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Introduction: Microelectromechanical systems (MEMS) are pivotal in diverse
fields such as telecommunications, healthcare, and aerospace. A critical
challenge in MEMS devices is accurately determining the pull-in displacement
and voltage, which significantly impacts device performance. Existing methods,
including the variational iteration method and homotopy perturbation method,
often fall short in providing precise estimations of these parameters.

Methods: This study introduces a novel mathematical approach that combines
physical insights into the pull-in phenomenon with variational theory. The
method begins with a precise definition of the MEMS device's physical model. By
uniquely applying the variational principle and incorporating a custom-designed
functional, a set of equations is derived. These equations are transformed into
an iterative algorithm for calculating pull-in displacement, with nonlinear terms
addressed through approximation and perturbation techniques tailored to the
MEMS system’s characteristics.

Results:Validation using specific examples demonstrates themethod's accuracy
in determining pull-in displacement and voltage. For instance, in a MEMS
oscillator case, exact results were achieved with a computation time of 0.015 s.
Compared to traditional methods, this approach yields exact values rather than
approximations, showcasing superior precision and efficiency.

Discussion: The proposed method offers significant advantages, including
enhanced accuracy, reduced computational time, and minimized error
accumulation by solving algebraic equations instead of iterating differential
equations. It also exhibits robustness to variations in initial conditions and system
parameters. Limitations include the need for modifying the pull-in criterion
when variational formulation is unattainable and the exclusion of environmental
factors like temperature and pressure fluctuations. Future research should focus
on refining MEMS models to incorporate these factors and integrating the
approach with techniques such as Galerkin technology.

Conclusion: This research advances the mathematical understanding of MEMS
device behavior and holds substantial potential for the design and optimization
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of MEMS devices across various applications, further driving the progression of
MEMS technology.

KEYWORDS

pull-in motion, pull-in displacement, pull-in voltage, pull-in criterion, variational
principle

1 Introduction

1.1 Overview of MEMS technology and its
application areas

Recent decades have seen a remarkable development
in microelectromechanical systems (MEMS) [1, 2]. These
systems integrate mechanical and electrical components at a
microscopic level, enabling a diverse range of functions. In the
telecommunications industry, MEMS-based devices are widely
used in mobile phones and communication modules [3, 4]. For
instance, MEMS sensors play a crucial role in signal filtering and
sensing, enhancing the performance of communication devices.
In the field of healthcare, MEMS technology finds application in
implantable sensors for monitoring physiological parameters such
as heart rate and blood pressure, as well as in lab-on-a-chip systems
for rapid medical diagnostics [5, 6]. In the aerospace industry,
MEMS sensors are utilized for aircraft performance monitoring,
and micro-actuators are employed for precise control of spacecraft
components [7, 8]. The prevalence of MEMS technology in various
fields underscores the necessity for continuous enhancement of
device performance. Among the various characteristics of MEMS
devices, the pull-in instability [9, 10] is a critical parameter that
significantly influences their performance and functionality.

1.2 The critical role of pull-in instability in
MEMS

Pull-in instability [9, 10] is a pivotal factor that exerts a
considerable influence on the performance and reliability of MEMS
devices. It is directly related to the critical parameters of pull-
in displacement and voltage [11, 12].To illustrate this, consider
MEMS oscillators. As the applied voltage rises, the electrostatic
forces between the movable and fixed parts can induce substantial
deformation. The voltage threshold at which pull-in instability
occurs is a critical factor in the design of MEMS devices, as it can
lead to a sudden collapse of the device structure. This instability can
have a significant impact on the long-termdurability and accuracy of
the device, as well as its ability to function properly under different
operating conditions. Therefore, it is essential to develop a precise
understanding of the relationship between pull-in displacement and
voltage to optimize the design of MEMS devices and ensure their
reliable performance.

As outlined in references [13–16], the variational iteration
method is one of the approaches to be considered in this
regard. However, it is a highly intricate process to identify
the Lagrange multiplier. This identification requires an in-depth
comprehension of the system’s dynamics and the underlying

mathematical relationships, making it both complex and time-
consuming. Since the accurate determination of the Lagrange
multiplier is crucial for attaining precise outcomes, it frequently
presents significant challenges in practical scenarios.

The homotopy perturbation method (HPM) [17, 18] has also
been shown to have certain limitations. The application of the HPM
requires two things: firstly, a well-constructed homotopy equation
and secondly, a reliable initial guess. Formulating an appropriate
homotopy equation is challenging, as it must precisely encapsulate
the behavior of the system. Additionally, obtaining a good initial
guess, as discussed in [19], often relies heavily on prior knowledge
and experience. Erroneous initial estimates can invariably yield
erroneous outcomes. To address these limitations, a combination of
the homotopy perturbation method and the Laplace transform has
been proposed for solving MEMS oscillators, as reported in [20].

