
following steps:

1. By applying principles of geometrical optics, derive the
geometrical equation.

2. Formulate the luminous flux balance, which is a Jacobian
equation for the optical map.

3. Based on optimal transport theory, select a uniquely defined
solution from the geometrical equation.

4. Derive the necessary (zero-gradient) condition for this
solution to define a unique relation between the location of an
optical surface and the optical map.

5. Derive from the zero-gradient condition the matrix equation
for the Jacobi matrix of the optical map.

6. Combine the luminous flux balance with the matrix equation
to derive a constraint on the luminous flux.

There are many numerical methods available for inverse
freeform optical design; for a detailed survey, see [4], Chapter
5. Without trying to be complete, a possible categorization is as
follows: first, numerical methods for (G)MA equations governing
the shape/location of an optical surface; second, optimization

methods; third, geometrical construction methods; and fourth, ray
mapping methods. In the first category are methods that directly
solve the second-order PDE of MA type by discretization and
subsequent iteration for the resulting algebraic system. Examples of
these are reported in papers by Froese [5], using a wide-stencil finite
difference scheme, Benamou et al. [6], using finite differences, Brix
et al. [35], using B-spline collocation, and Kawecki et al. [7], using
finite elements, to just name a few examples. Methods in the second
category are based on optimal transport theory and determine
the optical surface(s) by minimizing the cost functional subject
to conservation of luminous flux, see, e.g., [33, 34] Next, based
on the work of Caffarelli and Oliker [8], geometrical construction
methods for optical surfaceswith paraboloids have been investigated
by Kitagawa et al. [9] and Mérigot and Thibert [10] for the GMA
equation, and byGalouët et al. [11] for theGJ equation. Finally, in ray
mapping methods, the computation of the optical surface(s) is split
into two parts, i.e., first, an estimate of the optical map is computed
from an optimal transport problem, and subsequently, the optical
surface is computed employing the law of reflection/refraction; see
e.g., [36–38]

Our methods are of the first category. The publication that
inspired us to develop our numerical solvers is by Caboussat
et al. [12]. In this paper, the authors present a least-squares
method to solve the Dirichlet problem for the standard MA
equation. Prins adjusted their method to include the transport
boundary condition; see [13]. In a series of papers, Yadav and
Romijn extended themethod for the GMA equation, corresponding
to a non-quadratic cost function; see [14], [15, 16]. Romijn
further extended our least-squares methods to deal with the GJ
equation; see [17, 18]. Specifically, for the cost function models,
we have developed a two-stage algorithm, i.e., we first compute
the optical map and subsequently the shape/location of the optical
surface(s). For both stages, we apply a least-squares method.
For the generating function model, the optical map and the
optical surface(s) have to be computed simultaneously, also in a
least-squares fashion.

In this paper, we present a systematic derivation of all models
and outline numerical simulation methods. The content is then as
follows. First, in Section 2, we introduce Hamilton’s characteristic
functions needed to derive the geometrical equations. In Section 3,
we give an outline of optimal transport theory, needed to select a
uniquely defined solution of the geometrical equation. A generic
conservation law for luminous flux is presented in Section 4. Next,
in Section 5, we apply the results of the previous sections to
present a hierarchy of models based on three example systems.
A concise description of our numerical methods is presented
in Section 6. To demonstrate the performance of our methods,
we present a few challenging examples in Section 7. Concluding
remarks are given in Section 8, and the paper is concluded with a
nomenclature list.

2 Hamilton’s characteristic functions

In this section, we introduce Hamilton’s characteristic functions
which are needed for the derivation of the geometrical equations
in Section 5; see, e.g., [19], pp. 94–107; [20], Section 4.1 for a more
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detailed account. Our starting point is the eikonal equation given by

|∇φ| = n, (1)

where φ = φ(r) is the phase of an electromagnetic wave and n = n(r)
is the refractive index field as functions of the (three-dimensional)
position vector (or coordinates) r ∈ ℝ3 of a typical point. A surface
φ(r) = Const is a wavefront. We denote three-dimensional vectors
in bold font with an underbar ( ), to distinguish them from two-
dimensional vectors, which are only written in bold font. Equation 1
describes free propagation of light waves and no longer holds when
a light wave is reflected or refracted at an optical surface. The
eikonal Equation 1 is a first-order non-linear PDE, which has the
characteristic strip equations

dr
ds
= 1
n
∇φ,

dφ
ds
= n, d

ds
(∇φ) = ∇n. (2)

See, e.g., Kevorkian [21]. The curves C:r = r(s), parameterized by
the arc length s, are the characteristics of (1). The system of
ordinary differential equations in (2) determines the location of
the characteristics and the solution along the characteristics, from
which the solution of (1) can be reconstructed. From the first
equation in (2), we conclude that the characteristics are orthogonal
trajectories to the wavefronts, i.e., characteristics are light rays;
see, e.g., [20], p. 114.

Hamilton’s characteristic functions are related to the optical
path length of a ray, which we, therefore, introduce next. We
assume that n(r) is piecewise continuous, with jumps at lens
surfaces; consequently, rays are continuous and consist of piecewise
differentiable curve segments; cf. Equation 2. In this setting, we
define the optical path length (OPL) between the points P1 (position
vector r = r1) and P2 (position vector r = r2), connected by a light
ray along the curve C, as

[P1,P2] = dopt (r1,r2) ≔ ∫C
n(r (s))ds. (3)

A consequence of Fermat’s principle is that the optical path length
[P1,P2] is stationary with respect to variations in the curve C;
see, e.g., [20], p. 740.

Consider an optical system consisting of a source, located in
a plane z = zs (source plane), emitting light which via a sequence
of reflectors and/or lenses arrives at a plane z = zt (target plane).
The z-axis is referred to as the optical axis. In this paper, we use
the subscripts s and t for variables/vectors to denote their value at
the source and target, respectively. Let v̂ = (v1 v2 v3)T = dr/ds denote
the unit tangent vector of a ray; thus, ∇φ = nv̂; cf. Equation 2. Unit
vectors are denoted with a hat ( )̂. Let Qs (position vector r = rs) and
Qt (position vector r = rt) be two points on the source and target
plane, respectively; then, from Equation 3, we obtain

[Qs,Qt] = dopt (rs,rt) = ∫C
nv̂ ⋅ v̂ds = ∫

C
∇φ ⋅ dr = φ(rt) −φ(rs) .

(4)

Note that reversing the direction of integration yields the symmetry
property of dopt, i.e.,

dopt ⁢ (rt,rs) = ∫−C
(−nv̂) ⋅ (−v̂)ds

= ∫
−C
−∇φ ⋅ dr

= −φ (rs) +φ (rt)

= dopt ⁢ (rs,rt)

(5)

as one would expect from the definition in Equation 3. Observe that
dopt is a metric since dopt(rs,rt) ≥ 0, with equality only if rs = rt,
and it satisfies the triangle inequality due to Fermat’s principle. The
symmetry of dopt is stated in Equation 5.

For ease of presentation, we use the shorthand notation v̂s =
̂s and v̂t = ̂t. Straightforward differentiation of the expression for
dopt(rs,rt) in Equation 4 gives

∇sdopt (rs,rt) = −∇φ(rs) = −ns ̂s, ∇tdopt (rs,rt) = ∇φ(rt) = nt ̂t,
(6)

where∇s denotes the gradient with respect to the source coordinates
rs and likewise for ∇t. From these relations, we readily conclude that

|∇sdopt| = ns, |∇tdopt| = nt,

i.e., dopt satisfies the eikonal equation in both source and target
coordinates.

