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Research on the integration of
MEMS and reliable transmission
of deep space networks based on
time-sensitive networking

Kejun Sheng and Ziyang Xing*

School of Information Engineering, Shandong Vocational University of Foreign Affairs, Weihai,
Shandong, China

With the continuous deepening of human space exploration, deep space
networks far away from Earth have emerged. Unlike traditional ground
networks, they have the characteristics of frequent link interruptions and time
extensions. Traditional data transmission mechanisms cannot be well applied
in deep space networks. We propose a data transmission technology that
integrates time-sensitive networking and artificial intelligence to address the
contradiction between deterministic delay and differentiated service quality
assurance in deep space networks and construct a micro electromechanical
system (MEMS). Considering the differences in service quality due to different
business requirements, data transmission in deep space networks is transformed
into a mixed integer programming problem that minimizes transmission delay
and maximizes link utilization and solved using artificial intelligence imitation
learning. Experimental results have shown that the proposed algorithm has
fast convergence, strong applicability, and can achieve reliable and efficient
data transmission while meeting the requirements of higher priority data
transmission. It can also significantly improve throughput.

KEYWORDS

data transmission, deep space network, time-sensitive networking, imitation learning,
mixed integer programming problems

1 Introduction

With the continuous development of space exploration technology, humans have
achieved exploration of the solar system and beyond. The communication and data
transmission between the Earth and probes cannot be separated from deep space networks
[1]. Therefore, the service quality of deep space networks has a great impact on the
management, tracking, and control of deep space spacecraft. Deep space network refers to
the network between the moon and the solar system, characterized by dynamic changes in
network topology, mixing of multiple protocols, small number of transmission nodes, time
delay, high packet loss rate, frequent link interruptions, and more importantly, unknown or
uncertain failures during data transmission. So, in deep space networks, data transmission
capability has become an important indicator of whether communication with probes
is successful or not. However, traditional data transmission techniques are difficult to
apply in deep space networks, and transmission interruptions may occur, resulting in
eventual data loss. The above problems in deep space networks cannot guarantee the
timeliness of certain services that require high latency, such as control instructions sent from
ground stations to detectors, which belong to high priority data transmission. The latency
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requirements are reliable, timely, and stable, which will seriously
affect the security of detectors in deep space networks [2].
Time-sensitive networking (TSN) refers to a network that can
ensure the service quality of time sensitive flows and reduce
latency, jitter, and packet loss rates. It has the characteristics
of ultra-low latency and easy scalability. It has made significant
progress in areas such as autonomous driving and remote surgery
and has been widely used on the Internet of Vehicles and
satellite networks to cope with network topology changes, frequent
interruptions, and other impacts on data transmission [3]. MEMS
embodies many cutting-edge achievements in today’s scientific
and technological development. Through miniaturization and
integration, new principles and functions of components and
systems can be explored, opening a new technological field.
MEMS has the following basic characteristics: miniaturization,
intelligence, multifunctionality, high integration, and suitability for
mass production. The goal of MEMS technology is to explore
components and systemswith new principles and functions through
the miniaturization and integration of systems. Therefore, micro
electromechanical system composed of TSN technology [4] can also
be applied to achieve reliable transmission in deep space networks.

In summary, traditional data transmission mechanisms cannot
meet the high timeliness requirements of certain business needs in
deep space networks and are prone to transmission failures due to
frequent link interruptions. This article explores the introduction of
TSN technology and artificial intelligence into deep space networks
to achieve deterministic latency for certain business needs and
ensure high-quality (low latency, high reliability) data transmission.

2 Related work

For data transmission in deep space networks, existing methods
include Delay Tolerance Networks (DTNs), which can tolerate
long delays and connection interruptions. However, in deep space
networks, asymmetric link transmission speeds are formed, so
high-quality data transmission cannot be guaranteed. Although the
CCSDS (Consultative Committee for Space Data Systems) protocol
is suitable for multi scenario applications, it lacks overall network
optimization and is also not conducive to timely data transmission in
deep space networks. In 2022, Zhou et al. [5] proposed a framework
to reduce energy and resources for achieving highly reliable file
transfer in deep space networks. Yuanguo Bi et al. [6] proposed a
composite architecture using software defined techniques, which
helps manage the entire integrated network and improves network
flexibility. Some scholars have also studied link allocation algorithms
to achieve more fair data transmission, such as Refs. [7, 8], etc.