The application of ancient mathematics to MEMS systems
has recently attracted considerable attention on account of its
effectiveness and simplicity, as evidenced in [21–23].Significantly,
the point-solution method [24] and the Anjum-He method based
on Sturm’s algorithm [25] have emerged as promising techniques for
rapidly and accurately identifying the pull-in voltage. Furthermore,
the advent of AI-powered problem-solving techniques has opened
up new avenues for the resolution of complex MEMS systems [26].

The frequency formulation [27, 28] presents an alternative
approach that offers simplicity and straightforwardness. It provides
a relatively uncomplicated way to approach the problem.However, it
is not an iterationmethod.The absence of an iterative processmeans
that further improvement of its accuracy becomes challenging. Once
the initial formulation is set, there are limited options for refining the
results, making it difficult to achieve the high precision required for
advanced MEMS device applications.

1.3 Bottlenecks

In the realm of MEMS device research and application, the
accurate determination of pull - in displacement or pull - in
voltage is of paramount importance. MEMS devices are playing
an increasingly significant role in numerous fields. The pull - in
displacement, as a pivotal parameter influencing their performance,
renders its precise determination highly essential.When the pull - in
voltage approaches a specific threshold, the system becomes acutely
sensitive. Even aminute perturbation can cause the device’s dynamic
characteristics to shift abruptly from stable periodic motion to
pull - in instability, which can severely disrupt the device’s normal
operation and degrade its performance.

Currently, although various analytical methods can estimate an
approximate pull - in voltage for MEMS systems, such approximate
results are insufficient to meet the ever - growing demand for high
precision. Consequently, the exact determination of the pull - in

Frontiers in Physics 02 frontiersin.org

https://doi.org/10.3389/fphy.2025.1521849
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Shao and Cui 10.3389/fphy.2025.1521849

voltage has emerged as a crucial issue in both theoretical analysis
and practical applications.

1.4 Objectives and innovations of this
research

In response to the challenges identified, this research endeavor
seeks to formulate a novel mathematical approach for the
expeditious and precise estimation of pull-in displacement in
MEMS devices. The proposed method integrates sophisticated
analytical techniques and pioneering algorithms, leveraging the
variational principle in an original manner and introducing
innovative computational strategies to circumvent the constraints
imposed by conventional methodologies. The devised approach is
engineered to achieve substantial enhancements in the efficiency
and precision of pull-in displacement estimation. This will not
only deepen our understanding of MEMS device behavior from
a mathematical perspective but also hold great potential for
facilitating the design and optimization of MEMS devices in various
fields, thus contributing to the advancement of MEMS technology.

2 Theoretical foundations

2.1 Pull-in criterion

The pull-in phenomenon in MEMS represents a highly intricate
physical process. In essence, in an electrostatically actuated MEMS
device, the delicate balance between the mechanical and electrical
forces within the system is disrupted when an external electrical
stimulus, such as an increasing voltage, is applied. As the voltage
ascends towards a critical value, the electrostatic forces start to
preponderate, compelling the movable parts of the device to swiftly
approach the fixed parts. This abrupt movement is precisely the
pull-in instability. Mathematically, this process can be described by
a set of equations that intricately link the displacement, velocity,
and acceleration of the movable components to the applied voltage
and the mechanical attributes of the device. For instance, in a basic
MEMS oscillator model, the relationship among these variables is
manifested through differential equations that govern the dynamic
behavior of the system.

The periodic criterion is of fundamental importance in
the analysis of the dynamic behavior of MEMS systems, and
is inextricably linked to the pull-in criterion. In a MEMS
oscillator, when the periodic criterion is fulfilled, the system
exhibits stable oscillatory behavior, characterized by a particular
relationship between the acceleration and displacement of the
movable part, where their directions are consistently opposed
during the oscillatory state. However, as conditions deviate from
the periodic criterion and edge closer to the pull-in condition,
the system’s behavior undergoes a significant transformation. The
pull-in criterion delineates the conditions under which the system
becomes unstable and the pull-in eventuates. By meticulously
analyzing the transition from the periodic behavior to the pull-in
behavior usingmathematicalmodels, we can attain amore profound
understanding of the underlying mechanisms. This enhanced

knowledge can then be applied to the development of effective
methods for predicting and controlling the pull-in phenomenon.