A ray is completely determined by its position and direction
coordinates. Position coordinates q ∈ ℝ2 are defined as the
projection on a plane z = Const of the position vector r of a typical
point on the ray. Position coordinates in the source and target planes
are denoted by qs and qt, respectively.Thus, Qs, with position vector
rs = (qs,zs), will denote the point at which a light ray is emitted from
the source plane, and Qt, with the position vector rt = (qt,zt), as the
point at which it arrives at the target plane. Next, selecting the first
two components from the equation n dr

ds
= nv̂ = ∇φ, we introduce

the momentum vector p ∈ ℝ2 as

p≔ n
dq
ds
= n(

v1
v2
) =(

∂φ
∂q1
∂φ
∂q2

)≕
∂φ
∂q
. (7)

Thus, the momentum vector is the projection of ∇φ(x) on a plane
z = Const and determines the direction of a light ray. Momentum
vectors at the source and target are denoted with ps and pt,
respectively. The variables q = q(z) and p = p(z) are referred to as
phase-space coordinates and together constitute phase space.

In the remainder of this paper, we assume that n(r) is piecewise
constant, with possible discontinuities at optical interfaces, and
consequently, a light ray consists of piecewise straight line segments.
Below, we define four characteristic functions which relate the
optical path length to phase-space coordinates at the source
and target.

Point characteristic

As a function of the position coordinates qs and qt, the point
characteristic V is the optical path length of the ray connecting the
points Qs and Qt, i.e.,

V(qs,qt) ≔ dopt ((qs,zs) , (qt,zt)) = [Qs,Qt] . (8)

From Equation 4, we conclude that V(qs,qt) = φ(qt,zt) −φ(qs,zs).
Combining this relation with the equations in Equation 6, selecting
the first two components in both equations, we find for the
directional derivatives ∂V

∂qs
and ∂V

∂qt
the following expressions:

∂V
∂qs
= −ns(

s1
s2
) = −ps,

∂V
∂qt
= nt(

t1
t2
) = pt; (9)

Frontiers in Physics 03 frontiersin.org

https://doi.org/10.3389/fphy.2025.1518660
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


ten Thije Boonkkamp et al. 10.3389/fphy.2025.1518660

cf. Equation 7. Typically, Equations 8, 9 are used to derive a
geometrical equation for optical systems described in terms of the
position coordinates qs and qt. An example is the parallel-to-near-
field reflector, discussed in Section 5.3.

Mixed characteristic of the first kind

Let a light ray connect the points Qs(qs,zs) and Qt(qt,zt) with
momentum ps and pt, respectively; then, the mixed characteristic of
the first kindW is defined as

W(qs,pt) ≔ V(qs,qt) − qt ⋅ pt. (10)

Straightforward differentiation yields ∂W/∂ps = 0 and ∂W/∂qt =
∂V/∂qt − pt = 0; cf. Equation 9, second relation. Consequently, W =
W(qs,pt) indeed. Moreover, we readily verify that

∂W
∂qs
= −ps,

∂W
∂pt
= −qt.

W can be interpreted as a modification of [Qs,Qt], which we show
as follows. Assume that zt > zs and define the point Pt as the
intersection of the ray segment arriving at Qt, parameterized by
r(λ) = rt + λ ̂t, and the plane passing through the origin Ot(0,zt)
of the target plane (position vector ot) perpendicular to this ray,
given by the normal equation (r − ot) ⋅ ̂t = 0; see Figure 1. The
intersection point is given by λ = λ(Pt) = − (rt − ot) ⋅ ̂t. Since the
third component of rt − ot vanishes, this can be rewritten as λ(Pt) =

− qt ⋅ (
t1
t2
) = − qt ⋅ pt/nt; cf. Equation 7 or Equation 9. For the z-

component of Pt, we have δzt ≔ z(Pt) − zt = λ(Pt)t3 with t3 > 0 since
the ray is directed toward the target plane (zt > zs). From this,
we conclude that λ(Pt) > 0 if δzt > 0, i.e., Pt is located behind the
target plane as seen from the source, and λ(Pt) < 0 otherwise.
Obviously, the distance d(Qt,Pt) = ± λ(Pt) since ̂t is a unit vector. If
δzt > 0, then λ(Pt) > 0, implying that d(Qt,Pt) = λ(Pt) and qt ⋅ pt = −
ntd(Qt,Pt) = − [Qt,Pt]; cf. Equation 3. Analogously, if δzt < 0, then
qt ⋅ pt = [Qt,Pt]. Finally, we can easily verify that σt ≔ sgn(qt ⋅ pt) =
− sgn(δzt); thus,W can be interpreted as

W(qs,pt) = [Qs,Qt] − σt [Qt,Pt] .

The characteristic function W is convenient to describe optical
systems in terms of qs and pt. An example is the parallel-to-far-field
reflector, as described in Section 5.1.

Mixed characteristic of the second kind

Under the same setting, the mixed characteristic of the second
kindW

∗
is defined as

W∗ (ps,qt) ≔ V(qs,qt) + qs ⋅ ps.

In this case, using the first relation in Equation 9, we readily
verify that ∂W

∗
/∂qs = ∂V/∂qs + ps = 0 and ∂W

∗
/∂pt = 0, so W

∗

is a function of ps and qt indeed. Furthermore, straightforward
differentiation yields

∂W∗

∂ps
= qs,

∂W∗

∂qt
= pt.

In addition, W
∗
can be interpreted as a modified OPL. We assume

again that zt > zs and introduce the point Ps as the intersection of
the ray segment emitted from Qs, parameterized by r(λ) = rs + λ ̂s,
and the plane passing through the originOs(0,zs) of the source plane
(position vector os) perpendicular to this ray, given by (r − os) ⋅ ̂s =
0; see Figure 1. Analogous to the previous derivation, we obtain λ =

λ(Ps) = − (rs − os) ⋅ ̂s = − qs ⋅ (
s1
s2
) = − qs ⋅ ps/ns. The z-component

of Ps is given by z(Ps) = zs + λ(Ps)s3 with s3 > 0. Thus, if δzs ≔
z(Ps) − zs > 0, then λ(Ps) > 0; otherwise, λ(Ps) < 0. Following the
same line of reasoning as before, we find that qs ⋅ ps = σs[Qs,Ps]with
σs = sgn(qs ⋅ ps). Therefore, the second mixed characteristic can be
interpreted as

W∗ (ps,qt) = [Qs,Qt] + σs [Qs,Ps] .

Note that W
∗
(−pt,qs) =W(qs,pt), i.e., the mixed characteristic of

the second kind of the ray in reversed direction equals the mixed
characteristic of the first kind of the original ray. The function W

∗

can be used to characterize optical systems in terms of ps and qt. An
example is the point-to-near-field reflector.

Angular characteristic

The angular characteristic T is another modification of [Qs,Qt]
and is a function of the momenta ps and pt. Its definition and
interpretation (for zt > zs) are given by

T(ps,pt) ≔ V(qs,qt) + qs ⋅ ps − qt ⋅ pt
= [Qs,Qt] + σs [Qs,Ps] − σt [Qt,Pt] .

(11)

From Equations 9, 11, we readily verify that ∂T/∂qs = ∂V/∂qs +
ps = 0 and ∂T/∂qt = ∂V/∂qt − pt = 0, implying that T = T(ps,pt).
Moreover, it is evident that

∂T
∂ps
= qs,

∂T
∂pt
= −qt.

Note that T(−pt,−ps) = T(ps,pt), i.e., the angular characteristic is
invariant if the direction of the ray is reversed. This function is
used to describe optical systems in terms of ps and pt, such as the
point-to-far-field lens; see Section 5.2.

3 Geometrical description of optical
systems: an optimal transport point of
view

To derive a geometrical description of an optical system,
i.e., an algebraic relation defining the location and shape of the
optical surface(s), we have to evaluate one of the four Hamilton’s
characteristic functions. However, this geometrical equation does
not have a unique solution. In this section, we discuss how to select
a uniquely defined solution from this equation. Subsequently, we
derive an equation for the optical map.

