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Extreme events in armed
conflicts: a perspective

Yair Neuman*
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Negev, Beer-Sheeva, Israel

Armed conflicts are characterized by changes in the number of fatalities that
may span different orders of magnitude. A change in fatalities, crossing an order
of magnitude, may be accompanied by surprise. The paper suggests estimating
the probability of extreme changes in fatality (i.e., the surprise) using a physics-
informed approach. More specifically, the paper aims to estimate the probability
of an unseen event where the increase in the death toll crosses an order of
magnitude. The perspective is presented and illustrated with a single case: the
postmortem analysis of the 7 October 2023 attack on Israel.
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1 Introduction

On 7 October 2023, Hamas militants invaded Israel in a surprising blitz attack in
which 1,180 Israelis were killed, 3,400 were wounded, and 251 were taken captive [1].
To understand the meaning of the attack, one has to examine the death toll in Israel
since 1989 [2]. The deadliest year in Israel’s history of armed conflicts (1989–2022) resulted
in 309 casualties, with an average daily death count of less than one. In logarithmic terms, a
single day on 7 October 2023 resulted in a death toll higher than the rounded average of the
previous most bloody year by three orders of magnitude.

The psychological surprise that followed this blitz attack and its consequences are
undeniable. For instance, a senior Israeli official compared the surprise to observing a
submarine in a desert’s creek [3]. From a statistical point of view, it is difficult to quantify
the surprise of observing such an extreme value of fatalities given the small size of the data
set and the difficulty of extrapolating far beyond the maximum observed value of fatalities
before October 7 (i.e., 309). Given this context, onemay ask, how surprising is this surprise?
In this paper, and adopting the perspective of social physics [4], I argue that the surprise is
less surprising than might have been naively assumed.

This perspective paper is structured as follows:

1. The challenge of estimating the probability of observing an unprecedented increase in the
death toll, measured in orders of magnitude, is introduced.

2. TheBoltzmanndistribution is proposed as amodel to estimate the distribution of fatalities
across varying orders of magnitude.

3. A method for estimating the energy states required for the Boltzmann distribution
is outlined.
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4. The application of the Boltzmann distribution in computing
the posterior distribution of changes in fatalities is discussed.

5. The probability of a change in the death toll, as observed on
October 7, is shown to be higher than assumed.

2 Preprocessing

I analyze the annual sequence of fatalities in Israel (1989–2022)
[2], comprising 34 data points. All zero values in the dataset
were replaced with one to support logarithmic transformation. The
year-over-year change in fatalities was calculated as the ratio of
fatalities in a given year to those in the preceding year. This ratio
was then transformed with Equation 1 using a base-10 logarithmic
scale (log10):

∆ = log 10 Xt+ 1
Xt
. (1)

Figure 1 presents Δ as a function of time:
I focused on an increase in the death toll and analyzed N =

13 data points where Δx > 0. The measurements are classified into
the following levels, each representing an order of magnitude in
the observed Δ:

Level 1: 0.1–1
Level 2: 1–2
Level 3: 2–3
Table 1 presents the number of Δ events per level (Ni) and their

probability:
Ten Δ were observed for the first level, two for the second level,

and only one Δ was at the third level. This means there was only one
measurement in which the Δ in the death toll for 2 consecutive years
was at a scale of two to three orders of magnitude.

Table 1 presents the distribution of changes in the death toll.
Given this distribution, I aim to estimate the probability of observing
a change in the death toll with a higher order of magnitude than
previously observed. Therefore, the major challenge I aim to address
is to estimate the probability of the yet unseen event of October
7, where the ratio of fatalities is 3–4 orders of magnitude. More
specifically, I propose using the Boltzmann distribution to estimate
the probability of a Δ (i.e., an increase in the death toll) with a
magnitude never observed before.

3 The Boltzmann distribution of
changes in fatalities

The Boltzmann distribution is a fundamental tool in
statistical mechanics for describing the probability distribution
of states in a system at thermal equilibrium. In this study, the
Boltzmann distribution is adapted to model the distribution
of change in fatalities across orders of magnitude. Equation 2
presents the mathematical expression for the Boltzmann
distribution:

P(Ei) =
e−Ei/kBT

Z
(2)

where Z is the normalizing function. For simplicity, kB and
T are set to 1. The Boltzmann distribution is particularly
suitable for addressing the paper’s main challenge for the
following reasons:

1. Energy State Representation: The next section explains that
Δ can be conceptualized as corresponding with transitions
between energy states. Larger changes in the death toll
trivially correspond to higher energy states as more energy is
required to generate more fatalities.Thismakes the Boltzmann
distribution an ideal framework formodeling the probability of
an increase in the death toll.