Pull-in instability is a phenomenon that frequently manifests in
certain mechanical and electrical systems. Essentially, it transpires
when a system is subjected to an external force or stimulus
and reaches a critical juncture where it suddenly experiences a
breakdown or becomes unstable. This is vividly exemplified in
microelectromechanical systems (MEMS).As the applied voltage
mounts, the electrostatic force between the movable and fixed parts
of a MEMS device may induce deformation. At a particular voltage
threshold, the pull-in instability is initiated, leading to the swift
collapse of the device. A comprehensive and in-depth understanding
of pull-in instability is of the utmost importance for the design
and operation of a wide range of advanced technologies. Engineers
must accurately anticipate and appropriately consider this instability
to ensure the reliability and optimal performance of their systems.
By systematically investigating the factors that influence pull-in
instability, such as material properties, geometry, and operating
conditions, researchers can formulate strategic approaches to either
mitigate this phenomenon or exploit it for specific applications.This
facilitates the advancement and innovation of MEMS technology.

In this paper, we consider the following MEMS oscillator

ẅ+ f(w) = 0,  w(0) = 0,  ẇ(0) = 0 (1)

where w is the dimensionless displacement.
Equation 1 has periodic solutions if the following periodic

criterion holds [26]

f(w)
w
> 0 (2)

This periodic criterion can be easily understood, we re-
write Equation 1 in the form

ẅ = −[
f(w)
w
]w (3)

Equation 3 indicates that when the periodic criterion is satisfied,
there is consistent opposition in the directions of the accelerated
speed and the displacement. That is to say, when the accelerated
speed is positive, the displacement moves in the downward
direction; conversely, when the accelerated speed is negative, the
displacement moves upward. This alternating behavior between the
accelerated speed and displacement results in the system oscillating
continuously. This phenomenon of oscillatory behavior can be
attributed to the relationship delineated by Equation 3.As the sign of
the accelerated speed changes, it drives the displacement to move
in opposite directions, thereby creating a repetitive cycle of motion.
This continuous oscillation is a fundamental characteristic of the
system under the conditions specified by Equation 3, and it is
imperative for understanding the dynamic behavior and stability of
the system.

As stated in references [29–31], the periodic criterion is of
crucial importance and forms the solid foundation of He’s frequency
formulation.This formulation has gained significant popularity and
is widely applied in the field of vibration theory, as demonstrated in
various studies such as [32–37]. It has been proven to be an essential
tool for understanding and analyzing different aspects of vibration
phenomena.
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The pull-in criterion is a crucial tool for the development of
advanced MEMS technology, which reads

{
ẅ ≥ 0
ẇ ≥ 0

(4)

Equation 4 is related to the pull-in criterion in the context
of MEMS devices. When considering the behavior of a MEMS
oscillator, the pull-in criterion is crucial for understanding the
instability phenomenon. In Equation 4, it describes a specific
condition related to the accelerated speed and displacement.
If the accelerated speed remains consistently positive, then the
displacement gradually increases from w = 0 to w = 1. This
dynamic behavior is indicative of the occurrence of pull-in motion.
Conversely, in the event of a velocity that remains perpetually
positive (i.e., without any alteration in sign), no periodic motion
occurs. The satisfaction of the condition in Equation 4 is a
prerequisite for the emergence of pull-in instability.

The relationship between the positive accelerated speed and the
increasing displacement fromw = 0 to w = 1 shows a specific pattern
of behavior that leads to the pull-in motion. This equation is of
particular importance in determining the conditions under which
pull-in instability occurs in the MEMS device. It is employed in
conjunction with other equations (such as those for simultaneously
solving for the pull-in displacement and voltage) to analyze and
predict the behavior of the system. The satisfaction of Equation 3
is therefore a crucial determinant for the occurrence of pull-in
instability.

The pull-in displacement and the pull-in voltage can be precisely
determined by simultaneously solving the following equations.

{
ẅ = 0
ẇ = 0

(5)

Equation 5 is of paramount importance in determining the
crucial parameters related to pull-in displacement and voltage in
MEMS devices. In this equation, the first equation indicates that the
acceleration reaches zero, while the second equation implies that the
velocity is zero.When both these conditions aremet simultaneously,
it defines the pull-in threshold. This threshold is a critical juncture
that dictates the onset of the pull-in phenomenon, significantly
influencing the performance and functionality of MEMS devices.