The above research mainly focuses on the characteristics of
deep space networks, designing protocols and systems, which have
the disadvantages of low intelligence and poor applicability. With
the widespread application of artificial intelligence technology in
multiple fields, some scholars have also carried out data transmission
based on artificial intelligence in integrated networks. For example,
the literature [9] discusses the advantages of reinforcement learning
in dealing with topological dynamic changes and proposes an
intelligent satellite scheduling algorithm. It can be seen that
artificial intelligence technology has great advantages in stable data
transmission. The literature [10] proposed a mixed integer linear

programming approach combined with reinforcement learning to
solve railway scheduling and achieve efficient passenger allocation.

TSNcan ensure the service quality of delay sensitive data streams
and achieve high-performance and reliable data transmission. The
literature [11] introduced online earliest deadline-based scheduling
in the automotive scene, which can uniformly handle periodic data
traffic. The literature [12] developed a latency sensitive network
framework that supports network function virtualization, enabling
unified resource management and ensuring higher reliability and
efficiency of services. The literature [13] proposes a message
scheduling framework that integrates delay sensitive networks into
the avionics module to address the shortcomings of weak real-time
performance and insufficient scalability of existing message queues.
This framework reduces end-to-end latency.

In summary, the current data transmission in deep space
networks still relies mainly on traditional methods, which cannot
effectively guarantee certain deterministic latency and differentiated
service quality. This article has significant advantages in applying
delay sensitive network technology to deep space networks.

3 System architecture

The transmission architecture proposed in this article
is shown in Figure 1, which consists of MEMS modules (including
TSN switches, etc.), transmission quality monitoring modules,
transmission performance feedback modules, etc. The entire
network forms a TSN deep space network to achieve data
transmission between Earth and Mars. Our goal is to have a total
of H business packets arrive at the TSN switch port simultaneously,
represented as H = {h1,h2,h3,⋯,hx}, which will be reallocated by
artificial intelligence based on performance feedback and business
priority, and generate the optimal packet transmission queue, like
Hglobal = {h3,h1,h2,⋯,hx}. Abstracting deep space network topology
as a directed graph G(N,L), N representing the set of nodes in the
network and L is the set of links in the network.

3.1 MEMS module (including expert
strategies and expert trajectories)

This module implements delay sensitive transmission based on
the real-time status of the link. Any system that hopes intelligent
agents can make decisions like “experts” can benefit from imitation
learning methods. The specific parameters are obtained as follows.

3.1.1 Used bandwidth
By detecting data packets to both the sender and receiver,

specific values are calculated and extracted from the return
information: Datas, Datar and t. The Datas represents the number
of bytes received, the Datar represents the number of bytes sent,
and t represents the duration. For example, the first data collected
is Datas1, The second statistical data is Datas1, and the data rate v of
the port is, as shown in Equation 1:

v =
Datar2 +Datar2 −Datas1 −Datas1

t2 − t1
(1)
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FIGURE 1
Architecture diagram of deep space transmission based on delay sensitive network.

The used bandwidth of the link depends on the smaller port
speed at both ends of the connection link. Let the speed of port one
be v1; The speed of the other port is v2. The used bandwidth of the
link is BW, as shown in Equation 2:

BW =min (v1,v2) (2)

3.1.2 Delay
Assuming to obtain the latency between switch 1 and handover

machine 2, the steps are as follows:
The MEMS module sends detection data packets −REQUEST

to switch 1 and switch 2 respectively and obtains T1 and T2.
Then, switch 1 and switch 2 send control detection data packets
_REQUEST respectively to each other, and the obtained times are
T1 and T2, as shown in Equation 3.The link delay del1|2 from switch
1 to switch 2 is:

del1|2 =
T1 +T2 −T1 −T2

2
(3)