First, we introduce some notation. We denote with S and T
the (physical) source and target domain, respectively. The source
and target domain are parameterized by x ∈ X ⊂ ℝ2 and y ∈ Y ⊂ ℝ2,
respectively, i.e., X and Y are the parameter domains for the source
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FIGURE 1
Interpretation of the mixed characteristics of the first and second kind. (a) Mixed characteristic W (qs, pt) of the first kind; σt > 0. (b) Mixed characteristic
W∗(ps, qt) of the second kind; σs < 0.

and target. We assume thatX and Y are compact, i.e., bounded and
closed, and consequently, any continuous function defined on one
of these domains assumes a minimum and a maximum. The key
in the following discussion is the optical map m:X → Y , defining
how a point on the source domain (specified by x) is connected via
a light ray with a point on the target domain (specified by y =m(x)).
Given source and target domains, the optical map has to satisfy the
conditionY =m(X ), i.e.,Y is the image ofX under themappingm.

We consider optical systems having one or two freeform optical
surfaces, i.e., surfaces without any symmetry. Consider an arbitrary
ray connecting the source and target, for which y =m(x). Evaluation
of the appropriate Hamilton’s characteristic function for such a ray
leads to either one of the two algebraic equations:

u1 (x) + u2 (y) = c (x,y) , (12a)

u2 (y) =H (x,y,u1 (x)) , (12b)

which we refer to as geometrical equations, where u1(x) defines the
location of (one of) the optical surface(s) and u2(y) is either an
auxiliary variable or defines the location of the other surface. We
like to emphasize that in Equation 12, source and target coordinates
are related via y =m(x). In Section 5, we will derive geometrical
equations for several optical systems. Note that in Equation 12a,
source and target coordinates are separated in the left-hand side.
This equation occurs in the theory of optimal transport, where u1(x)
and u2(y) are referred to as Kantorovich potentials and c(x,y) as the
cost function; see, e.g., [2] for a rigorous mathematical account. In
Equation 12b, source and target coordinates are no longer separated.
It will turn out that for fixed x and y, the function H(x,y, ⋅) has a
unique inverse H−1(x,y, ⋅) = G(x,y, ⋅), referred to as the generating
function; see [22]. Thus, the following holds:

∀x ∈ X ∀y ∈ Y (u2 ⁢ (y) =H (x,y,u1 ⁢ (x))⟺
u1 ⁢ (x) = G (x,y,u2 ⁢ (y))) .

Obviously, Equation 12a is a special case of Equation 12b if
we choose H(x,y,w) = c(x,y) −w. Nevertheless, for the sake of
completeness, we discuss both cases separately.

c-convex analysis

Equation 12a hasmultiple solution pairs (u1(x),u2(y)). From the
theory of optimal transport, we know that a possible solution of
Equation 12a is given by

∀x ∈ X u1 (x) =maxy∈Y (c (x,y) − u2 (y)) , (13a)

∀y ∈ Y u2 (y) =maxx∈X (c (x,y) − u1 (x)) , (13b)

which implicitly defines the optical map as an alternative to a
geometrical optics derivation. To be more precise, for any x ∈
X , its image y∗ =m(x) ∈ Y is the maximizer in Equation 13a. In
addition, for any y ∈ Y , we have that x∗ ∈ X such that y =m(x∗) is
the maximizer in Equation 13b, which is possible since Y =m(X ).
Under certain conditions, to be specified shortly, themaxima in (13)
are unique, which we henceforth assume. The solution in (13) is
referred to as a c-convex pair; see [23]. The proof of the equivalence
of (Equation 13a) and (Equation 13b) proceeds as follows. Suppose,
Equation 12a and the expression for u1(x) in Equation 13a hold,
then we have to derive the expression for u2(y) in Equation 13b.
From Equation 13a we conclude

∀x ∈ X ∀y ∈ Y u1 (x) ≥ c (x,y) − u2 (y) ,

or equivalently, swapping u1(x) and u2(y),

∀x ∈ X ∀y ∈ Y u2 (y) ≥ c (x,y) − u1 (x) .

Since the latter inequality holds for all x ∈ X , we can take the
maximum over all x ∈ X to obtain

∀y ∈ Y u2 (y) ≥max
x∈X
(c (x,y) − u1 (x)) .

Recall that Y =m(X ). Let y ∈ Y , then y =m(x̃) for some x̃ ∈ X .
From Equation 12a, we conclude that

u2 (y) = c (x̃,y) − u1 (x̃) ≤max
x∈X
(c (x,y) − u1 (x)) .

Combining both inequalities, we obtain the expression for
u2(y) in Equation 13b and conclude that x̃ = x∗ is the (unique)
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maximizer of c(x,y) − u1(x). Thus, the expression for u1(x)
in Equation 13a combined with Equation 12a implies the
expression for u2(y) in Equation 13b. Conversely, given the
expression for u2(y) in Equation 13b and Equation 12a, we can
derive in a similar manner the expression for u1(x) defined in
Equation 13a.

Alternatively, Equation 12a has a c-concave solution pair, for
which the maxima in Equation 13 are replaced by minima,
defining another mapping m. In either case, a necessary condition
is that (x,m(x)) is a stationary point of c(x,y) − u1(x) for
all x ∈ X , i.e.,

∇xc (x,m (x)) −∇u1 (x) = 0, (14)

where ∇xc is the gradient of c with respect to the source coordinates
x. A sufficient condition for the c-convex pair (max/max solution)
in (Equation 13) is that Dxxc(x,m(x)) −D2u1(x) be symmetric
negative definite (SND) for all x ∈ X , where Dxxc and D2u1 are
the Hessian matrices of c (with respect to x) and u1, respectively.
The function c(⋅,y) − u1 is then concave, guaranteeing a unique
maximum in Equation 13b. Alternatively, for a c-concave pair
(min/min solution), the sufficient condition is that Dxxc(x,m(x)) −
D2u1(x) be symmetric positive definite (SPD) for all x ∈ X . Then,
c(⋅,y) − u1 is convex and has a unique minimum.

According to the implicit function theorem, the optical map y =
m(x) is well-defined by Equation 14, provided the mixed derivative
matrix Dxyc = (

∂2c
∂xi∂yj
) is regular in (x,m(x)) for all x ∈ X , the so-

called twist condition. However, formany optical systems, the actual
computation of y =m(x) from Equation 14 is quite complicated, if
not impossible.Therefore, to derive an equation for the optical map,
we differentiate the zero-gradient condition in Equation 14 to obtain
the equation

C (x,m (x))Dm = P (x,m (x)),

C (x,y) = Dxy ⁢c (x,y),

P (x,y) = D2 ⁢u1 ⁢ (x) −Dxx ⁢c (x,y), (15)

where Dm = ( ∂mi
∂xj
) is the Jacobi matrix of the optical map.

We refer to Equation 15 as the matrix-Jacobi equation. Note that
the matrix P is either SPD, for a c-convex, or SND for a c-concave
solution pair.

Equation 15 has to be supplementedwith the so-called transport
boundary condition

m (∂X ) = ∂Y , (16)

stating that the boundary of the source domain ∂X is mapped to the
boundary of the target domain ∂Y . This condition is a consequence
of the edge-ray principle of geometrical optics [24] and guarantees
that all light emitted from the source arrives at the target.

For some basic optical systems c(x,y) = x ⋅ y, implying that C =
I and Dxxc = O; see Section 5.1. The c-convex solution pair in
(13a) reduces to a conjugate pair of Legendre–Fenchel transforms,
see e.g., [4], forwhich the necessary condition (14) reduces tom(x) −
∇u1(x) = 0. The sufficient condition for the c-convex solution pair is
that D2u1(x) is SPD for all x ∈ X , i.e., u1(x) is a convex function.
Likewise, for the c-concave solution pair, D2u1(x) has to be SND for
all x ∈ X , and u1(x) is then concave. In both cases, c(⋅,y) − u1 has a
unique extremum.