In the context of MEMS device research, a comprehensive
understanding of the pull-in phenomenon is paramount.
The pull-in displacement and voltage are pivotal parameters
that exert a significant influence on the performance of
these devices. Equation 5 provides a method for determining these
parameters concurrently, and it is presumed that this method is
founded on the relationships established by the pull-in criterion
and other relevant principles and equations detailed in the study.
The solution to this equation provides the values of the pull-in
displacement and voltage, which are fundamental for understanding
and analyzing the behavior of a given MEMS system.

The precise determination of these parameters is imperative for
the effective design and optimization of MEMS devices, given their
significant influence on diverse physical and engineering systems.
Consequently, Equation 5 assumes a pivotal role in the analysis and
design process, empowering researchers and engineers to enhance
their comprehension and control of the behavior of MEMS devices
with regard to pull-in displacement and voltage.

2.2 Variational principle

The variational principle [38], firmly grounded in the principle
of least action [39], is an essential cornerstone in both physics
and engineering. It asserts that for a physical system transitioning
between two states, the actual path it follows is the one that
minimizes a specific functional.

Let’s take a simple linear spring -mass system as an example.The
kinetic energy K of amassMmovingwith velocity ẋ in such a system
is given by:

K = 1
2
mẋ2 (6)

The potential energy E is

E = 1
2
kx2 (7)

The variational principle allows us to formulate equations that
link the variations in these energies to the dynamic behavior of the
system. Specifically, we can use the Lagrangian function L, which
is defined as the difference between the kinetic energy K and the
potential energy E of the system, i.e.,

L = K−E = 1
2
mẋ2 − 1

2
kx2 (8)

By applying the variational principle to the Lagrange function,
we can derive the equations of motion for the spring system. The
variational formulation can be written as

J(x) = ∫
t2

t1
Ldt = ∫

t2

t1
{1
2
mẋ2 − 1

2
kx2}dt→ min . (9)

According to the principle, the action J of the system is
stationary for the actual path of the system. Through the calculus
of variations, we have

δJ(x) = ∫
t2

t1
{mẋδẋ− kxδx}dt = 0 (10)

The variational operator and the differential operator can
be interchanged, so we re-write Equation 10 in the form after
integration by parts

δJ(x) = ∫
t2

t1
{mẋδ(dx

dt
)− kxδx}dt = ∫

t2

t1
{mẋ d

dt
(δx) − kxδx}dt

= ∫
t2

t1
{ d
dt
(mẋδx) −

d(mẋ)
dt

δx− kxδx}dt

= (mẋδx)|t2t1 −∫
t2

t1
{
d(mẋ)
dt
+ kx}δxdt = 0

(11)

For arbitrary δx, from Equation 11, we have

{
{
{

d(mẋ)
dt
+ kx = 0,

mẋ(t1) = 0,mẋ(t2) = 0
(12)

For general nonlinear oscillators, the initial conditions are
given as follows

ẋ(0) = ẋ0,x(0) = x0 (13)

Equation 9 should be modified as

J(x) = ∫
t

0
{1
2
mẋ2 − 1

2
kx2}dt−m(ẋ(0) − ẋ0)(x(0) − x0) (14)
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In the context of Microelectromechanical Systems (MEMS),
this principle emerges as a vital instrument for deconstructing the
intricate energy relationships within the system. The two principal
energy modalities present in a MEMS device are kinetic energy and
potential energy. The variational principle enables the formulation
of equations that establish a connection between the variations
in these energies and the dynamic behavior of the system. To
illustrate this, the variational principle is applied to derive the
equations of motion governing the MEMS device by incorporating
the Lagrange function, which embodies the disparity between
kinetic and potential energies. This derivation provides a powerful
means of discerning how the system evolves temporally and
how fluctuations in the energy components influence the device’s
operational behavior.

The semi-inverse method [40] offers an efficient pathway for
deriving variational formulations within the MEMS domain. The
process initiates with the fundamental equations that govern the
system’s behavior, followed by the formulation of assumptions
regarding the form of the solution. Subsequently, by substituting
these assumptions into the equations and invoking the variational
principle, the variational formula can be successfully obtained.
To illustrate this methodology, we may postulate a particular
functional form for the displacement of the movable part and
calculate the variations of kinetic and potential energies with
respect to this displacement. Through a series of mathematical
operations, such as integration by parts and the application of
the variational operator, we arrive at the variational formula that
correlates energy variations with system parameters.This derivation
process provides a solid theoretical foundation for ourmethodology
and validates the mathematical rigor underpinning the
proposed approach.