Because the remaining bandwidth of a path depends on the
minimum remaining bandwidth of the links in the path, the path
li and remaining bandwidth are bwi, as shown in Equation 4:

BW =min(bwi|j) j ∈ 1⋯n (4)

The transmission QoS analysis can obtain the j(j = 1⋯n) delay
of the i(1⋯k) link of the path, and named deli|j, because the delay of
the path is equal to the total delay of all links, so the li delay of the
path deli is shown in Equation 5:

deli =
n

∑
j=1

deli|j (5)

To comprehensively consider the remaining bandwidth and
delay of the path, the path weight is set li as the ratio of the
remaining bandwidth and delay. The weight of the rigid path wi
is shown in Equation 6:

wi =
BW
deli

(6)

Calculate the weight of each path and select the path with the
highest weight as the transmission path for the stream. When there
are multiple paths with equal and maximum weights, randomly
select one path as the transmission path for the stream.

3.2 Transmission QoS analysis module

To achieve stable and reliable transmission, it is necessary
to regularly detect and analyze QoS for artificial intelligence to
calculate the optimal transmission strategy. The inputs of this
module are user set weight values, link bandwidth, latency, and
packet loss rate, and the output is the current optimal packet
queue. The transmission QoS is mainly generated through cache
packet transmission speed, user settings, historical transmission
logs, weights, etc. The formula is shown in Equation 7:

fQoS =
fget(v, fuser, flog, fother)

T
(7)

Among them, fQoS is the calculated transmission QoS value.
fuser is a value set by the user. flog is a historical transmission log.
fother is a value that affects QoS from other factors.T is a time range.

The transmission QoS is mainly generated through cache packet
transmission speed, user settings, historical transmission logs,
weights, etc.

3.3 Performance feedback module

To verify whether artificial intelligence decisions can meet
QoS requirements, this module implements inspection results to
achieve reliable and stable transmission. The inputs are artificial
intelligence decisions and TSN packet queues. Output is the QoS for
transmission requirements.

For real-time communication, time plays an important role in
TSN networks, and end-to-end transmission delay has difficult to
negotiate time limits. Due to the limitations of port forwarding
mechanisms, real-time performance is difficult to guarantee in
standard Ethernet. Scheduling and traffic shaping allow different
traffic categories with different priorities to coexist on the same
network, each category having different requirements for available
bandwidth and end-to-end latency. All devices involved in real-
time communication follow the same rules when processing and
forwarding communication packets. In time sensitive networks,
the performance requirements for many businesses traffic are not
limited to latency and jitter. It is more important to ensure that
frames in the traffic can be delivered within a certain and predictable
time. The underlying technical foundation for implementing this
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requirement requires a time synchronization mechanism based
on IEEE 802.1AS across the entire network and a gate control
scheduling mechanism based on the 802.1Qbv protocol.

Our goal is to achieve reliable and stable transmission of
deep space networks (between Earth and Mars). Based on the
above settings and analysis, the reliable transmission of deep space
networks based on delay sensitive networks can be transformed into
a mixed integer programming problem that minimizes distribution
delay and maximizes link utilization [14, 15]. The objective
equation is.

1) Minimize transmission latency, as shown in Equation 8a:

X

∑
x=1

delx +DELCx +DELOx (8a)

2) Maximizing link utilization, as shown in Equation 8b:

X

∑
x=1

Pathx ×BWx

PATHt
+ fget(t) (8b)

3) Minimize transmission path, as shown in Equation 8c:

X

∑
x=1
(Pathx ×wx + Pathx ×wx) (8c)

4) Minimize the number of packet arrangement and movement
times, as shown in Equation 8d:

X

∑
x=1

|Hglobal
x −Hx|

t
(8d)

Among them, delx is the transmission delay in the entire
network. DELCx is the dealing with latency. DELOx is the other
delays, such as excluding delays. Pathx is a transmission path that
is in working state during a certain time slot. The available paths
PATHt in the network during time slots t are fixed values. fget(t)
is the transmission gain during the time slot t, which is mainly
generated by artificial intelligence based on the transmission quality
of the previous stage. The higher the transmission gain, the greater
the transmission reliability. The transmission paths Pathx and Pathx
are based on TSN and ordinary paths (non delay sensitive networks)
are respectively.

