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1 Introduction

Diamond nitrogen-vacancy (NV) color centers and other point defects are promising
candidates for solid-state qubits, but there are problems with their integration [1, 2].
Recently, a one-by-one irradiation device with the positional accuracy of dopant atoms on
the Ångström order has been developed [3–5] or is under development [6–9]. However,
the dopant atom Xn+/− is limited to be laser-coolable, and even the alternative method
of sympathetic cooling has various problems as an irradiation device. Therefore, the
hydrogenated molecules XHn+/−

m could be focused on as irradiation ions because the
hydrogenated ions have long attracted attention as laser-coolable molecules [10, 11], and
proton irradiation does not have a negative effect on the substrate.

In this paper, we review the cooling prospects of hydrogenated nitrogen NHn+/−
m to

achieve the integration of the most studied quantum defect, the NV center. We summarize
the chemical stability of each hydrogenated nitrogen, both the electronic ground state and
the optically transitive excited states from the ground state. The term chemical stability
here refers to no dissociation and, for anions, no autodetachment. Transitions excited by
other than visible or near light, such as vibrational transitions that do not involve electronic
transitions, are excluded.

We do not pursue the validity of the transition cycle for cooling, including Rosa’s three
fundamental requirements for cooling molecules [10], because the electronic structure
of most of the molecules listed here is not sufficiently investigated. We discuss which
hydrogenated nitrogen should be the focus of future cooling research to develop precision
irradiation.

2 Chemical stability of hydrogenated nitrogens

Hydrogenated nitrogen, namely, hydronitrogen NlH
n+/−
m , has a variety with l, m, and

n as variables. For a one-by-one irradiation of nitrogen, the molecules must be composed
of single nitrogens, so we will only consider l = 1. The molecule of m > 5 has not been
found, and there is a density functional theory (DFT) calculation that m = 5 is stable
above 55 GPa [12]. Therefore, only m ≤ 4 should be considered.

The following is a comprehensive description of previous research. It makes it clear
that knowledge of the electronic structures of hydronitrogens is still insufficient to propose
Doppler cooling schemes. The following section gives a concise summary of Tables 1 and 2.
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2.1 Monovalent cations

2.1.1 NH+ (mono-hydrogenation, monovalence
cation)

The monovalent cations or monocations (n = 1), such as NH+,
NH+2 , NH+3 , andNH+4 , are all stable at low temperatures andpressures
[13]. A cooling proposal has already been published for NH+,
one of the most promising candidates. The transition for cooling
cycle is 1 2Π (v″ = 0)  ↔  1 2Σ+ (v′ = 0) with the light of 438.5 nm
(see Figure 1), and the temperature estimated to be achieved to
6.63 µK [14].

2.1.2 NH+2 (di-hydrogenation, monovalence
cation)

The amidogen cation NH+2 has the electronic states X̃ 3B1, ã 1A1,
b̃ 1B1, and ̃c 1Σ+g in order from the ground state [15]. However,
X̃ 3B1→  ã 

1A1 is spin-forbidden. In addition, transitions between
ã 1A1, b̃ 1B1, and ̃c 1Σ+g are allowed transitions, but the potential
energy curve for b̃ 1B1 already has no local minima [16]. Therefore,
NH+2 is not laser-coolable.

2.1.3 NH+3 (tri-hydrogenation, monovalence
cation)

The electronic structure of NH+3 on the ground state X̃ 2A″2 and
the first excited state Ã 2E are investigated both experimentally and
theoretically. The transition X̃ 2A″2 →  Ã 

2E is optically allowable;
however, Ã 2E have rapid radiationless relaxation processes
of 30 fs [17], which means that a simple cooling process that excites
and de-excites between two levels cannot be constructed.

2.1.4 NH+4 (tetra-hydrogenation, monovalence
cation; ammonium ion)

We could not find any studies on the electronic excited states of
the ammonium ion NH+4 . However, the rotational spectrum ν3 band
with vibrational transitions is well studied [18–25]. Such vibrational

transitions could be used for cooling using near-ultraviolet lasers.
Future research is desired.

2.2 Divalent cations

The cooling feasibility of high-valence ions is rarely noticed.
However, high-valence ions are more appropriate for precision
irradiation applications because irradiating them can lower the
acceleration voltage to achieve the same beam energy.