In the field of research concerning MEMS pull-in displacement,
the variational principle assumes a pivotal role. It provides a
unified and comprehensive framework for analyzing the dynamic
behavior of MEMS devices and predicting the onset of pull-in
instability. By utilizing the variational principle to derive equations
of motion and the pull-in criterion, we can accurately determine
the critical conditions that trigger pull-in and precisely calculate
the pull-in displacement. This capability empowers MEMS device
designers to optimize device parameters, thereby either preventing
or controlling the occurrence of the pull-in phenomenon.Moreover,
the variational principle is invaluable in enhancing understanding of
the system’s sensitivity to various factors, including initial conditions
and external stimuli. This understanding is of utmost importance
for augmenting the reliability and performance of MEMS devices.
Specifically, the variational principle is meticulously designed to
clarify the relationship between kinetic energy and potential energy,
facilitating a profound exploration of how these two fundamental
energy forms interact and exert mutual influence within a system.
By establishing a variational principle, we can systematically
dissect the kinetic properties of a system and construct a robust
framework for predicting and elucidating the system’s behavior. It
enables investigation of how alterations in one energy form can
directly impact the other, thereby unveiling the underlying physical
mechanisms atwork.This comprehension is not only vital forMEMS
research, but also has extensive implications for other fields where
energy dynamics play a decisive role.

Using the semi-inverse method [40], the following variational
formulation can be obtained.

J(w) = ∫
t2

t1
{1
2
ẇ2 − F(w)}dt (15)

where F is potential energy, satisfying the following relationship

d
dw

F(w) = f(w) (16)

Proof. Making Equation 15 stationary, we have

δJ(w) = δ∫
t2

t1
{1
2
ẇ2 − F(w)}dt = 0 (17)

The variational operator and the integral operator are
interchangeable, so it can be obtained that

δJ = ∫
t2

t1
δ{1

2
ẇ2 − F(w)}dt = ∫

t2

t1
{ẇδẇ− δF(w)}dt (18)

The variational operator and the differential operator are
interchangeable, so it can be obtained that

ẇδẇ = ẇ d
dt
(δw) (19)

So Equation 18 becomes

δJ = ∫
t2

t1
δ{ẇ d

dt
(δw) − dF

dw
δw}dt (20)

After performing integration by parts on the above
equation, we obtain

δJ = ∫
t2

t1
{−(dẇ

dt
+ ∂F
∂w
)δw}dt+ ẇδw|t=t0t=t1 = 0 (21)

We assume that δw(t1) = 0 and δw(t2) = 0, from Equation 12,
we have

dẇ
dt
+ dF
dw
= 0 (22)

In view of Equation 16, we find that Equation 22 is
equivalent to Equation 1.

Equation 15 represents a Hamilton principle, a fundamental
concept in the study of physical systems [41]. This principle is
of great importance as it provides a powerful framework for
understanding the behavior of MEMS devices. By establishing a
variational formulation, it allows for the analysis of kinetic and
potential energy relationships within the system. The Hamilton
principle enables investigation of how changes in one form of energy
can impact the other, thus shedding light on the underlying physical
mechanisms. It serves as a cornerstone for deriving equations
of motion and predicting the dynamic behavior of the system.
Equation 15 and the associated Hamilton principle play a crucial
role in the accurate determination of pull-in displacement and
other key parameters in MEMS devices, facilitating their design and
optimization. The semi-inverse method [40] is a powerful tool for
deriving variational formulations that can provide valuable insights
into the behavior of complex systems. The semi-inverse method
enables the systematic construction of a variational formulation
that accurately represents the relationship between different physical
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quantities and facilitates understanding of the underlyingmechanics
of the system [42–46]. According to Equation 15, we have

1
2
ẇ2 + F(w) =H (23)

where H represents the Hamilton constant, and its value depends
on the initial conditions. It can thus be concluded that the
velocity in Equation 5 is contingent upon the initial parameters.
This indicates that the determination of displacement and pull-
in voltage is sensitive to the initial conditions. It is evident
that the initial values have a direct impact on the obtained
results, and that any errors or inaccuracies in their specification
could compromise the reliability of the method. One potential
solution to address this issue could be to integrate the proposed
model with numerical optimization techniques [47] or machine
learning methods [48]. This approach would allow for the
autonomous identification of optimal parameters, thereby reducing
the impact of initial errors and enhancing the accuracy and
reliability of themethod.The integration of the proposedmodel with
numerical optimization techniques or machine learning methods
could ensure the robustness and applicability of the method in
practical scenarios.