The constraints of the above objective equation are as follows.

(1) Constraint on successful data transmission. The total
number of data packets at the sending end refers to the
problem of data packets at the receiving end, as shown in
Equation 9.

b

∑
a=1

BYTEa ≈
b

∑
b=1

BYTEb (9)

BYTEa Represents a a single data packet with the number.
In order to achieve reliable transmission, the amount of data
packets between the sender and receiver should be within a certain
allowable range.

(2) There is at least one reliable path for transmitting data,
as shown in Equation 10.

X

∑
x=1

Pathx ≥ 1 (10)

The number of links involved in data transmission should be
greater than or equal to 1 to avoid choosing to disconnect for data
transmission.

(3) Priority should be given to transmission with high latency
requirements, as shown in Equation 11.

DELAY1 ≫ DELAY2 ≫ DELAY3 ≫⋯≫ DELAYN (11)

TheDELAYc indicates priority level of latency, with smaller data
c indicating higher priority levels.

(4) Prevent transmission loop constraints. It refers to the data
packet not forming a loop from the beginning to the end of
transmission, as shown in Equation 12.

T

∑
t=1
( fget(n, t) + fget(n, t+ 1)) =

T

∑
t=1
( fget(n+ 1, t) + fget(n+ 1, t+ 1))

(12)

The above equation indicates that for any node n and its next
node n + 1, the gain of the transmitted data is consistent (without
forming a loop).

(5) TSN switches are constrained to operate normally.
Ensure timely and sensitive network technology
transmission of data packets passing through TSN switches,
as shown in Equation 13.

∑Packetall =∑packetall +∑packetall (13)

Packetall is the total number of data packets sent by the sender, while
packetall and packetall are the total number of data packets that have
not passed through the TSN handover machine and TSN switch,
respectively. This constraint ensures that data packets pass through
the TSN switch correctly.

We will use imitation learning to solve the multi-objective
optimization equations mentioned above [16, 17]. In reinforcement
learning, identifying excellent expert strategies and forming a set
to facilitate other intelligent agents to imitate the excellent expert
strategies in the set in the future. In other words, it is hoped
that the cumulative return of the intelligent agent will be close to
that of the expert strategies. In summary, the imitation learning
problem can be modeled as the following optimization problem,
as shown in Equation 14:

min
π

V(πEX) −V(π) (14)
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FIGURE 2
The decision-making process in imitation learning.

In the above equation, π is a certain strategy that V(π)
measures the π expected cumulative rewards that the strategy can
obtain, πEX is an expert strategy that is consistent with the goal
of reinforcement learning, which is to maximize V(π). Imitation
learning optimizes the strategy through expert examples of the
agent, while reinforcement learning is the reward function. The
specific steps are as follows:

Assuming there is an unknown expert strategy that πEX can
provide us with some examples, our goal is to recover the expert
strategy from these examples. The expert strategy can interact with
the environment to generate a series of tuples ⟨state,action⟩ (states,
actions), which TRACE can be regarded as a complete trajectory
F . These multiple tuples are called expert examples and set as the
training dataset. If we represent a complete trajectory, it can be
expressed as shown in Equation 15:

TRACE = {state1,action1, state2,action2,⋯, stateH,actionH} (15)

Then an expert p example composed of trajectories F can be
referred to as shown in Equation 16:

F = {TRACEb}
p
b=1 (16)

Among them, b is the example number, and its total quantity is
p. The process of multi-objective optimization mentioned above is a
Markov decision process, as shown in Figure 2, so imitation learning
can be competent for the solving process. In addition, imitation
learning has the following advantages:

Only a small number of valuable samples are needed; Low
hardware requirements; Can be significantly utilized, etc. The entire
algorithm is like Algorithm 1.

The above algorithm can solve the values in multi-objective
optimization by continuously comparing the strategy trajectory
formed by expert samples with the current sample.