2.2.1 NH2+ (mono-hydrogenation, divalence
cation)

The stability of the dication of the diatomic molecule XY2+ can
be briefly evaluated by the large value of the Δ in Equation 1:

Δ: = I (X) − I (Y+) , (1)

where I is the ionization energy; that is, I(X) is the first ionization
energy of X, and I(Y+) is the second ionization energy of Y [26,
27]. This means that the energy potential curve of A2+ +B is placed
at a position well below the curve of A+ +B+. Because the first
ionization energy of hydrogen is 13.6 eV [28], the atoms with a
second ionization energy sufficiently higher than 13.6 eV can form
stable dications. The second ionization energy of nitrogen is 29.6 eV
[28]. There is still a possibility that NH2+ is stable. However, NH2+ is
predicted to dissociate spontaneously, according to the calculation of
ab initiomolecular orbital (MO) theory [29]. The dissociation study
from NH2+

3 [30] also pointed out that NH2+ is unstable. There have
been reports of observing a long-lived state [31], but NH2+ is not a
candidate for cooling because even the ground state is metastable.

2.2.2 NH2+
2 (di-hydrogenation, divalence cation)

NH2+
2 was observed by charge stripping using neutral gas [32]

and by electron impact [30, 33, 34]. There are some theoretical
reports on the calculation regarding the electronic ground state

TABLE 1 Investigation status of the stability of the hydrogenated nitrogen cations NHn+
m . Good candidates: the ions for which cooling proposals can be

found. Unstable: the ions for which the ground state or the lowest excited state that can be optically transitive from the ground state are known to be
unstable. Poorly documented: the others.

NHn+
m

Ionization 1 H 2 H 3 H 4 H

+ Good candidate Unstable Poorly documented Poorly documented

++ Unstable Poorly documented Poorly documented Unstable

Higher Poorly documented Poorly documented Unstable Unstable

TABLE 2 Investigation status of the stability of the hydrogenated nitrogen anions NHn−
m . The legend is the same as Table 1.

NHn−
m

ionization 1 H 2 H 3 H 4 H

− Unstable Poorly documented Unstable Poorly documented

Higher Poorly documented Poorly documented Poorly documented Poorly documented
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FIGURE 1
Energy levels of NH+ cited from [14]. f ij is a Franck–Condon factor
from v′ = i to v″ = j. In the case of Sisyphus cooling, three lasers,
438.5  nm, 502.5  nm, and 517.3 nm, are required, but in our case of
Doppler cooling of translational motion, only the 438.5 nm
laser is needed.

[29, 35–37] and excited states [38]. There is also an experimental
report that an excited state of NH2+

2 has been observed [34]. This
excited state was caused by a collision with helium, resulting in
a transition of X 2A1 (2Πu) →  2A1 (2Σ+g ). 2Σ+g was thought to be
the first electronic excited state, but later theoretical research has
suggested that there is a lower excited state than 2Σ+g [38]. NH2+

2
can take chemically (quasi-)stable excited states. Research on these
excited states is inadequate, and there has been no progress for more
than 30 years. Further research is desired in the future.

2.2.3 NH2+
3 (tri-hydrogenation, divalence cation)

NH2+
3 is the most well-investigated dication of hydronitrogen.

NH2+
3 was experimentally found through electron impact ionization

[30, 33, 39–43], photoionization by synchrotron radiation
[44–49], and by the other photon sources [50–52]. Auger
electron spectroscopy (AES) [53–55] and doubly charged transfer
spectroscopy (DCT spectroscopy, DCS) [56–58] were also carried
out, and there are several theoretical works [29, 47–49, 59–67].
The dissociation studies from highly excited rovibrational states or
excited electronic states of NH2+

3 [30, 41, 43, 44, 46, 48, 49, 68] are
useful for considering the stability of the cooling cycle. The excited
states of NH2+

3 have been well studied both experimentally and
theoretically. However, their studies have been mainly motivated
by the dissociation process through coincidence measurement. We
could not find any studies on the existence of low-lying excited
states, which are difficult to dissociate, or on the transitions between
states of NH2+

3 . Because divalent ions are convenient for high energy
irradiation, NH2+

3 should be thoroughly investigated in the future.

2.2.4 NH2+
4 (tetra-hydrogenation, divalence

cation)
NH2+

4 is predicted to be unstable as a MO calculation [29],
multireference configuration interaction (MRCI) calculation [35,
36], and coupled cluster (CC) calculation [69]. There is a report to
possibly generate NH2+

4 by the charge stripping with neutral gas and
instantly dissociate to NH+3 +H

+ [32]. NH2+
4 is chemically unstable

and therefore not a cooling target.

2.3 Trivalent and higher valence cations

For NH3+
2 , no reports were found for either experiments or

calculations. There is a dissociation study of NHn+
3 (n = 3,4,5)

obtained by polyvalent argon irradiation [70], and NH3+
3 was

obtained by ionization by proton irradiation [68]. These reports
show thatNH3+

3 should be dissociated, whichmeans unstable. AsCC
calculation [69], there is no local minimum on the potential energy
curve of NH3+

4 ; therefore, NH3+
4 does not even have a metastable

state. This result is not surprising, as even NH2+
4 was unstable.