2. Capturing Rare Events: The Boltzmann distribution naturally
accounts for the rarity of high-energy states, aligning with the
observed distribution of fatalities where extreme events are less
frequent but not negligible. This is a highly important point,
as using the Boltzmann distribution may allow us to model
unseen events in a higher order of magnitude.

3. Prior for Bayesian Analysis: Given that our data set includes
a limited sample of cases (i.e., N = 13 events of an increase
in the death toll), the distribution of changes in the death
toll cannot be trusted to represent the real population.
Using the Boltzmann distribution of Δ provides a principled
way of incorporating the data structure into the Bayesian
framework for estimating posterior probabilities of extreme
events, specifically, extreme increases in the death toll.

Given the justification of using the Boltzmann distribution to
address the main challenge of the paper, I first use the distribution

FIGURE 1
Change in the fatalities ratio as a function of time.
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TABLE 1 The distribution of increases in fatalities per level (Ni).

Level Count P

1 10 0.77

2 2 0.15

3 1 0.08

of changes in fatalities as presented in Table 1 and determine the
energy state of each level of Δ. This step is necessary for defining
the Boltzmann distribution of changes in fatalities.

4 Representing the energy states of
the distribution

We are given a distribution of change in the death toll across
three levels (i.e., levels 1–3). A reasonable assumption is that
each level corresponds with a different energy level used by the
opponent to generate a certain increase in the death toll. In
other words, each level may be considered to correspond with an
energy state, as different energy levels are required to scale up the
death toll.

The next phase is to assign an energy state to each level of
change in the death toll. I assume a power law underlying the scales
of the death toll. The assumption of a power-law distribution for
the death toll scale is supported by both theoretical and empirical
evidence. From a theoretical perspective, it is well known that
power-law distributions are prevalent in complex systems where
extreme outcomes emerge from non-linear, scale-free processes [5].
Empirically, it has been shown in the classical work of [6] and
concerning the Israeli case [7] that fatalities in armed conflict follow
a power-law distribution.

This power-law assumption, supported theoretically and
empirically, enables the proposed framework to capture the
tail behavior of the distribution, which is critical for modeling
extreme events and understanding the energy states associated with
significant changes in fatalities.

Assuming a power law underlying the scales of the death toll, the
energy states of levels 1–3 are defined using Equation 3:

Ei = Ei−1 + (k · |Si–Si−1|p) (3)

where Ei-1 is the energy level of the previous level, Si is the Ei value
for the current level, Si-1 is the E value in the prior level, and k is a
scaling constant that modulates the base level of energy growth.

E1 is set to 1, p = 1.5, and k = 0.5 for simplicity. Therefore, E1 = 1,
andE2 is computed using Equation 4, where Si is always themidpoint
value of the ∆ level:

E2 = 1+ (0.5 · |15− 5|1.5) ≈ 16.81 (4)

Using the midpoint of each level’s range to calculate the energy
levels, the E levels associated with states 1–3 are 1, 16.81, and 32.62,
respectively. In all results, scores are rounded to two places after the
decimal point.

At the end of this phase, we have (1) the distribution of change
in the death toll across three levels (i.e., orders ofmagnitude) and (2)
the energy state associated with each level.

5 Using the Boltzmann distribution for
a Bayesian analysis

Given the energy state associated with each level of increase in
the death toll, I calculated the Boltzmann distribution of ∆. This
move allows us to leverage the analysis by estimating the probability
distribution of an increase in fatality. The move is necessary because
the Boltzmann distribution is then used to define our prior beliefs
about the probability of observing ∆ at each level. Setting the
kBandT parameters to 1, I used Equation 5:

P(Ei) =
e−Ei

Z
(5)

where Ei is the energy state associated with each level of increase in
the death toll. Using the equation, we can compute the probability
of observing an event, an increase in fatalities within each level.
For example, the probability of observing an increase in the death
toll within one order of magnitude is ≈ 1 because using the
Boltzmann distribution, P(Ei = 1) ≈ 1. In contrast, the probability
of observing increased fatalities in levels 2 and 3 is estimated to be
approximately 0.

The Boltzmann distribution is used to define our prior beliefs
about observing an event at each level of increase in the death toll.
It is used to define our prior beliefs given the assumption about
the energy required to cause a change in the order of magnitude
of fatalities. However, the Boltzmann distribution only sets our
prior beliefs under reasonable assumptions. We aim to estimate the
probability of observing an event in each level of change by updating
our prior beliefs through the actual distribution we observed in the
13 data points (as seen in Table 1).

Therefore, I used the Boltzmann distribution to compute
the Dirichlet conjugate prior in order to estimate the posterior
multinomial distribution of the levels in the death toll. In other
words, I performed a Bayesian analysis, updating the prior using the
observed distribution of ∆.