4 Performance evaluation

You may insert up to 5 heading levels into your manuscript as
can be seen in “Styles” tab of this template. These formatting styles
are meant as a guide, as long as the heading levels are clear, Frontiers
style will be applied during typesetting.

In this section, the performance of the proposedMEMS (include
delay sensitive network transmission system) is evaluated by
simulating the deep space network environment using STK [18],
comparing the transmission parameters with others, and
analyzing and evaluating the performance. The comparison and
algorithm include:

Input: Time slot t, expert sample SAEX, number of

iterations CO, step ST, Reward Function ω,

Data packet queue to be transmitted H

Output: Strategy π under time slot t

01: divide the expert dataset into n parts:

SAEX = saEX
1
∪saEX

2
∪⋯∪saEXn

02: for i = 1,2,3,…,CO do

03:  π← ω#the optimal solution below ω

04:  save current state - dynamic distribution Pπ

05:  using online projection gradient method to

update the reward function ωt+1: = Pπ
EX
−Pπ

06:  calculate QoS based on link bandwidth, packet

loss rate, etc.

07:  generate Hglobal

08: end for

Algorithm 1. Imitation Learning for Multi Objective Optimization.

TSN: refers to the transmission system of the delay sensitive
network proposed.

DTN: refers to the data transmission algorithm under the DTN
protocol, as detailed in literature [19].

CCSDS: refers to the data transmission algorithm under the
CCSDS protocol, as detailed in literature [20].

SAGIN: refers to a data transmission algorithm based on
artificial intelligence, as detailed in literature [21].

4.1 Normalized transmission delay

Transmission latency refers to the time it takes for the server to
respond to a request sent from the client to the server and return
the data in a deep space network. During the entire transmission
process, due to changes in deep space network topology and high
latency, the lower the transmission latency, the better the algorithm
performance. The delay sensitive network proposed can ensure
reliable and efficient data transmission. To visually compare the
transmission delays of various algorithms, the input feature vectors
are first normalized, and the values of the feature vectors aremapped
to a [0,1] range.The normalization formula is shown in Equation 17:

yi =
xi −min(xi)

max(xi) −min(xi)
(17)

Among them, yi is the result of feature normalization. xi is the
original feature value.min(xi) andmax(xi) are the xi minimum and
maximum values of the feature. The normalized transmission delay
of each algorithm is shown in Figure 3.

From Figure 3, the algorithm proposed can effectively achieve
services with high business requirements, while other algorithms
cannot achieve stable transmission under multiple business
requirements. SAGIN cannot cope with the impact of dynamic
topology changes, resulting in significant average distribution
delay jitter.
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FIGURE 3
Normalized transmission delay ratio for different algorithms.

FIGURE 4
Overall throughput comparison of different algorithms.

4.2 Throughput

Overall throughput refers to the number of data bytes
transmitted during a certain period of time, which can reflect
scheduling, congestion, and other factors. The higher the overall
throughput, the stronger the algorithm’s data transmission
performance, and vice versa, the weaker the transmission
performance.

As shows in Figure 4, the algorithm applies delay sensitive
network technology, which can achieve stable data transmission
with guaranteed delay. The entire transmission process is
transformed into amixed integer programming problem, with lower
complexity and overall throughput better than other algorithms.
However, the overall throughput of other algorithms is not as good
as the algorithm in this article, which is prone to network congestion
and results in low throughput.

5 Discussion

The deep space network is the bridge connecting the Earth and
the universe. It is an important way for humans to explore the
universe, command and monitor spacecraft, and plays a huge role.
Its data transmission efficiency is crucial.

Building a delay sensitive network in deep space networks to
address the varying requirements of different business needs for
transmission service quality and transforming data transmission
into a mathematical model that minimizes transmission delay and
maximizes link utilization, not only ensures high priority data
communication, but also achieves data transmission for different
business needs, and solves it using imitation learning. Through
experiments, it has been proven that the proposed algorithm has
significant advantages.

In future work, further research will be conducted on other
technical methods of using microelectromechanical systems to
ensure data transmission security, stability, and reliability in deep
space networks.
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