2.4 Anions

Thepolyvalence anion is first discussed.The reports of dianions,
that is, divalent anions, aremostly related to large organicmolecules,
and the relatively small ones are AX2−

3 (A = Li,Na,K and X = F,Cl),
which is a compound of alkali metals and halogens [71, 72],
EX2−

4 (E = Be,Mg and X = F,Cl), which is a compound of alkaline
earth metals and halogens [73, 74], and a compound of metals and
pseudohalogens CN [75]. Only molecules with strong correlations,
such as metal-halide, may allow stable dianions. Therefore, we will
only consider monovalent anions (n = 1).

2.4.1 NH− (mono-hydrogenation, monovalence
anion)

NH− is experimentally well investigated, and the ground states
are chemically stable [76]. NH− realizes the similar transition as the
prominent cooling candidate NH+, but NH− of the excited state is
theoretically estimated to be neutralized by autodetachment [14].
Therefore, NH− should not be a cooling candidate.

2.4.2 NH−2 (di-hydrogenation, monovalence
anion)

The ground state of NH−2 is known as stable [77]. NH−2
is autodetached through photoelectron spectroscopy of the
X̃ 1A1 →  

1B1 transition excited by a 3.408 eV photon [77]. It is
not known whether 1B1 is the lowest excited state.

2.4.3 NH−3 (tri-hydrogenation, monovalence
anion)

The stability report of NH−3 cannot be found because all of the p
subshells in N are half-filled, so it is difficult for four more electrons
to form a stable system with sufficient separation from each other.
The possibility remains that there are states with finite lifetimes due
to vibrational rotational degrees of freedom, but in any case, NH−3
cannot be used for cooling.

2.4.4 NH−4 (tetra-hydrogenation, monovalence
anion)

While NH−3 is unstable, NH−4 is stabilized in two forms:
H−(NH3)1, which is stabilized by the ion–dipole interaction [78–82],
and NH−4 as a double Rydberg anion (DBA), which is stabilized
by the two Rydberg-like electrons attached to NH+4 [80–90].
The dissociation studies of H−(NH3)1 and NH−4 have been well
investigated. However, we could not find any research focusing on
the electronic excited states that can be reached through optical
transitions. Further research is needed.
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3 Discussion and outlook

The above discussion is summarized in Table 1 for the
cations and Table 2 for the anions. The electronic structures of the
hydrogenated nitrogens have hardly been investigated. Although
there have been previous studies on the cooling potential of NH+

and NH−, this does not mean that NH+ is the only promising
candidate. The electronic structures of the ions listed here, namely,
NH+m (m = 1,3,4), NH2+

m  (m = 2,3), NH3+
2 , NH−m (m = 2,4), and

H−(NH3)1, have not yet begun to be studied other than NH+.
In order to investigate the cooling capability of hydrogenated

nitrogens, the energy potential curves of the ground state and the
optically transitive excited states should be derived by ab initio
calculations. The study of some hydrogenated molecules stagnated
for about 30 years, but more recently, calculations using large basis
sets have become practically feasible. Ab initio calculations are the
first step in the study of Doppler cooling. We strongly emphasize
the importance of ab initio calculations of hydrogenated nitrides
for integrating solid-state qubits. We encourage quantum chemistry
theorists to conduct intensive research on hydrogenated nitrides.

As a next step, absorption, photoelectron, and various active
spectra should be obtained over a wide range of wavenumbers for
each hydrogenated nitrogen ion. In particular, because the energy
levels of the excited state are difficult to match with the calculation
results, the spectra must be scanned over a wide range. Obtaining
such comprehensive data is less likely to produce immediate
scientific results than the effort required for the experiment.
Therefore, a cooling investigation driven by engineering and social
demands to develop solid-state quantum devices is necessary.
As with semiconductor research in the past, research based on
engineering and social demands will lead to the development
of science.

In addition, a method for analyzing the obtained large-scale
spectral data should be developed. Currently, the rovibrational
spectra of small molecules are assigned semi-manually using
software such as PGOPHER [91–94]. For extensive data sets, semi-
manual assignments are unrealistic. Modern pattern recognition
techniques should be applied based on physical understanding.
Furthermore, scientific software packages are often developed by
individual researchers, and the development is sometimes not stable.
PGOPHER also stopped being updated in 2022 because the author
passed away. Standard assignment tools should be systematically
developed to analyze large data sets.

The science of molecular cooling must assist in achieving the
integration of the NV color centers. As we have discussed, the
science of molecular cooling, at least of hydrogenated nitrogen, is

not sufficiently advanced. We hope this will be a case where pure
science evolves dramatically due to engineering needs.
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