In our numerical algorithm, the matrix-Jacobi (Equation 15),
subject to the transport boundary condition (16), is employed to
compute the optical map, and subsequently, u1(x) is reconstructed
from Equation 14. If needed, u2(y) is computed from Equation 12a.
From u1(x) and possibly u2(y), the shape of the optical surface(s)
is computed. A concise account of the numerical algorithm
is given in Section 6.

H-convex analysis

Next, we consider the geometrical Equation 12b, which can
always be formulated such that Hw(x,y, ⋅) > 0 for all x ∈ X and y ∈
Y , implying that H(x,y, ⋅) has an inverse. Also, Equation 12b has
multiple solution pairs (u1(x),u2(y)). In analogy with (Equation 13),
a possible solution reads

∀x ∈ X u1 (x) =maxy∈YG (x,y,u2 (y)) , (17a)

∀y ∈ Y u2 (y) =minx∈XH (x,y,u1 (x)) , (17b)

implicitly defining the optical map as follows: y∗ =m(x) ∈ Y is
the maximizer in Equation 17a and x∗ ∈ X such that y =m(x∗) is
the minimizer in Equation 17b. Provided a condition on H holds,
which we specify shortly, the extrema in Equation 17 are unique,
which we henceforth assume. The functions u1(x) and u2(y) are
referred to as a G-convex H-concave solution pair; see [4]. We
prove that (Equation 17a) together with (Equation 12b) implies
(Equation 17b); the implication in the reverse order proceeds in a
similar way. Assume that the expression for u1(x) in (Equation 17a)
holds, then

∀x ∈ X ∀y ∈ Y u1 (x) ≥ G (x,y,u2 (y)) .

Applying the inverse H(x,y, ⋅) = G−1(x,y, ⋅) and using that
Hw(x,y, ⋅) > 0, we obtain

∀x ∈ X ∀y ∈ Y H (x,y,u1 (x)) ≥ u2 (y) .

Since this inequality holds for all x ∈ X , we can take the
minimum and find

∀y ∈ Y u2 (y) ≤minx∈XH (x,y,u1 (x)) .

Let y =m(x̃) ∈ Y for some x̃ ∈ X . Then, by virtue of Equation 12b.

u2 (y) =H (x̃,y,u1 (x̃)) ≥minx∈XH (x,y,u1 (x)) .

Combining both inequalities, we arrive at the expression for u2(y) in
Equation 17b with x̃ = x∗ the unique minimizer. Conversely, given
the expression for u2(y) in Equation 17b, we can derive in a similar
manner the expression for u1(x) in Equation 17a.

Equation 12b also has a G-concave H-convex (min/max)
solution pair. The necessary condition for both solutions is that
(x,m(x)) is a stationary point of H̃(x,y) =H(x,y,u1(x)), i.e.,

∇xH̃ (x,m (x)) = ∇xH (x,m (x) ,u1 (x)) +Hw (x,m (x) ,u1 (x))∇u1 (x) = 0.
(18)

A sufficient condition for themax/min pair is that DxxH̃(x,m(x)) be
SPD for all x ∈ X . Alternatively, for the min/max pair, the Hessian
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matrix DxxH̃(x,m(x)) should be SND for all x ∈ X . In both cases,
the solution pair is unique.

Equation 18 implicitly defines the optical map y =m(x),
provided the mixed derivative matrix DxyH̃(x,y) is regular in
(x,m(x)) for all x ∈ X , but the actual computation of the optical map
from Equation 18 is virtually impossible for most optical systems.
So, we differentiate the zero-gradient condition in Equation 18 and
recover the matrix-Jacobi equation in Equation 15; however, with
matrices C and P given by

C (x,y,u1 (x)) = DxyH̃ (x,y) , P (x,y,u1 (x)) = −DxxH̃ (x,y) . (19)

Notice, there is one difficulty, i.e., the function H̃(x,y) depends on
u1(x), and consequently, also the matrices C and P do. Therefore,
the computation of the optical map and the function u1(x) can no
longer be decoupled; see Section 6 for more details. Finally, also, in
this case, the transport boundary condition (16) applies.

4 Conservation of luminous flux

In the previous section, we presented equations describing the
geometry of an optical system, more specifically (Equation 12)
for the shape/location of the optical surface(s), the zero-gradient
conditions (Equations 14, 18), and the matrix-Jacobi equation for
the optical map, defined in Equations 15, 19. To close the model, we
have to formulate the conservation law of luminous flux.

We first introduce stereographic projections of a unit vector
v̂ ∈ S2, needed in some of the flux balances. A unit vector v̂ can
be represented by a point P or Q on the unit sphere; see Figure 2.
There are two stereographic projections of v̂, i.e., the projection
from the north pole and from the south pole. To compute the
stereographic projection from the north pole N, we have to compute
the intersection of the line through N and P, given by

r (λ) = (
0
0
1
)+ λ(

v1
v2

v3 − 1
),

with the equator plane z = 0. In this way, we obtain the stereographic
projection z = SN(v̂) given by

SN (v̂) =
1

1− v3
(
v1
v2
), (20a)

which is defined for v3 ≠ 1. The latter condition means that P and N
should not coincide. Using the relations |v̂|2 = 1 and v3 ≠ 1, we can
compute the inverse v̂ = S−1N (z) and find

S−1N (z) =
1

1+ |z|2
(

2z1
2z2
−1+ |z|2

). (20b)

In a similar manner, we can determine the stereographic projection
from the south pole and its inverse. These are given by

z = SS (v̂) =
1

1+ v3
(
v1
v2
), v̂ = S−1S (z) =

1
1+ |z|2
(

2z1
2z2

1− |z|2
)

(21)

and are defined for v3 ≠ −1. Both projections are parameterizations
of S2, and in either case, an area element dS(z) on S2 generated by v̂
is given by

dS (z) = |
∂v̂
∂z1
×

∂v̂
∂z2
|dz = 4
(1+ |z|2)2

dz ≕ J(v̂ (z)) dz. (22)

The choice for the stereographic projection depends on the direction
of v̂. If v3 > 0, a suitable choice is the projection from the south pole;
since then, the domain for z is included in the interior of the disc
|z| ≤ 1. The projection from the north pole gives a domain outside
this disc; see Figure 2. Likewise, if v3 < 0, the projection from the
north pole is the proper choice.

Assuming there is no energy lost, the most generic form of the
luminous flux balance reads

∫
A
f (x) dS (x) = ∫

m(A)
g (y) dS (y) , (23)

for every subset A ⊂ X and image set m(A) ⊂ Y , where f(x) and
g(y) are the flux densities, to be specified shortly, at the source
and target, respectively. Here, dS(x) denotes an area element on
the (curved) surface S describing the source and parameterized by
x. Analogously, dS(y) is an area element on the target surface T ,
parameterized by y. Equation 23 should hold for any subsetsA ⊂ X
and m(A) ⊂ Y , so also for A = X and m(A) = Y , giving the global
luminous flux balance. This implies that an inverse design problem
can only have a solution if f and g satisfy this global flux balance.