3 Methodology

3.1 Overall architecture and algorithmic
flow of the new method

The proposed methodology for determining the pull-in
displacement in MEMS devices is designed with a modular and
systematic architecture, commencing with the precise definition
of the physical model of the MEMS device under consideration,
incorporating all the relevant mechanical and electrical parameters.
Subsequently, the variational principle is applied in a novel way.
Rather than employing conventional methods, a bespoke functional
is introduced, accounting for the unique characteristics of the
MEMS system, including the geometry of the moving components
and the distribution of the electrostatic field. This functional is then
subjected to variational calculus operations, resulting in an iterative
algorithm for calculating the pull-in displacement. The algorithm
has been structured in such a way that it converges towards the
accurate solution efficiently, with each iteration refining the estimate
of the pull-in displacement based on the previous results and the
information from the variational principle.

3.2 Mathematical derivation and logical
Justification of key steps

In the mathematical derivation of the method, the fundamental
equations of motion of the MEMS device are derived from the
variational principle. For instance, an equation is obtained relating
the acceleration, velocity, and displacement of the movable part to
the applied voltage and the mechanical properties of the device.
By applying the chain rule and other mathematical techniques, the
equation can be transformed into an iterative form, with the key step
being the proper handling of the nonlinear terms in the equation.

We employ approximation methods and perturbation techniques,
meticulously tailored to the characteristics of the MEMS system,
to linearize the equation in a manner that preserves the essential
physical behavior. This enables us to solve the equation iteratively
and obtain a convergent solution. The logical foundation for each
step is rooted in the physical interpretation of the variables and
themathematical principles underlying the variational principle and
the approximation methods. It is imperative to ensure that each
operation is consistent with the physical laws governing the MEMS
device, and that the errors introduced by the approximations remain
within an acceptable range.

According to the pull - in criterion provided in Equation 5, the
pull - in displacement and pull - in voltage can be determined by
solving simultaneously the following algebraic equations.

f(w) = 0 (24)

F(w) −H = 0 (25)

where F is defined in Equation 16, dF/dw = f(w). Equation 24 is for
zero acceleration, and Equation 25 is for zero velocity.TheHamilton
constant can be determined from the initial conditions,w(0) = 0 and
ẇ(0) = 0:

H = 1
2
ẇ2(0) + F(w(0)) = F(0) (26)

So Equation 25 becomes

F(w) = F(0) (27)

3.3 Analysis of the innovativeness and
Advantages of the method

By solving both Equations 24, 27 simultaneously, the exact
pull-in displacement and voltage can be obtained. In contrast,
some well-known analytical methods, such as the variational
iterationmethod and the homotopy perturbationmethod, yield only
approximate results. The innovativeness of our method is manifest
in several aspects.

Firstly, the application of the variational principle with a custom-
designed functional is exclusive, and thus offers a more accurate
and physically meaningful depiction of the MEMS system than
traditional approaches. It reveals the kinetic energy characteristics
during the operation of the MEMS and directly gives the pull-in
criterion of Equation 27.This enables us to precisely capture the
essential features of the pull-in phenomenon.

Secondly, the pull-in criterion provides physical insights into
the pull-in instability. When both the acceleration and velocity are
greater than zero, the pull-in instability occurs. Thus, the critical
values when the acceleration and velocity are equal to 0 can easily
determine the pull-in displacement and the pull-in voltage.

Compared with traditional methods like the variational
iteration method and the homotopy perturbation method, our
method requires no iteration to solve the original differential
equation, but to solve algebraic equations with ease. This not
only reduces the time taken for computation but also lessens the
impact of errors that may be accumulated during the iterative
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process. Furthermore, the method is more robust to changes
in initial conditions and system parameters, rendering it more
suitable for practical applications where these factors may not be
accurately known.

4 Validation and results

To validate the proposed method for determining the pull-
in displacement in MEMS devices, we consider an example
given in Ref. [49]

ẅ+w− k
1−w
= 0,  w(0) = 0,  ẇ(0) = 0 (28)

The pull-in voltage can be determined exactly by the
following equation [49]

1
2
(1+
√1− 4k
2
)

2

+ k ln|1− 1+
√1− 4k
2
| = 0 (29)

The first step of our method is to establish a variational
formulation for Equation 28, that is

J(w) = ∫{1
2
ẇ2 − 1

2
w2 − k ln (1−w)}dt (30)

From the established variational formulation, the following
equation is obtained

1
2
ẇ2 + 1

2
w2 + k ln (1−w) =H (31)

The Hamilton constant can be determined exactly by the initial
conditions, and finally Equation 31 becomes

1
2
ẇ2 + 1

2
w2 + k ln (1−w) = 0 (32)

Now the next step is to set the acceleration in Equation 28 and
the velocity in Equation 32 equal to zero, that is

w− k
1−w
= 0 (33)

1
2
w2 + k ln (1−w) = 0 (34)

The last step is to solve the algebraic equations Equations 33,
34. From Equation 33 we have

w = 1+
√1− 4k
2

(35)

Substituting Equation 35 into Equation 34, we obtain an
algebraic equation for pull-in voltage, that is

1
2
(1+
√1− 4k
2
)

2

+ k ln(1− 1+
√1− 4k
2
) = 0 (36)

Consider w < 1, Equations 30, 36 are same.
Conventional approaches, including the variational iteration

method and the homotopy perturbation method, have been shown
to yield approximate pull-in voltages with a high degree of accuracy.
In contrast, the present study aims to provide exact values.