Using the Boltzmann distribution to compute the conjugate
prior offers an approach well-suited to rare-event modeling in small
samples. The Boltzmann distribution leverages the data structure
of changes across categories to inform the Dirichlet distribution’s
alpha parameters, allowing the model to capture both low and
high-energy events despite limited data. This approach provides
a more flexible alternative to traditional distributions, which may
underestimate extreme events due to a lack of prior weight given to
higher-magnitude changes.

In summary, using the Boltzmann distribution, we can estimate
the probability of observing an increase in fatalities within each order
ofmagnitude.This distribution is used as a conjugate prior to estimate
the posterior distribution of ∆ across different orders of magnitude.

6 Estimating the probability of an
extreme event that has not been
observed

Using the Bayesian analysis, we may revise our prior beliefs that
changes in death toll will occupy energy states scaling over orders
of magnitude. In other words, we revise our beliefs concerning
the probability of observing an increase in the death toll within
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each order of magnitude (i.e., level). For example, there were N =
13 events of increase in the death toll, and their distribution for
categories 1 to 3 was 0.77, 0.15, and 0.08, respectively. Updating
the prior, the posterior multinomial probability distribution is now
[0.37, 0.51, 0.11]. In other words, the probability of observing an
increase in fatalities for each order of magnitude has been updated,
where the probability of observing an increase within 2–3 orders of
magnitude has changed from 0.08 to 0.11:

Our interest, though, is not in updating our prior beliefs per se
but in estimating the probability of observing an event in an order
of magnitude not observed before. In other words, we are interested
in the question: What is the probability of observing a ∆, which is
between three and four orders of magnitude (i.e., level 4)? Such a ∆
does not exist in the data set of fatalities that ends in 2022, a year
before the Hamas blitz attack.

To answer this question, I computed the Boltzmann probability
distribution for a system with four energy states. I also revised the
sample to include four levels, where the fourth level includes one
event: [10, 2, 1, 1]. This sample (N = 14) represents a “what if ”
scenario and allows us to estimate the probability of observing a
change within an order of magnitude (i.e., 3–4) that has not been
observed in the real dataset. In other words, I built a hypothetical
scenario where the original distribution of changes in the death toll
includes the observation of one extreme event where the increase in
the death toll is within the level of 3–4 orders of magnitude.

In this hypothetical scenario, and using the same procedure as
presented before, I performed the following procedure. I used the
Boltzmann distribution as a vector of probabilities [p1 ≈ 1, p2 ≈ 0,
p3 ≈ 0, p4 ≈ 0]. The observed counts are [N1 = 10, N2 = 2, N3 =
1, N4 = 1], representing the sample data in each level. I used the
Boltzmann distribution as a prior, interpreting each probability in
the Boltzmann distribution as proportional to a Dirichlet parameter.
Next, I multiplied each probability in the Boltzmann distribution by
a scaling factor, s, equal to the size of the hypothetical sample (N =
14) to create a Dirichlet parameter vector α: [1 × 14, 0 × 14, 0 × 14, 0
× 14], updated the Dirichlet prior with the observed data: [10 + 14,
2 + 0, 1 + 0, 1 + 0], and computed the posterior: [24/28, 2/28, 1/28,
1/28] to gain the final (rounded) posteriors: [p1 = 0.86, p2 = 0.07,
p3 = 0.04, p4 = 0.04]. Therefore, the chance of observing an increase
in the death toll, which is of three to four orders of magnitude [i.e.,
p(Ei=4)], is 4% and not 0, as might have been naively assumed.

Using standard norms of rare events [8], such a change in the
estimated number of fatalities moves the scale from “extremely rare”
to “very rare.” While the probability of observing a 3–4-order-of-
magnitude increase in the death toll is still low (i.e., very rare),
it is not in the realm of the black swans or the unimagined, as
naively believed [2].

7 Discussion

Armed conflicts have been studied from the perspective of
complex systems (e.g., [7, 9, 10]). The current perspective aligns
with this literature and introduces a social physics approach to
armed conflicts, specifically estimating the probability of observing
an extreme change in the death toll. I suggested that the Boltzmann
distribution may be valuable in understanding how fatalities are
distributed across the severity scales because it provides a framework

to model the energy associated with different magnitudes. When
using it to form the conjugate prior for a Bayesian analysis, we can
better estimate the probability of an unseen extreme change in the
death toll.Moreover, the probability of observing a change in fatalities
in three to four orders of magnitude has been estimated using a
Boltzmann distribution with T = 1. Using a model with different
temperature levels produced some interesting insights that cannot
be detailed here, given the limits of a perspective article.
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