The precise form of the flux balance depends on the source and
target. For the source, we consider two options: first, a planar source
located in z = 0 and emitting a parallel beam of light with ̂s = ̂ez,
and second, a point source located in the origin and emitting a
conical beam of light with ̂s = ̂er. Both are zero-étendue (English:
zero-extent) sources, meaning that the emitted beam has either a
spatial or angular extent, but in the embedding four-dimensional
phase space, it has zero volume; see Chaves [25]. For the planar
source S = {r(x) = (x,0)|x ∈ X ⊂ ℝ2}, x = qs are spatial coordinates
(Cartesian/polar), dS(x) = dx, the area element in the source plane,
and f(x) =M(r(x)), the emittance, i.e., the luminous flux per unit
area emitted by the source. The point source has no spatial extent
but emits light rays in an angular domain, specified by ̂s ∈ S ⊂ S2.
As parameterization, we choose a stereographic projection, either
from the north or south pole, the area element dS(x) = J( ̂s(x))dx,
cf. Equation 22, and f(x) = Is( ̂s(x)), the intensity of the source, i.e.,
the emitted luminous flux per unit solid angle. We can express both
flux densities in the form f = ̃f◦P−1s , where ̃f =M and Ps:(x,0) ↦ x,
the trivial projection from S to X , for the planar source and ̃f = Is
and Ps = SN or Ps = SS for the point source.

For the target, we consider the following cases; first,
a near-field target located on a curved surface T =
{r(y) = (y,v(y))| y ∈ Y ⊂ ℝ2}, and second, a far-field target. For
the near-field target, y = qt are spatial coordinates in a reference
plane z = zt, the area element

dS (y) = |
∂r
∂y1
×

∂r
∂y2
|dy = √|∇v (y) |2 + 1dy,

and g(y) = E(r(y)), the illuminance, i.e., the luminous flux per unit
area incident on the target surface. The domain of a far-field target
is an angular domain, determined by the transmitted rays with ̂t ∈
T ⊂ S2. Therefore, we choose for y one of the two stereographic
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FIGURE 2
Stereographic projections of the unit sphere S2. (A) From the north pole N. (B) From the south pole S.

projections, for which dS(y) = J( ̂t(y))dy; cf. Equation 22. However,
g(y) = It( ̂r(y)), the intensity in the target domain as a function of
̂r, the unit direction vector directed straight from source to target
domain, skipping all optical surfaces, rather than a function of ̂t. In
the far-field approximation, the distance from the source to target
is large compared to the size of the optical system, specifically |r −
d ̂t|/|r| ≪ 1, where d is the distance from the optical surface to target,
measured along a reflected ray; see, e.g., [4], pp. 59–60. The optical
system is considered a point contracted at the origin, so we simply
consider g(y) = It( ̂t(y)). In addition, for the target, both fluxdensities
can be unified in the expression g = ̃g◦P−1t , where for the near field
̃g = E and Pt:(y,v(y)) ↦ y is the orthogonal projection from T to Y ,

andwhere for the far-field target, ̃g = It and eitherPt = SN orPt = SS.

5 Reflector and lens equations: a
hierarchy of mathematical models

We present a hierarchy of mathematical models for optical
systemswith a zero-étendue source, based on three example systems,
i.e., a parallel-to-far-field reflector, point-to-far-field lens, and
parallel-to-near-field reflector. These example systems are selected
based on the mathematical model (quadratic cost function, non-
quadratic cost function, and generating function) but are otherwise
arbitrary. Other choices like a parallel-to-far-field-lens (quadratic
cost function) or point-to-near-field reflector (generating function)
would be equally appropriate. In this section, we combine the
geometrical equations with the conservation law for luminous flux.

5.1 Parallel-to-far-field reflector

We consider a light source located in the plane z = 0 emitting a
parallel beam of light, for which ̂s = ̂ez. Light rays strike the reflector
R defined by z = u(x), x ∈ X ⊂ ℝ2, and are reflected off in the
direction ̂t ∈ T ⊂ S2. The reflected rays intersect an auxiliary plane
z = L, whichwe introduce to be able to determine an optical distance;
see Figure 3. More precisely, to derive a geometrical equation for
the reflector surface, we determine from Equation 10 the mixed
characteristic of the first kindW(qs,pt) for an arbitrary ray with qs =
x and pt = (t1 t2)

T, connecting the source with the plane z = L. The

FIGURE 3
Sketch of a parallel-to-far-field reflector.

point characteristic V(qs,qt) involved is given by

V(qs,qt) = [Qs,Qt] = u (x) + d, d = √|qt − x|2 + (L− u (x))2,
(24)

where d = d(P,Qt) is the distance between the points P(x,u(x))
and Qt(qt,L), which are the points where the reflected ray hits
the reflector and target plane, respectively, loosely referred to as
intersection points. For the direction vector ̂t of the reflected
ray, we have

pt = (
t1
t2
) = 1

d
(qt − x) , t3 =

1
d
(L− u (x)) . (25)

Moreover, ∂W/∂qs = − ps = 0 since ̂s is perpendicular to the source
plane, implying that W =W(pt). Elaborating the expression for W,
using the relations in Equations 24, 25, we find

W(pt) = u (x) + d− qt ⋅ pt

= u (x) + 1
d
(|qt − x|

2 + (L− u (x))2 − qt ⋅ (qt − x))

= u (x) + 1
d
(−x ⋅ (qt − x) + dt3 (L− u (x)))

= u (x) (1− t3) − x ⋅ pt + Lt3.

To separate the variables x (source) and pt (target), we bring all
terms that solely depend on ̂t to the left-hand side, and we obtain

W(pt) − Lt3
1− t3

= u (x) −
x ⋅ pt
1− t3
. (26)
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Note that t3 ≠ 1 since rays cannot pass straight through the reflector.
Using the expressions for d and t3, we can show that

∂W
∂L
= ∂d
∂L
−
∂qt
∂L
⋅ pt,

∂d
∂L
= pt ⋅

∂qt
∂L
+ t3,

from which we readily conclude that the left-hand side in
Equation 26 is independent of L, which makes sense since a
far-field target domain should not depend on the choice of a
particular plane z = L. As stated in Section 4, the proper choice to
parameterize the target T is the stereographic projection from the
north pole; thus, y = pt/(1− t3) and Y = SN(T ); cf. Equation 20.
Substituting the expression for y in Equation 26, we arrive at the
geometrical equation

u1 (x) + u2 (y) = c (x,y) , c (x,y) = x ⋅ y, (27)

where u1(x) = u(x) and u2(y) = (Lt3 −W(pt))/(1− t3).
Referring to Section 3, a possible solution of Equation 27 is

the max/max solution in Equation 13, which is a conjugate pair
of Legendre–Fenchel transforms since c(x,y) = x ⋅ y. The necessary
condition in Equation 14 and the matrix equation for the optical
map in Equation 15 reduce to

y −∇u1 (x) = 0, (28a)

Dm = P (x) , P (x) = D2u1 (x) . (28b)

Recall that Equation 28b has to be supplemented with the transport
boundary condition (Equation 16).

To close themodel, we elaborate the flux balance in Equation 23.
Substituting f(x) =M(r(x)), dS(x) = dx, g(y) = It( ̂t(y)), and dS(y) =
J( ̂t(y))dy, we obtain

∫
A
M(r (x)) dx = ∫

m(A)
It ( ̂t (y)) J( ̂t (y)) dy,

for arbitrary A ⊂ X and m(A) ⊂ Y . Substituting y =m(x) and the
expression for J( ̂t(y)), replacing v̂(z) by ̂t(y) in Equation 22, we can
rewrite the integral in the right-hand side and find

∫
A
M(r (x)) dx = ∫

A
It ( ̂t (m (x)))

4
(1+ |m (x) |2)2

det (Dm) dx,

(29)

where we used that det (Dm) > 0, which is correct because Dm is
either SPD or SND. Since Equation 29 should hold for arbitraryA ⊂
X , we obtain the differential form

det (Dm) = 1
4
(1+ |m (x) |2)2

M(r (x))
It ( ̂t (m (x)))

≕ F (x,m (x)) ,

referred to as the Jacobian equation. Substituting m = ∇u1, this
equation reduces to the standard MA equation det (D2u1) =
F(x,∇u1(x)); see, e.g., Gutiérrez [3].