5 Case studies

We assume a MEMS oscillator described by the equation

mẅ+ kw− εAV2

(d−w)2
= 0,  w(0) = 0,  ẇ(0) = 0 (37)

where m is the mass of the movable part, k is the spring constant, ε
is the permittivity of the medium, A is the area of the electrodes, V
is the applied voltage, and w is the displacement.

First step: We apply the variational principle to this equation. Its
kinetic energy and potential energy are, respectively, as

K = 1
2
mẇ2

E = 1
2
kw2 − εAV

2

d−w

(38)

The variational formulation is

J(w) = ∫{1
2
mẇ2 − 1

2
kw2 + εAV

2

d−w
}dt (39)

Second step: The Hamilton constant is

K+E =H (40)

By the initial conditions, we have

1
2
mẇ2 + 1

2
kw2 − εAV

2

d−w
= − εAV

2

d
(41)

Third step: Setting ẇ = 0 in Equation 41 and
ẅ = 0 in Equation 37, we have

1
2
kw2 − εAV

2

d−w
= − εAV

2

d
(42)

kw− εAV2

(d−w)2
= 0 (43)

Fourth step: Solving Equations 42, 43 for w and V, the pull-
in displacement and the pull-in voltage are exactly determined.
Considering the case k = 1, ε = 1, A = 1, d = 1, the above
equations become

1
2
w2 − V2

1−w
= −V2 (44)

w− V2

(1−w)2
= 0 (45)

By DeepSeek, we have

{
{
{

w∗ = 1/2

V∗ = 1
2√2

(46)

It takes 0.015 s, see the following Figure 1.
Now we consider the following case [50]

ẅ+w+ εw3 −
α1k
1−w
−

α2k
(1−w)2

= 0,  w(0) = 0,  ẇ(0) = 0 (47)

where ε,α1 and α2 are constants, k is the voltage coefficient. By
suitable choice of the parameters, Equation 47 can be converted to
those in open literature [51–54]
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FIGURE 1
Solving Equations 44, 45 by Deepseek. Copy the equations as an imagine, and ask Deepseek to solve the problem.

For the given oscillator Equation 47, its variational formulation
is crucial for analyzing the system’s behavior. The variational
formulation is derived as follows:

J(w) = ∫{1
2
ẇ2 − 1

2
w2 − 1

4
εw4 − α1k ln (1−w) +

α2k
1−w
}dt (48)

We have

1
2
ẇ2 + 1

2
w2 + 1

4
εw4 + α1k ln (1−w) −

α2k
1−w
=H (49)

TheHamiton constant can be identified by the initial conditions,
after its identification, Equation 49 becomes

1
2
ẇ2 + 1

2
w2 + 1

4
εw4 + α1 ln (1−w) −

α2k
1−w
= −α2k (50)

According to the pull-in criterion, we have

w+ εw3 −
α1k
1−w
−

α2k
(1−w)2

= 0 (51)

1
2
w2 + 1

4
εw4 + α1 ln (1−w) −

α2k
1−w
= −α2k (52)

For the given parameters involved in Equations 51, 52, we
can effortlessly obtain the pull-in displacement and the pull-
in voltage. For instance, let’s consider a specific case where ε =
0, α1 = 1,and α2 = 0. By solving Equations 51, 52, we find that
w∗equals 0.7153318630 and k∗is equal to 0.203632188. This is the
exact result as that mentioned in Reference [49], which further
validates the reliability of our method. This consistency not only
demonstrates the robustness of the equations but also highlights
their practical applicability in various engineering and scientific
scenarios. Additionally, Figure 2 vividly showcases the accuracy
of the pull-in criterion, further validating the effectiveness and
reliability of the method.

Now we consider another case of ε = 0, α1 = 0,and α2 = 1. By
applying Equations 32, 33, we find that the pull-in displacement
equals 0.500 and the pull-in voltage is equal to 0.125. Figure 3a shows
the critical value of k is k=0.1250000001, while Figure 3b verifies that
when k is larger than the critical value, the pull-in motion occurs.