5.2 Point-to-far-field lens

We consider a point source located in the origin Os (position
vector given by qs = 0 and zs = 0), emitting upward a conical
beam of light with the direction vector ̂s = ̂er. Light rays hit

a lens of refractive index n; see Figure 4. The first (entrance)
surface is spherical with center Os and radius R; hence, rays
are not refracted there; however, the second (exit) surface is
freeform and given by the parameterization r( ̂s) = u( ̂s) ̂s. Rays are
refracted at the exit surface and arrive at an auxiliary plane
z = L > 0. To derive a geometrical equation for the freeform
surface, we evaluate the angular characteristic T(ps,pt) defined in
Equation 11 for an arbitrary ray connecting the source with the
plane z = L. The point characteristic V(qs,qt) needed to evaluate
T(ps,pt) is given by

V (qs,qt) = [Os,Qt] = R+ n (u ( ̂s) −R) + d

d = √|qt − u( ̂s)ps|2 + (L− u( ̂s) s3)
2

(30)

where d = d(P,Qt) is the distance between the points
P(u( ̂s)ps,u( ̂s)s3) and Qt(qt,L), which are the intersection points
of the refracted ray with exit surface and target screen, respectively.
The direction vector ̂t of the refracted ray is given by

pt = (
t1
t2
) = 1

d
(qt − u( ̂s)ps) , t3 =

1
d
(L− u( ̂s) s3) . (31)

Note that ∂T/∂ps = qs = 0, implying that T = T(pt). Evaluating
the expression for T(pt) in Equation 11 using the relations in
Equations 30, 31, we obtain

T(pt) = R+ n(u( ̂s) −R) + d− qt ⋅ pt

= (1− n)R+ nu( ̂s) + 1
d
(|qt − u( ̂s)ps|

2 + (L− u( ̂s) s3)
2

− qt ⋅ (qt − u( ̂s)ps))

= (1− n)R+ nu( ̂s) + 1
d
(−u( ̂s)ps) ⋅ (qt − u( ̂s)ps)

+ dt3 (L− u( ̂s) s3))

= (1− n)R+ nu( ̂s) − u( ̂s)ps ⋅ pt + t3 (L− u( ̂s) s3)

= (1− n)R+ (n− ̂s ⋅ ̂t)u( ̂s) + Lt3.

(32)

To derive the last expression for T in Equation 32, we substituted
the relation ̂s ⋅ ̂t = ps ⋅ pt + s3t3. Next, we move all terms that solely
depend on ̂t and the constant (1− n)R to the left-hand side and find

T(pt) − Lt3 + (n− 1)R = (n− ̂s ⋅ ̂t)u( ̂s) . (33)

Differentiating the first expression in Equation 32 with respect to L
and combining the expression for d with Equation 31, we obtain

∂T
∂L
= ∂d
∂L
−
∂qt
∂L
⋅ pt,

∂d
∂L
= pt ⋅

∂qt
∂L
+ t3,

from which we readily see that the left-hand side in Equation 33 is
independent of L, as anticipated.

To separate source and target coordinates, analogous to
Equation 27, we have to take the logarithm of the left- and right-
hand sides of Equation 33. Note that n− ̂s ⋅ ̂t > 0 and u( ̂s) > 0;
consequently, the left-hand side is positive as well, and we can
take the logarithms. In addition, we substitute the stereographic
projections (from the south pole) x of ̂s and y of ̂t since
both ̂s and ̂t are directed upward; cf. Equation 21. In this
way, we obtain

u1 (x) + u2 (y) = c (x,y) , (34a)
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FIGURE 4
Sketch of a point-to-far-field lens.

where the variables u1(x) and u2(y) and the cost function c(x,y)
are defined by

u1 (x) = log u( ̂s (x)) , (34b)

u2 (y) = − log(T(pt (y)) − Lt3 (y) + (n− 1)R) , (34c)

c (x,y) = − log(n− ̂s (x) ⋅ ̂t (y)) . (34d)

Formulated in terms of stereographic coordinates, the cost
function reads

c (x,y) = − log(n− 1+
2|x − y|2

(1+ |x|2)(1+ |y|2)
),

which is no longer quadratic. A possible solution of Equation 34a
is the c-convex pair in Equation 13, for which the necessary
condition (Equation 14) holds. For the optical map, matrix
Equation 15 accompanied with the transport boundary
condition (Equation 16) is given.

Referring to Section 4, in the far-field approximation, the
luminous flux balance reads

∫
A
Is ( ̂s (x)) J( ̂s (x)) dx = ∫

m(A)
It ( ̂t (y)) J( ̂t (y)) dy, (35)

for arbitrary A ⊂ X and image set m(A) ⊂ Y . To derive the
differential form,we substitute the expressions for J( ̂s(x)) and J( ̂t(y)),
according to Equation 22, and subsequently substitute y =m(x).
Assuming det (Dm) > 0, we obtain

det (Dm) = (
1+ |m (x) |2

1+ |x|2
)
2 Is (x)
It (m (x))

≕ F (x,m (x)) .

Combining this equation with the matrix equation in Equation 15,
we obtain the GMA equation det (D2u1 −Dxxc) =
det (C(x,m(x)) F(x,m(x)).

5.3 Parallel-to-near-field reflector

The last example concerns a planar source, located in z =
0, emitting a parallel beam of light rays in the direction ̂s = ̂ez,

consequently ps = 0, which hits a reflectorR given by z = u(x), with
x = qs spatial coordinates in the source domain, and are reflected
off in the direction ̂t and lands at a target surface given by z =
v(y), with y = qt spatial coordinates in the reference plane z = zt =
0.Thus, source and target planes coincide; see Figure 5. We evaluate
Hamilton’s point characteristic and find

V(qs,qt) = [Qs,Qt]

= u (x) + d, d = √|y − x|2 + (v (y) − u (x))2,

where d = d(P,Qt) is the distance between the intersection points
P(x,u(x)) and Qt(y,v(y)) of the reflected ray with the reflector and
the target surface, respectively. Since ∂V/∂qs = − ps = 0, we find that
V = V(qt). In this case, it is no longer possible to separate the source
and target coordinates x and y like in Equation 27 or (Equation 34a).
Instead, we write

u2 (y) =H (x,y,u1 (x)) , H (x,y,w) = w+√|y − x|2 + (v (y) −w)2,
(36)

where u1(x) = u(x) and u2(y) = V(qt). Straightforward
differentiation gives Hw(x,y, ⋅) > 0, implying that for fixed x,y, the
inverse G(x,y, ⋅) =H−1(x,y, ⋅) exists. Therefore, we can explicitly
determine u1(x) from Equation 36, and we obtain

u1 (x) = G (x,y,u2 (y)) , G (x,y,w) = 1
2
(w+ v (y) −

|y − x|2

w− v (y)
) .

(37)

A possible solution of Equations 36, 37 is the G-convex H-concave
pair in Equation 17, for which the necessary condition (18) holds.
The matrix equation for m is given in Equation 15 with matrices C
and P defined in Equation 19. Recall that these matrices explicitly
depend on u1(x). Obviously, also the transport boundary condition
(16) holds.

Making the proper choices for the flux densities and area
elements, the flux balance (23) reduces to

∫
A
M(r (x)) dx = ∫

m(A)
E(r (y))√|∇v (y) |2 + 1dy, (38)

for an arbitrary setA ⊂ X and image setm(A) ⊂ Y , whereM(r(x))
and E(r(y)) denote the emittance and illuminance of the source
and target, respectively. Substituting y =m(x), assuming det (Dm) >
0, we obtain

det (Dm) = 1

√|∇v (m (x)) |2 + 1

M(r (x))
E(r (m (x)))

≕ F (x,m (x)) .