6 Discussion and conclusion

The present criterion has been demonstrated to yield exact
results, in contrast to the approximate outcomes provided by certain
analytical methods, including the variational iteration method and
the homotopy perturbation method [55, 56]. However, it should
be noted that the present theory does possess certain limitations.
In cases where the variational formulation cannot be established,
the present pull-in criterion requires modification. Furthermore,
factors such as temperature or pressure fluctuations, which are part
of the environmental conditions, have not been considered within
the present paper. When considering these environmental factors,
the governing equation should be modified. The spring constant
and electrostatic force coefficient are relative to temperature, and
the pressure variation affects the damping term in the equations
of motion. While the material variations like Young’s modulus and
permittivity can impact the pull-in behavior.

It is anticipated that this paper will act as a foundation for the
enhancement and refinement of the theory, thereby increasing its
applicability in real-world scenarios. This research has successfully
presented a novel approach for the rapid determination of the
pull-in displacement of MEMS devices. Through a combination
of advanced analytical techniques and innovative algorithms, our
method has demonstrated significant improvements in speed and
accuracy compared to traditional methods.

The reliability and effectiveness of the proposed approach
enhances the comprehension of MEMS device behavior from
a mathematical perspective, and also has great potential for
diverse applications in fields such as sensor technology, micro-
actuators, and biomedical devices. The ability to quickly and
accurately determine pull-in displacement provided by the
proposed method serves as a cornerstone for more efficient MEMS
device design and optimization, ultimately leading to enhanced
performance and broader adoption of these miniature yet highly
functional systems.

In the foreseeable future, there exist several crucial areas
where in - depth and further research endeavors could be
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FIGURE 2
(a) Phase portraits of the MEMS system when ε = 0, α1 = 1, and α2 = 0 for different values of k and (b) the pull-in motion.

FIGURE 3
(a) Phase portraits of the MEMS system when ε = 0, α1 = 0, and α2 = 1 for different values of k and (b) the pull-in motion.

vigorously pursued. First and foremost, the potential refinement
of the MEMS models stands as a significant research direction.
Currently, the existing MEMS models are somewhat limited. To
enhance their accuracy and comprehensiveness, it is essential
to take into account a wider array of factors. Temperature, for
instance, has a non - negligible impact on the performance and
characteristics of MEMS devices. Fluctuations in temperature can
cause material expansion or contraction, which in turn affects
the mechanical and electrical properties of MEMS components.
Besides temperature, considering their variational formulations is
also of great importance. Variational formulations can provide a
more in - depth understanding of the physical principles underlying
MEMS operation, enabling more precise mathematical descriptions
and analyses.

Furthermore, in the event that the variational formulation
proves difficult or impossible to establish, the pull - in criterion
has to be modified. The pull - in criterion is a critical parameter in
MEMS design and analysis, determining the onset of instability in
electrostatically actuated MEMS devices. A proper modification of
this criterion can ensure the safe and efficient operation of MEMS
devices under various conditions.

In addition, the integration of the current approach with
Galerkin technology holds great promise. Galerkinmethod is widely
used in numerical analysis and has demonstrated high - efficiency in
solving complex engineering problems. By integrating the existing
MEMS research approach with Galerkin technology, it could
potentially open upnew and innovative avenues for the development
of more sophisticated and advanced MEMS devices. These new
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devices may have enhanced performance, higher sensitivity, and
better reliability, which will have far - reaching implications for
various fields such as aerospace, biomedical engineering, and
telecommunications.

All in all, these research directions offer great potential for
promoting the development and application of MEMS technology
in the future.

Overall, the research we’ve conducted marks a substantial
leap within the domain of MEMS device characterization. By
meticulously analyzing andunderstanding the intricate properties of
MEMS devices, we’ve unearthed novel insights and methodologies.
The potential implications are far - reaching. In the realm of MEMS
device design, our research can serve as a guiding light. Designers
can now leverage our discoveries to create more optimized MEMS
devices. For instance, they can fine - tune the structural andmaterial
parameters with greater precision, leading to enhanced functionality
and performance.

When it comes to performance, the improvements could
be revolutionary. MEMS devices are integral to a vast array of
applications, from high - tech sensors in smartphones to advanced
medical diagnostic tools. With the enhanced design possibilities
inspired by our research, these devices can achieve higher levels
of accuracy, sensitivity, and reliability. This, in turn, will drive
innovation across multiple industries, enabling the development of
more sophisticated products and services. In sum, our work has laid
a solid foundation for the continued evolution and success ofMEMS
technology.
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