Combining this equation with Equation 15 and the matrices
C and P defined in Equation 19, we obtain the equation
det (DxxH̃) = det (C(x,m(x),u1(x)) F(x,m(x)), referred to as the
GJ equation.

5.4 Summary of mathematical models

All mathematical models considered consist of a geometrical
equation, a (zero-gradient) condition for a stationary point,
a matrix equation for the optical map coupled to the
transport boundary condition, and a luminous flux balance
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FIGURE 5
Sketch of a parallel-to-near-field reflector.

det (Dm) = F(x,m(x)). The conditions for the stationary
point read

cost function ∇xc (x,y) −∇u1 (x) = 0, (39a)

generating function ∇xH̃ (x,y) = 0. (39b)

Substituting the optical map y =m(x) and differentiating with
respect to x gives the matrix equation CDm = P, where the matrices
C and P are given by

quadratic cost function C = I , P = D2u1, (40a)

general cost function C = Dxyc, P = D2u1 −Dxxc, (40b)

generating function C = DxyH̃, P = −DxxH̃. (40c)

Combining the matrix equation form with the flux balance gives

det (C)F (x,m (x)) = det (P) ,

which we refer to as the luminous flux constraint. Note that for
the cost-function model, the matrices C and P explicitly depend
on x and m(x); on the other hand, for the generating-function
model, both matrices in addition depend on u1(x). In [26], we
have given a similar overview of mathematical models of 16 base
optical systems.

In the next section, we outline numerical methods to compute
the optical map y =m(x) and the auxiliary variable u1(x). The
shape/location of the optical surface is then reconstructed from a
simple algebraic equation, i.e., u(x) = u1(x) for the parallel-to-far-
field and parallel-to-near-field reflectors and u( ̂s(x)) = eu1(x) for the
parallel-to-far-field lens.

6 Iterative least-squares methods

In this section, we outline iterative least-squares methods for
the models presented in the previous section, starting with the
base scheme for the cost-function models and adding modifications
for the generation-function model. A detailed account of these
methods is presented in a series of theses—see [27]; [23]; [4]—and
papers—see [13]; [28]; [14, 29]; [15–18]; [26].

Base scheme for cost function

To compute the layout of the optical system,we apply a two-stage
method, i.e., we first compute the optical map m and subsequently,
the auxiliary variable u1 and possibly u2, from which we trivially
can compute the shape/location of the optical surface(s).We employ
a uniform rectangular grid covering the parameter space of the
source domain.

We iteratively compute a symmetric matrix P as
approximation of the symmetric part of CDm, satisfying det (P) =
det (C(⋅,m))F(⋅,m), and a vector field b:∂X → ∂Y , from which we
subsequently computem. Our solution strategy is then to minimize
the functionals

JI [m,P] =
1
2
∫
X
||CDm−P||2F dx,

subject to det (P) = det (C (⋅,m))F (⋅,m) , (41a)

JB [m,b] =
1
2
∮

∂X
|m− b|22 ds, (41b)

J [m,P,b] = αJI [m,P] + (1− α) JB [m,b] , (0 < α < 1) , (41c)

where || ⋅ ||F denotes the Frobenius norm. The minimization
of JB[m,b] is to enforce the transport boundary condition
(16). Given an initial guess m0, the iteration scheme
then reads

Pk+1 = argminP∈P(mk)JI [m
k,P] , (42a)

bk+1 = argminb∈BJB [m
k,b] , (42b)

mk+1 = argminm∈MJ[m,Pk+1,bk+1] , (42c)

where the corresponding function spaces are given by

P (m) = {P ∈ C1 ⁢(X )2×2|PT = P,det (P) = det (C (⋅,m (⋅)))F (⋅,m (⋅))} , (43a)

B = {b ∈ C(∂X )2|b (x) ∈ ∂Y} , (43b)

M = C2(X )2. (43c)
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In common parlance, P(m) is the space of 2× 2 matrix functions
that are continuously differentiable on X , are symmetric,
and satisfy the luminous flux constraint. B is the space of
continuous vector functions that map the boundary ∂X to the
boundary ∂Y .

The minimization of JI[m,P] to compute P can be performed
point-wise and requires the solution of a constrained minimization
problem. P has to be either SPD or SND, which can be enforced
by a constraint on tr(P). The minimization of JB[m,b] to compute
b is a piecewise projection of m on ∂X . For the minimization
of J[m,P,b], we impose the first variation with respect to m
to vanish, i.e.,

δJ [m,P,b] (η) = lim
ε→0

1
ε
(J [m+ εη,P,b] − J [m,P,b]) = 0, (44)

for arbitrary η ∈ C2(X )2. Evaluating this limit, applying Gauss’s
theorem and the fundamental lemma of calculus of variations ([30],
p. 185), we derive the following coupled boundary value problem
(BVP) form:

∇ ⋅ (CTCDm) = ∇ ⋅ (CTP) , x ∈ X , (45a)

(1− α)m+ α(CTCDm) n̂ = (1− α)b+ αCTPn̂, x ∈ ∂X , (45b)

where n̂ is the unit outward normal on ∂X . The divergence of a

2× 2 matrix function A = (a1 a2) is defined as ∇ ⋅A = (
∇ ⋅ a1
∇ ⋅ a2
). For

discretization of the BVP in (Equation 45), we employ the standard
finite volume method ([4], pp. Appendix B).

Next, upon convergence of the iteration (42), we compute u1
from (Equation 39a) by minimizing the functional

I [u1] =
1
2
∫
X
|∇xc (⋅,m) −∇u1|22dx.

Analogous to the derivation of (Equation 45), we set the first
variation δI[u1](v) = 0 for arbitrary v ∈ C2(X ), to obtain the
Neumann problem

∇2u1 = ∇ ⋅∇xc (⋅,m) , x ∈ X , (46a)

∇u1 ⋅ n̂ = ∇xc (⋅,m) ⋅ n̂, x ∈ ∂X . (46b)

We employ standard finite differences for the BVP in 46. u1 is
determined up to an additive constant, which translates in an
additive constant in the location of the parallel-to-far-field reflector
and amultiplicative constant for the location of the point-to-far-field
lens. To compute a unique solution from 46we either fix the distance
from the source to optical surface along a specific ray, or prescribe
an average for u1.

Extension to generating function

The optical map m and the variable u1 have to be computed
simultaneously since the matrices C and P depend on both
variables. Like in the previous case, the optical map satisfies
the equation CDm = P, with the matrices C and P defined
in Equation 40c, and the luminous flux balance det (Dm) =
F. Consequently, the functional JI[m,P] remains the same,

albeit with different matrices C and P. The variable u1 has to
be computed from Equation 39b, for which we introduce the
functional

I [u1,m] =
1
2
∫
X
|∇xH̃ (⋅,m)|

2
2dx

= 1
2
∫
X
|∇xH (⋅,m,u1) +Hw (⋅,m,u1)∇u1|

2
2dx.

(47)

Tominimize the functional in Equation 47,we require δI[u1,m](v) =
0 for arbitrary v ∈ C2(X ), with δI[u1,m](v) the first variation in I
with respect to u1, defined analogously to Equation 44. This way we
can derive the BVP

∇ ⋅ (Hw∇xH+H2
w∇u1) =

1
2

d
dw
|∇xH+Hw∇u1|

2
2, x ∈ X , (48a)

Hw (∇xH+Hw∇u1) ⋅ n̂ = 0, x ∈ ∂X . (48b)

We employ the standard finite volume method for discretization.
We can show that also the solution of the BVP in Equation 48
is determined up to an additive constant and compute a unique
solution prescribing the average value of u1; see ([4], pp. 166–167)
for more details. Finally, given an initial guess m0 and u01, the
iteration scheme then reads

Pk+1 = argminP∈P(mk)JI [m
k,uk1,P] , (49a)

bk+1 = argminb∈BJB [m
k,b] , (49b)

mk+1 = argminm∈MJ[m,uk1,P
k+1,bk+1] , (49c)

uk+11 = argminv∈U I[v,m
k+1] , (49d)

with U = C2(X ), where we have included uk1 in the argument list of
JI and J to denote their implicit dependence on u1 via the matrix C.

7 Numerical examples

We present two numerical examples, viz. the point-to-far-
field lens discussed in Section 5.2 and the parallel-to-near-field
reflector from Section 5.3.

7.1 Point-to-far-field lens

We consider a point source, located in the origin Os of the
source plane z = 0, emitting upward a beam of light with uniform
intensity Is( ̂s(x)) on the circular stereographic source domain X =
{x ∈ ℝ2||x| < 0.2}. In terms of spherical coordinates (ϕ,θ), this
corresponds to the domain 0 ≤ ϕ ≤ arccos (12/13) and 0 ≤ θ < 2π
with ϕ and θ as the polar and azimuthal angle, respectively, i.e., the
emitted conical light beam has an opening angle of arccos (12/13) =
0.39 rad. For the target, we choose the stereographic domain Y =
[−0.2,0.2] × [−0.1,0.1] and intensity It( ̂t(y)) corresponding to the
gray-scale image of the TU/e logo given in Figure 6a. Both intensities
are scaled such that the global luminous flux balance holds,
i.e., Equation 35 for A = X and m(A) = Y . Both stereographic
coordinates are projections from the south pole; cf. Equation 21.
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FIGURE 6
Point-to-far-field lens: target intensity pattern, mapping, freeform surface with a ray-traced target intensity pattern, and 3D illuminance distribution of
TU/e-logo. (a) TU/e-logo as a target intensity pattern. (b) Mapping displayed in the stereographic projection plane of ̂t. (c) Freeform lens and ray-traced
target intensity pattern. (d) 3D normalized illuminance distribution, using 50 × 50 bins.

The refractive index of the lens n = 1.5, and we enforce a unique
solution for the lens surface by setting u(xc) = 1, and therefore,
u1(xc) = 0, corresponding to the central light ray with stereographic
source coordinate xc = 0 and direction vector ̂s(xc) = ̂ez; cf.
Equation 34b.

For space discretization of the BVPs in (45) and (46), we
cover the source domain with a uniform 201× 201 grid and
evaluate 500 iterations of scheme (42)–(43), where the associated
functionals are defined in Equation 41. We choose α = 10−3. The
computational time, on a laptop with Intel Core i7 - 11800 H
2.30 GHz processor and a RAM of 16.0 GB, is 443.65 s (7.39 min).
The optical mapping, computed as an image of the source grid,
is shown in Figure 6b, and clearly exhibits the TU/e-logo. The
computed freeform lens with a ray traced target intensity pattern
is shown in Figure 6c. This intensity pattern is computed with the
commercial software code LightTools using 5× 106 rays and clearly
resembles the desired intensity.The corresponding (normalized) 3D

illuminance distribution, projected on the plane z = 100, is shown
in Figure 6d.

7.2 Parallel-to-near-field reflector

We consider a reflector that converts a uniform source emittance
M(x,0) into the illuminance E(r(y)) corresponding to the gray-scale
image of the painting ‘theMilkmaid’ by Johannes Vermeer as shown
in Figure 7a, projected on a spherical target surface. The source
domain X = [−0.25,0.25] × [−2.25,−2.75] and the target domain
is located on the northern hemisphere of the unit sphere given
by z = v(y) = √1− |y|2 with Y = [−0.42,0.42] × [−0.82,0.02]. The
parameters x and y are both Cartesian coordinates. The emittance
and illuminance are scaled such that the global flux balance
holds, i.e., Equation 38 for A = X and m(A) = Y . We enforce a
unique solution for the location of the reflector by setting u(xc) =
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FIGURE 7
Parallel-to-near-field reflector: target illuminance pattern, mapping, sag map, and freeform surface with ray-traced target illuminance. (a) “Milkmaid” as
target illuminance pattern. (b) Mapping displayed in the orthogonal projection plane of the target surface. (c) Sag map of the freeform reflector. (d)
Free-form reflector with ray-traced target illuminance pattern on a sphere.

u1(xc) = 3, where xc = (0,−2.5)T is the center point of the source
domain X .

To discretize the BVPs in Equations 45, 48, we cover the source
domain X with a uniform 201× 201 grid and 500 times apply
the iteration scheme defined in Equations 49, 43. The associated
functionals are defined in Equation 41, where we choose α = 0.05,
and Equation 47. On the same laptop/processor, the computational
time is 496.63 s (8.28 min). The optical map as image of the

uniform rectangular source grid is shown in Figure 7b. Clearly,
the girl shown in Figure 7a is recognizable in optical mapping
as grid points come closer together in regions of high contrast,
showing her contours. The sag map of the reflector is shown
in Figure 7c.

To verify the reflector computed by the least-squares algorithm,
we used LightTools. Implementing the reflector coordinates into this
code and specifying the uniformly distributed rectangular source
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along with the curved target surface, we obtained the reflector
system illustrated in Figure 7d, where only 50 rays are shown. The
resulting target intensity was obtained tracing 5× 107 rays. The
image of the ‘Milkmaid’ is clearly visible, confirming the validity of
the reflector computed by the least-squares algorithm.

8 Concluding remarks

We have presented a systematic and generic derivation of the
governing equations for inverse optical design. Using Hamilton’s
characteristic functions, we could derive a geometrical equation
defining the shape/location of the optical surface(s). From this
equation, applying concepts from optimal transport theory, we
derived equations for the optical map. To close the model, we
presented a generic conservation law of luminous flux. Combining
all equations, we derived the luminous flux constraint. Subsequently,
we elaborated the generic model in three different models of
increasing complexity, on the basis of three example optical systems.
We briefly outlined numerical least-squares methods for all models
and demonstrated their performance for a few examples.

We intend to expand our research on inverse methods along
the following lines. First, we will adjust our numerical methods
to incorporate two target distributions; second, we will develop
mathematical models and numerical methods for catadioptric
systems, where light rays propagate via different paths from the
source to target, and finally, and probably the most challenging, we
intent to generalize ourmodels and numerics to optical systemswith
finite sources, as opposed to zero-étendue sources.
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Nomenclature

Scalar variables

c(x,y) cost function

d(P,Q) distance between the points P andQ

dopt(rs,rt) optical distance, i.e., optical path length [Ps,Pt] as function of

the position vectors rs and rt

E(r(y)) illuminance at a near-field target

f (x) generic flux density of the source

g(y) generic flux density of the target

G(x,y,w) generating function

H(x,y,w) inverse of generating function

Is( ̂s(x)) intensity of the point source

It( ̂t(y)) intensity of the far-field target

J(v̂(z)) factor in the area element dS(z) on S2 generated by v̂ and

parameterized by z

M(r(x)) emittance of the planar source

n(r) refractive index field

s arc length along a curve C representing a ray

T(ps,pt) angular characteristic (function)

u1(x) Kantorovich potential for source domain

u2(y) Kantorovich potential for target domain

V(qs,qt) point characteristic (function)

W(qs,pt) mixed characteristic (function) of the first kind

W
∗
(ps,qt) mixed characteristic (function) of the second kind

z coordinate along the optical axis

φ(r) phase of an electromagnetic wave

[Ps,Pt] optical path length between the points Ps and Pt

Vectors

p(z) 2D momentum vector of a ray

q(z) 2D position vector of a ray

r 3D position vector of an arbitrary point

̂s 3D unit direction/tangent vector of a ray at the source plane

̂t 3D unit direction/tangent vector of a ray at the target plane

v̂ 3D unit direction/tangent vector at an arbitrary point of a ray

x 2D vector parameterizing the source domain

y 2D vector parameterizing the target domain
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